
Abderrahim JARDANI and Jean paul Dupont 

CNRS-UMR6143 M2C 

                Self-potential and induced polarization:  

                Geophysical tools to map flowpaths and monitor  
                              contaminant plumes 

  Presentation LAN 



Basile et al. (2002)

       Medical Science 

(electro-encephalography) 

PART I. Self-potential 

Geophysics (self-potential) 

Network of non-polarizing electrodes connected to a voltmeter 



 Generalized constitutive equations 

 Chemical potential 

Electromigration 

Electroosmosis (Reuss, 1805), Darcy’s law (1856),  the streaming potential (Quincke, 1859)  

Take-home message: any king of non-equilibrum disturbance generate an EM signal 



The streaming current 
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The flow of ground water generates an electrical current density 



 Forward and inverse problems of the 

self potentiel signal 

Forward problem: Finite Element, 

Finite Difference or  Finite volume. 

Inverse problem: Gradient based 

methods, Stochastic methods  

h: hydraulic head (hydraulic Pressure)   

 

ψ : Electric potentiel 



Application to pumping tests 

Numerical modeling 

model 
Hydraulic heads 

Self-potential 



Solution of the inverse problem 

Reconstruction of the 
       water table 
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the posterior probability density (Bayesian Approach)  



One electrode 

Case study at the Boise hydrogeological test site  
        (Jardani et al., Ground Water, 2009) 

2 steps Inversion 
(Gauss-Newton) 
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Forward modeling 

Inversion of self-potential data with Tikhonov regularization 

Poisson equation 

Source term computed from the Darcy velocity 
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Where K is the kernel 
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Minimization of a cost function: 

The distribution of the electrical resistivity is taken into account in the Kernel 

The regularization coefficient  is determined by the L-shape method of Hansen (1998) 

Inverse modeling 

Data misfit                        Regularization term 



One source of current 

10 Ohm m 

100 Ohm m 

Source of current 

Direction of current 

Potential sampled 

Inversion of the source  
    of current 

Inversion of the direction 



Localisé une source hydromécanique dans un bac à sable 

Detection of a hydromechanical source in a sandbox 



Finding the source current density 

The inverted localization of the source agrees with the position of the outlet of the capillary 



Inverse modeling: going one step further with Markov Chain MC samplers 

  

MCMC sampler (Adaptative Metropolis algorithm, AMA, Haario et al., 2001) / Bayesian framework 

Parametric inversion , ,k for each unit 
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Application to the Cerro Prieto field 

  



Geological cross-section 



The self-potential data (data from Corwin, USGS, 1976) 

  



The temperature data 

  



Result of the inversion 

  



      Modeling seismoelectric waves  

in a porous material with a Newtonian fluid 
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      Fundamental equations 

      Newton’s law (1) 

Constitutive equation (2) 

Momentum csv equation (3) 

Biot constitutive equation (4) 

Eq. (3) is also Darcy’s equation for fluid flow in porous media  

w Average displacement of the fluid phase 

u Average displacement of the solid phase 

      Time dependence  exp( j t)



      Material properties 
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      Biot’s coefficient 

      Apparent density of the pore fluid 

      Fluid viscosity to DC permeability ratio 

      Undrained bulk modulus 

      C-Biot’s coefficent 

      M-Biot’s coefficent 



      The previous formulation is good  

but in 2D it has four unknowns to solve for 

w Average displacement of the fluid phase 

u Average displacement of the solid phase 

p The pore fluid pressure 

u Average displacement of the solid phase 

      We can look for a formulation with three unknowns 



      Reparametrisation in terms of fluid presssure  

              and displacement of the solid phase 
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      Effective stress tensor 

      Material properties 

wθ p      Represents the coupling between the solid and fluid phase 



      Description of the seismic source 
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0t Time delay of the source 

0f Dominant frequency of the source 

0S
No fluid pressure source  

(to avoid EM effects associated with the source) 

Ricker source 



      Electrostatic part 

Low frequency EM source (controlled by the frequency of the seismic wave) 

The EM disturbances are diffusive 

If we are close enought to the sources the EM field is quasistatic 
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Field equation: Poisson equation 
Constitutive equation 

Continuity equation 
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Source current density 



IRi are the seismoelectric conversions 

      Geometry 



Example of numerical modeling 

Seismic Seismoelectric 

IRi are the seismoelectric conversions 



Typical electrogram at observation point P 

IRi are the seismoelectric conversions 

Receiver P 

Geometry 



Stochastic inverse modeling (1/2) 

Use of a Bayesian framework (Tarantola, 2005) 

Joint inversion of seismic and seismoelectric signals 

The boundaries are assumed to be determined prior the inversion 

Parametric inversion of the material properties for each unit 
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Permeability, porosity, conductivity, 3 bulk moduli, shear modulus 

Vector of model parameters 



Stochastic inverse modeling (2/2) 

Use of MCMC approach (Adaptative Metropolis Algorithm) 

25000 realizations 

21 unknowns 

Model parameter 

Realizations 



  Stochastic full wave form inversion to retrieve  

both the permeability and mechanical properties 

The vertical bars represents the true values 


