Projet 2 : Résolution de l'équation des ondes 2D (première partie)

Problème physique et modélisation mathématique

Nous nous proposons de simuler les vagues créées par un caillou jeté dans un lac carré $\Omega=(-L,L)^2$, de frontière Γ . Après un bref instant, le caillou crée une vague d'amplitude $u^0(x)$ qui sera pour nous la condition initiale pour t=0; ensuite le phénomène est linéaire et l'amplitude de la vague au point x à l'instant t vérifie

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = 0, \ \forall x \in \Omega, \ \forall t \in (0, T).$$
 (1)

Si la vitesse de la vague initiale est nulle et si la réflexion sur les bords est parfaite, alors nous définissons pour l'équation (1)

- les conditions initiales

$$u(x,0) = u^{0}(x), \quad \frac{\partial u}{\partial t}(x,0) = 0 \ \forall x \in \Omega$$
 (2)

- et les conditions aux limites

$$\frac{\partial u}{\partial n}(x,t) = 0, \ \forall x \in \Gamma, \ t \in (0,T). \tag{3}$$

Pour résoudre numériquement cette équation aux dérivées partielles, nous commençons par discrétiser l'intervalle [0,T]

$$[0,T] = \bigcup_{n=0}^{N-2} [t_n, t_n + \delta t], \ t_n = n\delta t, \ n = 0, 1, \dots, N-1, \ \delta t = T/(N-1), \tag{4}$$

et approcher la dérivée seconde en temps par un schéma aux différences finies centré en temps :

$$\frac{U^{n+1} - 2U^n + U^{n-1}}{\delta t^2} - \Delta U^n = 0.$$
 (5)

Nous reconnaissons le schéma explicite utilisé pour le projet 1 avec la discrétisation spatiale du domaine 1D par des différences finies.

Nous utiliserons dans ce projet une discrétisation du domaine spatial bidimensionnel Ω par la méthode des éléments finis P^1 . Soit \mathcal{T}_h une triangulation de Ω , et V_h l'espace des fonctions continues affines par morceaux sur la triangulation : la solution U sera approchée par $u_h \in V_h$. Pour simplifier la présentation, nous omettons par la suite l'indice h.

La formulation variationnelle de (5) s'écrit : trouver $u^{n+1} \in V_h$ la solution de

$$\forall w \in V_h: \quad \int_{\Omega} w \frac{u^{n+1} - 2u^n + u^{n-1}}{\delta t^2} + \int_{\Omega} \nabla w \nabla u^n = 0 \tag{6}$$

$$u^0 = \Pi_h u^0, \quad u^1 = u^0, \quad \text{où } \Pi_h \text{ est l'opérateur d'interpolation } P^1 \text{ sur } V_h.$$
 (7)

Pour les applications numériques on choisira

$$L = 5$$
, $T = 6$, $u^{0}(x) = \exp(-2(x^{2} + y^{2}))$.

Q1: Résolution numérique avec FreeFem++

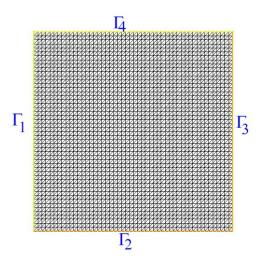
- (a) Construire avec FreeFem++ une triangulation du carré $[-L,L] \times [-L,L]$, avec L=5. On définit successivement (voir figure 1) les frontières $\Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4$ du carré en respectant le sens trigonométrique de parcours (instruction border); le maillage sera généré avec l'instruction buildmesh. Utilisez n=50 points sur chaque frontière.
- (b) Ecrire le script FreeFem++ qui résout l'équation des ondes sur ce domaine en utilisant le schéma explicite (7). On imposera partout des conditions aux limites de Neumann $\partial u/\partial n=0$. Considérer N=101 pas de temps.
- (c) Ecrire la formulation variationnelle pour le thêta-schéma :

$$\frac{U^{n+1} - 2U^n + U^{n-1}}{\delta t^2} - \Delta \left[\theta U^{n+1} + (1 - 2\theta)U^n + \theta U^{n-1} \right] = 0.$$
 (8)

Retrouver les résultats précédents pour $\theta = 0$.

Tester le programme pour $\theta = 0.25$ et $\theta = 1$ (schéma implicite).

- (d) Modifier le script FreeFem++ (thêta-schéma) pour imposer une condition de Dirichlet u=0 sur la frontière Γ_4 (voir figure 1). Comparer avec les résultats obtenus à la question (c).
- (e) Modifier le script FreeFem++ pour imposer une condition de Robin (ou Fourier) $\partial u/\partial n + \alpha u = 0$ sur la frontière Γ_4 (voir figure 1). Etudier l'influence de la valeur de la constante α sur les résultats.



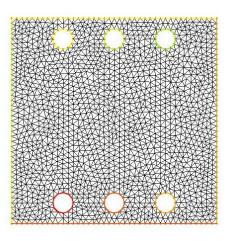


FIGURE 1 – Triangulation du carré.

FIGURE 2 – Triangulation du domaine avec six trous.

(f) Considérer un domaine avec six obstacles (trous) circulaires (voir figure 2). Générer le maillage en optimisant la forme des triangles du maillage (le rapport l/n doit être le même pour chaque morceau de frontière de longueur l sur lequel on distribue n points de discrétisation).

Résoudre l'équation des ondes avec les conditions aux limites suivantes :

$$u=0 \text{ sur } \Gamma_4$$
,

$$\partial u/\partial n = 0 \operatorname{sur} \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$$
,

 $\partial u/\partial n + \alpha u = 0$ sur toutes les frontières Γ_c des obstacles circulaires.

Q2: Résolution numérique en C++

Considérons pour commencer le schéma explicite (7).

Pour la résolution numérique en C++, il faut d'abord parcourir les étapes théoriques suivantes :

- à partir de la formulation variationnelle (7), écrire le système linéaire $A*U^{n+1}=B$, obtenu en considérant successivement $w=w_i$, pour tous les sommets de la triangulation $i=1,2,...,n_v$.
- afin d'utiliser l'algorithme du gradient conjugué, écrire d'abord la formule pour le vecteur résultat g du produit A * X, avec X un vecteur quelconque de dimension n_v.
 (Développer l'expression g_i = ∑_i A_{ij}X_j.)
- formuler sur papier l'algorithme qui permet de calculer g du point précédent en assemblant es contributions locales, calculées sur chaque triangle T_k , pour $k = 1, 2, ..., n_t$.

L'implémentation des développements théoriques précédents suivra l'exemple donné sur le site Web du cours, semaine 7, exercice 4, qui montre comment utiliser le gradient conjugué pour résoudre A*U=B, en définissant seulement le résultat du produit A*X, avec X quelconque.

- (a) Ecrire le programme C++ qui résout l'équation des ondes en utilisant le schéma explicite (7). Utiliser les mêmes paramètres, la même condition initiale et la maillage généré pour la question Q1, point b). Comparer avec les résultats obtenus avec FreeFem++.
- (b) Ecrire la formulation variationnelle pour le *thêta*-schéma :

$$\frac{U^{n+1} - 2U^n + U^{n-1}}{\delta t^2} - \Delta \left[\theta U^{n+1} + (1 - 2\theta)U^n + \theta U^{n-1} \right] = 0.$$
 (9)

Ecrire ensuite le programme C++ correspondant.

Retrouver les résultats précédents pour $\theta = 0$.

Tester le script pour $\theta = 0.25$ et $\theta = 1$ (schéma implicite).

- (c) Modifier le programme C++ (thêta-schéma) pour imposer une condition de Dirichlet u=0 sur la frontière Γ_4 (voir figure 1). Comparer avec les résultats obtenus à la question (c).
- (d) Modifier le script FreeFem++ pour imposer une condition de Robin (ou Fourier) $\partial u/\partial n + \alpha u = 0$ sur la frontière Γ_4 (voir figure 1). Etudier l'influence de la valeur de la constante α sur les résultats.

Pour toutes ces questions, comparer les résultats obtenus avec vos programmes C++ avec les résultats obtenus avec FreeFem++. Tracer des graphiques en superposant les deux solutions (voir le site Web pour plus d'indications).