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Minimization of the Gross-Pitaevskii Energy Functional Formulation of the Problem
Gradient Minimization

Sobolev Gradients

» Gross-Pitaevskii Free Energy Functional (non-dimensional form)
1 1
E(u) = / [2]Vu]2 + Cirap |Ul* + ECg\u\“ —iCqu*A" - Vu| dx,
D

uuH%:/ W) dx=1,  DCR
D

where
u= \/de/y 1) — wavefunction, ¢ : D —C
N xs
N — number of atoms in the condensate
xs — characteristic length scale
At =y, —x,0], Curap(X, y, z) — trapping potential

(g, Co — constants

» Cq characterizes the effect of rotation
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Minimization of the Gross-Pitaevskii Energy Functional Formulation of the Problem

Gradient Minimization
Sobolev Gradients

» Dirichlet boundary conditions: v =0 on 0D
» Variational optimization, E : H}(D) - R
min  E(u
ueH}(D) ( )

subject to ||ul|,p) =1

» Minimizers constrained to a nonlinear manifold M in H}(D)

M= {ue H(D) : llulliym) = 1}

» Computational approaches:
» Euler-Lagrange equation for E(u) = nonlinear eigenvalue problem

» Direct minimization of E(u) via a gradient method
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Minimization of the Gross-Pitaevskii Energy Functional Formulation of the Problem
Gradient Minimization

Sobolev Gradients

» Steepest-gradient approach

u(n+1) — u(”) - Th VE(U(U)), nZO,l,---,

u©® = yg, (initial guess),
where
i= nI|_>rr;o u(™ — the minimizer (“ground state”)
VE(u™)  — gradient of E(u) at u™
Tp = argmin_. E(u(”) -7 VE(u(”))) — optimal step size

> Key issues:
» Regularity of the minimizers i € H}(D) = Sobolev gradients

» Enforcement of the constraint i € M = Riemannian optimization
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Minimization of the Gross-Pitaevskii Energy Functional Formulation of the Problem
Gradient Minimization

Sobolev Gradients

» Gateaux differential of the Gross-Pitaevskii Energy Functional

E'(u;v) = lim e HE(u+ev) — E(u)], uveX

€

X — some function space

» Riesz Representation Theorem:
E’(u;-) bounded linear functional on X

=  Vyex E'(u;v) = <VXE(U), V>X

» Relevant inner products (Danaila & Kazemi 2010)
(u, V>L2 :/ (u,v) dx, where (u, v) = uv*
D
(U, V) = / (u,v) + (Vu,Vv) dx
D

(4, V), :/ (V) + (Vau, Vav) dx, Va=V + iCoAt
D
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Minimization of the Gross-Pitaevskii Energy Functional Formulation of the Problem

Gradient Minimization
Sobolev Gradients

» Different Sobolev gradients (X = Ly, H', Ha)

E’(u;v):EFE<VL2E(u),v>L2: < E(u), > <vHAE(u) >

Ha
» The L gradient

2 1
vt E(u)=2 <—2V2u + Girapu + Cg|u\2u — iCQAt - Vu) ,

» The Sobolev gradient G = VHAE(u) obtained from the L, gradient
via an elliptic boundary-value problem (Danaila & Kazemi 2010)

Vyeri(p) /D [(1+ G3(x*+y?)) Gv+ VG - Vv — 2iCoA" - VGv] dx

1
= / EVU Vv + [Ctrapu + Cg|u\2u — iCAt - Vu] v dx
D
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

» Riemannian Optimization — an “intrinsic” approach with
optimization performed directly on the manifold M without reference
to the embedding space H} (D)

» optimization problem becomes unconstrained

» can apply more efficient optimization algorithms (conjugate gradients,
Newton's method)

» Riemannian structure at various levels:
» retraction back to the constraint manifold —
» vector transport along the constraint manifold —

» Riemannian metric on the constraint manifold

> Here the formulation made simple by the constraint  ||ul|,(p) =1

» Reference: P.-A. Absil, R. Mahony and R. Sepulchre, “Optimization
Algorithms on Matrix Manifolds”, Princeton University Press, (2008).
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

» Projection of the gradient G on the tangent subspace 7, M

§R(<Un, G>L2) "
R ((un, vHy)2)

<VHA, V>HA = <u,,, V>L2, Yv € HA

Py, G =G — where

> There is some freedom in choosing the subtracted field (v4,)

» Approach equivalent to constraint enforcement via Lagrange
multipliers
» Error in constraint satisfaction O(7,)
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

» RETRACTION
Ry : TuM — M

maps a tangent vector £ € 7, M back to the manifold M
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

» For our constraint manifold M

u—+§

Ru(f) = — > —
O = v dom

retraction = normalization

» Riemannian steepest descent approach

Upt+1 = 7?fu,, (TnPu,,,HA G(un)) s n=20,1,2,...
ug = u°

where
Tp = argmin <o E (Ry,(7Pu,.H,G(un)))
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

(b)

_TnPunGn

s
s

_ _up—1,Gy
U =
n+1 HUn—TnGnHQ

__upn—mnPy, Gy
U — _n='nlupYn
ntl HUn‘TnPunGnHQ

= Run (_T’LPU,L Gn)

(a) The simple (“unprojected”) gradient method.
(b) The projected gradient (PG) method.
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

» Consider minggn f(x), where f : RV = R
» Nonlinear Conjugate Gradients Method

Xp+1 = Xp + Thdp, n=20,1,...

X0 :XO

» descent direction d,, is defined as

d,=—g,+fBndp1, n=12,...
do = —go, g, = VF(x,)

» “momentum” coefficients 3, ensure conjugacy of decent directions

Bn=BrF = <g<gm:n>)('> (Fletcher-Reeves),
n—1,86n—-1/X
Bn=BR = <gn<7g(gn = gn—>1)>x (Polak-Ribiére)
n—1,8n-1/X
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients
» In the Riemannian setting

gn—lvdn—l € Tx and gnydn S 7;(,,;

n—1

hence cannot be added or multiplied ...
> Need a mapping between the tangent spaces 7, , M and T,, M

» VECTOR TRANSPORT T,(§) : TMXTM —=TM, &neTM
describing how the vector field £ is transported along the manifold M
by the field n
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

» For our constraint manifold M:

» vector transport via differentiated retraction

1 [ _(x+nx)(x+nx)T}€
[1x + 1l [ + 1|2 )

d
Tn(&x) = ERX(WX‘i‘th)’t:O =

» vector transport on Riemannian submanifolds (“parallel” transport)

X X T
(x + ) (x + 1x) :|§x

Ton(&) = P = {Id
(8 = Pru€ Ix-+ P

» The two definitions differ by a scalar factor only
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

» RIEMANNIAN CONJUGATE GRADIENTS

Unt1 = Ru, (Tndn), n=20,1,...

up = u°, where

dn = _Pu,,,HA G(Un) + /Bn Tan,ld,,,l(dn—l), n=12...
do = =Py H, G

<Pun7HAG(un)7 (Pun,HA G(un) - 7:Tn—1dn71 Pun,HAG(Un—l)) >
(Puy 1,6 un 1), Py 1, G (un 1) )
(Polak-Ribiére)

Ha(D)

Ha(D)

» Approach straightforward to implement
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First-Order Geometry
Riemannian Optimization Second-Order Geometry

Riemannian Conjugate Gradients

(b)

_Pu,an

- _7:T/lfldnfld”71
""" fa
_%‘5/17-—7',,,,14,,,16&1—1

(a) Riemannian vector transport of the anterior conjugate
direction d,_1; the transport of the anterior gradient
G,,_1 is performed in a similar way.

(b) Projection of the new Sobolev gradient G, onto the
tangent subspace 7,, M resulting in Py, y,Gy.
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices

» Implementation in FreeFEM++:
» P2 (piecewise quadratic) finite elements used to approximate the
solution u

» P* (piecewise quartic) finite elements used to represent the nonlinear
terms in the gradients

» Discretization of domain D
» fixed triangulation
> Mesh |: 24,454 triangles with hmi,» = 0.0118
» Mesh Il: 99,329 triangles with hpyi, = 0.0059

» Adaptive mesh refinement (Danaila & Hecht, 2010)

» Arc-search for optimal 7, = argmin_.q E (Ry,(—7dp,))
using Brent's method
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices

2V21 P (R—)
= T

Uex(x,y) = U(r) exp(im0), U(r) meN

3D-rendering of the modulus |uey| color-coded with
(a) the modulus itself,

(b) the modulus itself and (b) the phase of the solution for m = 3.
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices
» Constants A. and A, (A, = VAe)
Mesh 1 Mesh 2
Ae VAe Ay Ae VAe Ay
(RG) 0.9167 | 0.9574 | 0.9496 | 0.9268 | 0.9627 | 0.9538
(RCG) | 0.2909 | 0.5394 | 0.5275 | 0.2924 | 0.5408 | 0.5238
» Relation to the “condition number” k (Euclidean case)
» simple gradients: A, =(k=-1)/(k+1)
» conjugate gradients: A, =(v/k—1)/(vV/ck+1)
» Estimate x from A,
» RG: Kk ~ 42.37
» RCG: k=~ 3.2
>

Speed-up in the Riemannian Conjugate Gradient approach exceeds
the theoretical prediction!
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices
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Manufactured Solution

BEC with a Single Central Vortex
Computational Results Abrikosov Lattice and Giant Vortices

The step size 7, in the Projected Gradient (PG) and Riemannian Gradient
(RG) methods exhibits oscillatory behavior
—> iterates u, trapped in long narrow ‘“valleys"

-06 -0.4 -02 0.0 0.2 0.4 06 08X 10
() 2006 P.A. Simionescu 1

steepest descent for the “banana function” (from Wikipedia)
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices

BEC trapped in a harmonic potential and rotating at low angular velocities

Cirap = /2, Cg =500, Cq =04

3D rendering of the atomic density p = |u|? for:
(a) the initial guess up (Thomas-Fermi approximation)

(b) the converged ground state.
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices

» For comparison, semi-implicit backward Euler (BE) method to solve
the normalized gradient flow

i— 1
% = SV2ii = Cuapli = Cylun i+ iCoA* - Vi
Upi] = ﬁ(tn+1)
" it

» Additional diagnostic quantities

angular momentum: L= i/ u*At - Vu dx
D

drift away from

the constraint manifold: on

Il
ey
|
=
3
=
N
PN
)
>
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices
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Manufactured Solution
BEC with a Single Central Vortex
Computational Results Abrikosov Lattice and Giant Vortices

Evolution of |¢| with iterations
Riemannian Conjugate-Gradient (RCG) Approach with Adaptive Grid Refinement
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices
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Manufactured Solution
BEC with a Single Central Vortex
Computational Results Abrikosov Lattice and nt Vortices
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Manufactured Solution
BEC with a Single Central Vortex
Computational Results Abrikosov Lattice and Giant Vortices

Conclusions

» Riemannian approach accelerates solution of equality-constrained
optimization problems (computation of ground states in BEC)

> better performance than other first-order methods
» comparable performance to some second-order methods (Ipopt, which
however cannot take advantage of grid adaptation)
» Key enablers for Riemannian Conjugate Gradients:
> projections onto 7, M
> retractions from 7, M onto M,
» vector transport between 7, , and 7,
» Ongoing work:
» Riemannian metric on the constraint manifold

» Riemannian Newton's method
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Manufactured Solution
BEC with a Single Central Vortex

Computational Results Abrikosov Lattice and Giant Vortices
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Manufactured Solution
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