

GPM

GROUPE DE PHYSIQUE DES MATERAUX

Groupe de Physique des Matériaux Université et INSA de Rouen, UMR CNRS 6634

Instrumentation **Interaction laser - atom**

Analyses **Physical metallurgy** and nanomaterials

Modeling

Modélisation des transformations de phases dans les matériaux

Matériau N18 polycristallin pour disque de turbine d'un avion, formé d'un agrégat de grains. A droite, zoom dans un grain, révélant la présence de précipités durcissants.

MULTI-SCALE MODELING OF MATERIALS

Modèle microscopique sur le réseau rigide

II - Simulation Monte Carlo

<u>1- Modèle cinétique</u>

La diffusion : mécanisme lacunaire thermiquement activé

Fréquence d'échange de la lacune avec un atome voisin :

$$W_{A-V} = v_A \exp\left(-\frac{\Delta E}{kT}\right) = v_A \exp\left(-\frac{E_S^A - \Delta E_{conf}}{kT}\right)$$

$$\Delta E_{\text{conf}} = \sum_{Y \in n(A)} V_{AY} - \sum_{\substack{Y \in n(L) \\ Y \neq A}} V_{LY}$$

C. Pareige,

ī.

Monte Carlo simulation : thermodynamic parameters

Ordering energy: $\omega_{X-Y}^{i} = \varepsilon_{XX}^{i} + \varepsilon_{YY}^{i} - 2\varepsilon_{XY}^{i}$				
	$\omega_{X-Y}^{l}(eV)$	ω_{X-Y}^2 (eV)	$\omega_{X-Y}^{3}(\mathrm{eV})$	$\omega_{X-Y}^4(\mathrm{eV})$
Ni-Al*	0.16	-0.064	-	-
Ni-V	0.201	-0.0503	-0.01	0.027
Al-V	0.2	0.01	-0.01	0.03

Simulation

Experiment

 $L1_2/DO_{22}$ interface : one atomic plane - also observed experimentally

Problématiques: traitement statistique des données, barrière de la percolation, systèmes non-ergodiques, modèle de Potts et Heisenberg,....

1. D. Blavette, G. Grancher et A. Bostel « STATISTICAL ANALYSIS OF ATOM-PROBE DATA (I). DERIVATION OF SOME FINE-SCALE FEATURES FROM FREQUENCY DISTRIBUTIONS FOR FINELY DISPERSED SYSTEMS » J. Phys. Colloques 49 (1988) C6-433 2. F. Danoix, G. Grancher, A. Bostel, D. Blavette « Standard deviations of composition measurements in atom probe analyses—Part II: 3D atom probe » Ultramicroscopy, Volume 107, Issue 9, September 2007, Pages 739–743.

Ising lattice Atomic density function (ADF)

P(r) - probability to find atom at position r

Kinetic equation of relaxation dynamic:

$$\frac{dP(r,t)}{dt} = \frac{1}{k_B T} \sum_{\alpha,\beta} \sum_{r'} L_{\alpha\beta}(r-r') c_{\alpha} c_{\beta} \frac{\partial F}{\partial P(r',t)}$$

 $L_{\alpha\beta}(r-r')$ is a matrix of kinetic coeficients.

 $P_A(r,t)$ is the probability of finding of an A atom at a given lattice site r at a given time t.

$$F = F_{chem} + E_{elast}$$

$$F_{chem} = \frac{1}{2} \sum_{\mathbf{r},\mathbf{r}'} V(\mathbf{r} - \mathbf{r}') P(\mathbf{r}) P(\mathbf{r}') + k_B T \sum_{\mathbf{r}} \left\{ P(\mathbf{r}) Ln(P(\mathbf{r}) + \left[1 - P(\mathbf{r})\right] Ln\left[1 - (P(\mathbf{r}))\right] \right\}$$

H. Zapolsky, ERAFEN

ELASTIC ENERGY

H. Zapolsky, ERAFEN

Continuum Atomic Density Function model (Phase Field Crystal)

A small parameter determining the transition to microscopique continuum version of ADF model is:

 $\frac{a}{1} < 1$ a- Ising lattice parameter

 $R_{W\alpha\beta}$ - characteristic distance of interatomic interaction

ADF on constrained lattice

P(r) - probability to find atom at position r

 $R_{W \alpha \beta}$

ρ(r) - atomic density

ρ(r) -> averaging over
time :
Δt > frequency of
phonons
Δt < characteristic
diffusion time

• There is no Ising lattice constraint: atoms are free to continuously move to relax the free energy.

• The n-component system is described by the *n* atomic density functions:

 $\{\rho(\boldsymbol{r})_{\alpha}\} = (\rho_1, \rho_2, ..., \rho_{\alpha}, ..., \rho_n)$

• **The ADF kinetic** equations are essentially the same but the integration is over continuum space is substituted for summation over lattice sites:

$$\frac{\partial \rho_{\alpha}(\mathbf{r},t)}{\partial t} = \sum_{\beta=1}^{\beta=n} \int_{V} L_{\alpha\beta}(\mathbf{r},\mathbf{r}') \frac{\delta F}{\delta \rho_{\beta}(\mathbf{r}',t)} d^{3}r' \qquad \alpha = 1, 2, ..., n$$

 $F(\{\rho_{\alpha}(\mathbf{r})\})$ is a non-local free energy functional of *n* atomic density functions, $L_{\alpha\beta}(\mathbf{r},\mathbf{r}')$ is the mobility matrix.

The conservation of the number of atoms:

$$\int_{V} L_{\alpha\beta}(\mathbf{r},\mathbf{r}') d^3r' = 0.$$

Free energy approximations:

The local free energy density $f(\{\rho_{\alpha}(\mathbf{r})\})$ can be approximated by the Landau polynomial expansion with respect to densities $\rho_{\alpha}(\mathbf{r})$.

the effective interaction potentials

Embedded potential, effective paire potential, ...

Austenite to Martensite \rightarrow 4.3 % volume increase

FCC-BCC Transition

PFC, tilt angle θ = 3.58°

Read and Shockley fit

PFC, tilt angle $\theta = 3.58^{\circ}$

PFC, tilt angle $\theta = 3.58^{\circ}$

PFC, tilt angle θ = 7.17°

PFC, tilt angle $\theta = 10.17^{\circ}$

PFC, tilt angle $\theta = 14.25^{\circ}$

PFC, tilt angle $\theta = 17.76^{\circ}$

Read and Shockley fit

Read and Shockley fit

25

20

30

PFC, tilt angle $\theta = 21.24^{\circ}$

PFC, tilt angle $\theta = 24.68^{\circ}$

PFC, tilt angle $\theta = 28.07^{\circ}$

To improve our simulation:

- More efficient numerical methods to solve TDLG equation
- * Condition for Δt

Phase Field equations (mesoscopic description)

Phase field variables: Concentration c(r) Order parameter η(r)

Time dependent Ginzburg-Landau equation for the lro parameters

$$\frac{\partial \eta(\vec{r},t)}{\partial t} = - L \left(\frac{\delta F}{\delta \eta(\vec{r},t)}\right) + \zeta_{\eta}(\vec{r},t)$$

Cahn-Hilliard equation for the concentrations

$$\frac{\partial \mathbf{c}(\vec{\mathbf{r}},t)}{\partial t} = \vec{\nabla}.\mathbf{M} \ \vec{\nabla} \left(\left(\frac{\delta F}{\delta \mathbf{c}(\vec{\mathbf{r}},t)} \right) \right) + \zeta_{c}(\vec{\mathbf{r}},t)$$

M – mobility .

- **L** kinetic coefficient describing the motion of the interface
- **F** total free energy. $F = F_{chemical} + F_{elastic}$
- $\zeta_{c}(\mathbf{r},\mathbf{t})$ et $\zeta_{\eta}(\mathbf{r},\mathbf{t})$ Langevin noises.

H. Zapolsky, ERAFEN

Chemical energy

In the phase field model, the chemical energy is:

$$F_{chim} = \int_{V} \left[\frac{1}{2} \alpha (\vec{\nabla}c)^{2} + \frac{1}{2} \sum_{\alpha=1}^{v} \beta (\vec{\nabla}\eta_{\alpha})^{2} + f(c, \eta_{1}, \eta_{2}, ..., \eta_{v}) \right] dV$$
Non-local term (interfacial energy)
Non-local term (interfacial energy)
Local term density of the bulk free energy

$$f(T,c,\eta) = f_{dés} + A(T,c)\eta^2 + B(T,c)\eta^3 + C(T,c)\eta^4 + \dots$$

with f_{des} – the free energy density for the disordered phase.

A, B, C – coefficients of the expansion.

Parameters of model

- kinetics coefficients
- driving force Δf
- interfacial energy
- elastic constants
- misfit

Applications of semi-implicit Fourier-spectral method to phase field equations

Figure 3.20 – A gauche : simulation d'un alliage Ni - 21.1at.%Al pour $t^* = 10000$; à droite : Image MET en champ sombre d'un alliage Ni - 22.33at.%Al. Seulement 25% de la boîte de simulation est représenté.

Un problème mathématique pour la mécanique des matériaux :

caractériser les morphologies des motifs de localisation dans un polycristal

l - On fait une observation qualitative de la localisation en surface de champs

mécaniques simulés par "Crytal Plasticity Finite Element Modelling" :

 → localisation des déformations en bandes à 45°, confirmé par l'expérience
 → localisation des contraintes dans les grains (pas d'observation expérimentale)
 → Qu'en est-il en 3D ? (là où l'expérimental ne peut rien)
 → Qu'apporte l'analyse des contraintes ? (là où l'expérimental est très limité)

II - On caractérise simplement les motifs de localisation en termes de

covariance à 2 points sur les champs segmentés (Barbe et al, Mech Res Comm, 2009) :

→ surfaces d'iso-intensité de covariance
 → déformation : morphologie en bandes à 45° "isotropes" d'une longueur ≈ 2 grains
 → contrainte : localisation orientée selon la charge sur une longueur ≤ 1 grain

F. Barbe, GPM, INSA Rouen

Un problème mathématique pour la mécanique des matériaux :

caractériser les morphologies des motifs de localisation dans un polycristal

III - Bilan et Perspectives

- Points forts : caractérisations encourageantes sur données simulées :
 - motifs en 3D, représentativité statistique assurée, analyse étendue à toutes les variables méca et pour ≠ effets :
 - propriétés mécaniques
 - microstructure (texture cristallographique / morphologique, distribution bimodale, ...)
 - chargement (monotone / cyclique / multi-axial / ...)
- **Points faibles :** des caractérisations sommaires des morphologies de motifs
 - analyses basées uniquement sur la covariance à 2 points
 - caractérisation essentiellement qualitative pour l'instant

• Voies d'amélioration :

- caractériser quantitativement les motifs : quelles longueurs / largeurs de bandes / ogives ?
- compléter la caractérisation avec des outils de morphologie mathématique plus adaptés aux objectifs :

Calculs, modelisation et simulation pour l'amélioration de la sonde atomique tomographique

F.Vurpillot, A. Vella, J. Houard, L. Arnoldi, E. Silaeva

*Equipe de Recherche en Instrumentation Scientifique

Groupe de Physique des Matériaux UMR 6634 CNRS,

Université de Rouen Avenue de l'Université, B.P. 12 76801 Saint – Etienne du Rouvray Cedex, France

F. Vurpillot,

i incipes de la sonde aconnque

nte non stationnaire ctoires

F. Vurpillot

Une sonde atomique assistée par impulsion laser

B. Gault, et al. Rev. Sci. Instrum. 77, 043705 (2006)

Roler de la modélisation pour evaluer

les limites de l'instrument en terme de

- 1. Resolution spatiale (fidélité)
- 2. Distortions (justesse)
 - 3. Corréler les propriétés du matériaux aux effets lors de l'analyse
 - 4. Controler les paramètres d'analyse

Difficultés

Echelles de temps : de la fs à la microseconde
Echelles d'espace : du pm au cm
Intensités : Eclairement intense (TW)
Champ electrostatiques intenses (10¹⁰ V/m)
Multiphysique : Physique des champs intenses, thermiques à
l'échelle nano, interaction laser matière, Electrostatique,
physique du solide, mecanique quantique (ionisation ,
evaporation par effet de champ)

Exemple 1 : Trajectoires ioniques: optique electrostatique

Resolution numérique du PFD pour calculer les trajectoires ioniques dans la distribution

• ∆V=0

$$\frac{2r_{i}}{\delta z_{i+} \cdot \delta z_{i-}} + \frac{2r_{i} + (\delta r_{i-} - \delta r_{i+})}{\delta r_{i+} \cdot \delta r_{i-}} \bigg| V(r_{i}, z_{i}) = \frac{2r_{i}}{\delta z_{i+} \cdot (\delta z_{i+} + \delta z_{i-})} \bigg| V(r_{i}, z_{i+1}) + \bigg[\frac{2r_{i}}{\delta z_{i-} \cdot (\delta z_{i+} + \delta z_{i-})} \bigg] V(r_{i}, z_{i-1}) + \bigg[\frac{2r_{i} + \delta r_{i-}}{\delta r_{i+} \cdot (\delta r_{i+} + \delta r_{i-})} \bigg] V(r_{i+1}, z_{i}) + \bigg[\frac{2r_{i} - \delta r_{i+}}{\delta r_{i-} \cdot (\delta r_{i+} + \delta r_{i-})} \bigg] V(r_{i+1}, z_{i}) \bigg] V(r_{i+1}, z_{i}) + \bigg[\frac{2r_{i} - \delta r_{i+}}{\delta r_{i-} \cdot (\delta r_{i+} + \delta r_{i-})} \bigg] V(r_{i+1}, z_{i}) \bigg] \bigg] V(r_{i+1}, z_{i}) \bigg] \bigg] V(r_{i+1}, z_{i}) \bigg] V(r_{i+1}, z_{i}) \bigg] \bigg] V(r_{i+1}, z_{i}) \bigg] \bigg] V(r_{i+1}, z_{i}) \bigg] \bigg] V(r_{i+1}, z_{i}) \bigg] \bigg] \bigg] V(r_{i+1}, z_{i}) \bigg] \bigg] \bigg[V(r_{i+1}, z_{i}) \bigg] \bigg[V(r_{i+1}, z_{i}) \bigg] \bigg] \bigg[V(r_{i+1}, z_{i}) \bigg] \bigg[V(r_{i+1}, z_{i}) \bigg] \bigg] \bigg[V(r_{i+1}, z_{i}) \bigg] \bigg] \bigg[V(r_{i+1}, z_{i}) \bigg] \bigg[V(r$$

Difficulté de la mise en oeuvre : Multi-echelle et dynamique

Champ local induit des artefacts

Experimental desorption image (pure Al) Image CAMECA

Simulated desorption image

A l'échelle local : effet quantique à prendre en compte...

• <u>Calcul Ab-Initio, ex: Sanchez</u> (numerical model)

MgO field evaporation (courtesy of J. Kreuzer)

Exemple 2 : Interaction laser matière

FDTD : finite difference time domain *FDTD solution* from *Lumerical*

Resolution numérique des équations de Maxwell en <u>3D</u>

Maxwell equations $\nabla \times \vec{E} = -\frac{\partial \mu \vec{H}}{\partial t}$ $\nabla \times \vec{H} = \vec{J} + \frac{\partial \varepsilon \vec{E}}{\partial t}$ Absorbed energy $Q_{abs} = div(\vec{E} \times \vec{H})$

Absorption map

Carrier drift and diffusion in high field

- Free carriers in silicon move under huge electric field E = 1 GV/m
- Mobility is high at low temperature $\mu = 20\ 000\ \text{cm}^2(\text{Vs})^{-1}$
- Carrier accumulation zone at the tip apex ~ 1 nm
- Required spatial resolution $\Delta z = 1 \text{ Å}$
- Explicite finite-difference method gives stable solution if

$$\Delta t \le \frac{\Delta z}{\mu E} = 5 \cdot 10^{-20} \ s$$

we need results at 1 ns \rightarrow very long calculation time \rightarrow 3D calculation almost impossible