Self-potential and induced polarization: Geophysical tools to map flowpaths and monitor contaminant plumes

Presentation LAN

Abderrahim JARDANI and Jean paul Dupont CNRS-UMR6143 M2C

Medical Science (electro-encephalography)

PART I. Self-potential

Network of non-polarizing electrodes connected to a voltmeter

Geophysics (self-potential)

"M"-form of the transport equations

Generalized constitutive equations

Take-home message: any king of non-equilibrum disturbance generate an EM signal

"M"-form	Chemical potential	Electric potential	Fluid pressure	Temperature
Salt flux J a	Fick's law	Electromigration Convective diffusion Soret effect		
Current density J	Diffusion current	Ohm's law	Electrofiltration	Thermo-electricity
Darcy velocity u	Osmosis	Electro-osmosis	Darcy's law	Thermo-osmosis
Heat flux H	Dufour effect	Peltier effect	Convective flux	Fourier's law

Electroosmosis (Reuss, 1805), Darcy's law (1856), the streaming potential (Quincke, 1859)

The flow of ground water generates an electrical current density

Application to pumping tests

Inversion of self-potential data with Tikhonov regularization

The distribution of the electrical resistivity is taken into account in the Kernel The regularization coefficient λ is determined by the L-shape method of Hansen (1998)

Detection of a hydromechanical source in a sandbox

Localisé une source hydromécanique dans un bac à sable

Finding the source current density

The inverted localization of the source agrees with the position of the outlet of the capillary

Inverse modeling: going one step further with Markov Chain MC samplers

Geological cross-section

The self-potential data (data from Corwin, USGS, 1976)

The temperature data

Result of the inversion

<u>Modeling seismoelectric waves</u> in a porous material with a Newtonian fluid

Fundamental equations Time dependence $exp(-j\omega t)$ $-\omega^2 \rho \mathbf{u} + \rho_f \mathbf{w} = \nabla \cdot \mathbf{T} + \mathbf{F}$ Newton's law (1) $\mathbf{T} = \lambda_{\mu} \nabla \cdot \mathbf{u} + C \nabla \cdot \mathbf{w} \ \mathbf{I} + G \left[\nabla \mathbf{u} + \nabla \mathbf{u}^{T} \right] \ \mathbf{Constitutive equation} \ (\mathbf{2})$ $-\omega^2(\rho_f \mathbf{u} + \tilde{\rho}_f \mathbf{w}) - jb\omega \mathbf{w} = -\nabla p + \mathbf{F}_f$ Momentum csv equation (3) $-p = C\nabla \cdot \mathbf{u} + M\nabla \cdot \mathbf{w} + \mathbf{S}$ **Biot constitutive equation (4)**

Eq. (3) is also Darcy's equation for fluid flow in porous media

- **W** Average displacement of the fluid phase
- **u** Average displacement of the solid phase

Material properties

$$\alpha = 1 - K_{fr} / K_s$$
 Biot's coefficient

 $\tilde{\rho}_f = \frac{\rho_f \varphi}{a}$ Apparent density of the pore fluid

 $b = \frac{\eta_f}{k_0}$ Fluid viscosity to DC permeability ratio

$$K_{u} = \frac{K_{f}(K_{s} - K_{fr}) + \phi K_{fr}(K_{s} - K_{f})}{K_{f}(1 - \phi - K_{fr} / K_{s}) + \phi K_{s}}$$

Undrained bulk modulus

$$C = \frac{K_{f} (K_{s} - K_{fr})}{K_{f} (1 - \phi - K_{fr} / K_{s}) + \phi K_{s}}$$

$$M = \frac{C}{\alpha} = \frac{K_f K_s}{K_f (1 - \phi - K_{fr} / K_s) + \phi K_s}$$

C-Biot's coefficent

M-Biot's coefficent

The previous formulation is good but in 2D <u>it has four unknowns to solve for</u>

- **W** Average displacement of the fluid phase
- **u** Average displacement of the solid phase

We can look for a formulation with <u>three unknowns</u>

- *p* **The pore fluid pressure**
- **u** Average displacement of the solid phase

<u>Reparametrisation in terms of fluid presssure</u> <u>and displacement of the solid phase</u>

$$-\omega^{2}\rho_{\omega}^{s}\mathbf{u} + \theta_{\omega}\nabla p = \nabla \cdot \hat{\mathbf{T}} + \mathbf{F}$$
$$\hat{\mathbf{T}} = \lambda(\nabla \cdot \mathbf{u})\mathbf{I} + G\left[\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}}\right]$$
$$\mathbf{T} = \hat{\mathbf{T}} - \alpha p\mathbf{I} \qquad \mathbf{Effective \ stress \ tensor}$$
$$\frac{1}{M}(p+S) + \nabla \cdot k_{\omega}\left[\nabla p \cdot \omega^{2}\rho_{f}\mathbf{u}\right] = \alpha \nabla \cdot \mathbf{u}$$

Material properties $k_{\omega} = \frac{1}{\omega^2 \tilde{\rho}_f + j\omega b}$ $\rho_{\omega}^s = \rho - \omega^2 \rho_f^2 k_{\omega}$ $\lambda = K - \frac{2}{3}G$ $\theta_{\omega} = \alpha - \omega^2 \rho_f k_{\omega}$

 $\theta_{w} \nabla p$ Represents the coupling between the solid and fluid phase

Description of the seismic source

$$\mathbf{F}(x, y, \omega) = F(\omega) \nabla \ \delta(x - x_0) \delta(y - y_0)$$
$$F(\omega) = \mathrm{FT} \left[(t - t_0) \exp \left(-\pi f_0 (t - t_0) \right)^2 \right]$$
Ricker source

FT f(t) Fourier transform of f(t)

- t_0 Time delay of the source
- f_0 Dominant frequency of the source

S = 0 No fluid pressure source (to avoid EM effects associated with the source)

Electrostatic part

Low frequency EM source (controlled by the frequency of the seismic wave)

The EM disturbances are diffusive

If we are close enought to the sources the EM field is quasistatic

Geometry

Example of numerical modeling

IRi are the seismoelectric conversions

Typical electrogram at observation point P

Stochastic inverse modeling (1/2)

Use of a Bayesian framework (Tarantola, 2005) Joint inversion of seismic and seismoelectric signals The boundaries are assumed to be determined prior the inversion Parametric inversion of the material properties for each unit Vector of model parameters

 $\mathbf{m} = \{\log k_0; \log \operatorname{it} \phi; \log \sigma; \log \sigma; \log K_f; \log K_f; \log K_s; \log G\}$ $\log \operatorname{it} \phi = \log\left(\frac{\phi}{1-\phi}\right)$

Permeability, porosity, conductivity, 3 bulk moduli, shear modulus

Stochastic inverse modeling (2/2)

Use of MCMC approach (Adaptative Metropolis Algorithm)

25000 realizations

21 unknowns

Realizations

Stochastic full wave form inversion to retrieve both the permeability and mechanical properties

The vertical bars represents the true values

Posterior Probability density function

8

10

12

14