Simulation du système cardiovasculaire et modélisation réduite

6 février 2013 Université de Rouen

Jean-Frédéric Gerbeau

Project-team REO INRIA Paris-Rocquencourt & Laboratoire J-L. Lions France

Cardiovascular system

Electrical System of the Heart

Electrophysiology (Arythmia, drug effect,...)

Biomedical devices

Outline

- Computational Hemodynamics
 - Motivations
 - Inverse problems in fluid-structure
- Electrocardiograms (ECGs)
- Reduced order modeling
 - Motivations
 - The Approximated Lax Pair method

Outline

Computational Hemodynamics

- Motivations
- Inverse problems in fluid-structure
- Electrocardiograms (ECGs)
- Reduced order modeling
 - Motivations
 - The Approximated Lax Pair method

Computational hemodynamics: Hierarchy of models

• **3D Model** (Navier-Stokes + Nonlinear elasticity) **Variables** : velocity, pressure, displacement

- 1D Model (Euler equation, 1775) Variables : flow rate, mean pressure, section area
- OD Model (Ordinary Differential Equations)
 Variables : flow rate, pressure drop (compartment modeling or boundary conditions)

Three-dimensional models

Before 2000 :

• **Pioneer works:** Navier-Stokes equations, simple boundary conditions, rarely on real anatomies

2000 - 2010 :

- **Patient-specific anatomies:** homemade solutions; free (VMTK) or commercial software (Amira, Mimics,...)
- Fluid-solid interaction: tremendous progress, now present in commercial software (not very efficient though!)
- **Boundary conditions:** many workarounds... still an open topic!
- Main applications: stents, aneurysms, ...

Today (and tomorrow) :

- **Diagnosis**: assimilate medical data in simulations
- **Prognosis & planning**: long term evolution, adaption, remodeling,...
- Find problems where all these works can be *really* useful!

Progress in FSI

1999

0.0000E+00 8.0000E+03 -5.0000E+03 4.0000E+03 1.3000E INRIA 2003

2007

	2001	2003	2007	2012
Computational time	100	20	4	1

Only due to progress in algorithms !

1st example: surgical planning

Total Extracardiac Conduit Fontan Palliation of Hypoplastic Left Heart

http://www.americanheart.org

Glenn-Fontan surgery

- congenital heart disease
- multi-step complex procedure

Numerical simulations

• Patient-specific geometries

Troianowski, Taylor, Feinstein, Vignon-Clementel Stanford/INRIA

• Forecast pressure drop, flow split, wall-shear stress

Geometry from 5 patients MRI data

I. Vignon-Clementel, A. Birolleau, G. Troianowski (INRIA & Stanford)

Y-graft in general improves:

- Energy efficiency
- Flow distribution
- SVC pressure under rest & exercise

Challenge:

- About 20 "outlets"
- 3 parameters per outlets....

Troianowski, Taylor, Feinstein, Vignon-Clementel

2d example: avoid clinical exams ?

- Example: aortic coarctation
- After surgical repair, patients must be followed on a regular basis
- Exercise test is often necessary to assess the patient condition

Source: O. Peruta

- **Question:** With computer simulations, can we extrapolate the rest test to avoid the stress test ?
- Maybe... if we are able to evaluate the artery wall stiffness

Collaboration with R. Hose, I. Valverde, P. Beerbaum (euHeart project)

Aortic coarctation

Data: I. Valverde, P. Beerbaum (KCL). Segmentation and processing: R. Hose et al. (Sheffield), C. Bertoglio (INRIA) (euHeart project)

Medical data assimilation

Data assimilation

- FSI dynamical system: $\begin{cases} B\dot{X} = A(X, \theta) + R \\ X(0) = X_0 \end{cases}$
- Time discretization: $X^{n+1} = F^{n+1}(X^n, \theta)$
- State variable: $X = [u, p, d^f, d, v]$
- **Parameters**: θ = [Young modulus, viscosity, boundary conditions, ...]
- Uncertainties on the initial condition X_0 and the parameters θ
- Partial **observations** of *X*: Z = H(X)

Data assimilation

• Uncertainties: $\zeta = [\zeta_X, \zeta_{\theta}]$

$$\begin{cases} X_0 = \hat{X}_0 + \zeta_X \\ \theta = \hat{\theta} + \zeta_\theta \end{cases}$$

• Minimize

$$J(\zeta) = \frac{1}{2} \int_0^T \|Z - H(\hat{X})\|_W^2 dt + \frac{1}{2} \|\zeta\|_P^2$$

where $\hat{X} = \hat{X}(\zeta)$ is solution to the problem.

• Variational approach:

- Optimization algorithms
- Usually based on gradient (adjoint equations)

• Filtering approach:

- Sequential correction of the state and the parameters

Example: Compliance estimation

Parameter estimation

- Parameter estimation: Young modulus $E_i = 2^{\theta_i}$ in 5 regions
- Observations: wall displacement on fluid-solid interface

Simulation : C.Bertoglio

Example: Compliance estimation

Parameter estimation

- Synthetic data
- Gaussian noise (10%) and time resampling $\delta t_{obs} = 10\delta t$

- Two tuning coeffecients:
 - A priori covariance on parameters: $\alpha \mathbb{I}$
 - Gain: β

Example: Compliance estimation

Parameter estimation

Simulation : C.Bertoglio

Example: Compliance estimation Parameter estimation

- The filtering algorithm provides an *a posteriori covariance* P_n^{θ}
- We can plot $\hat{\theta}_n \pm \sqrt{\operatorname{diag}(P_n^{\theta})}$

Simulation : C.Bertoglio

Experimental validation

• Silicon rubber aortic phantom

Data: Gaddum, Rutten, Beerbaum (KCL). Segmentation and processing: Hose, Barber (Sheffield) Simulation: Bertoglio, JFG (INRIA) (euHeart project)

Blood flow in aorta

Moireau, Xiao, Astorino, Figueroa, Chapelle, Taylor, JFG, (Biomech Model Mech 2011)

Example 3: External tissue support Modeling

Moireau, Xiao, Astorino, Figueroa, Chapelle, Taylor, JFG, (Biomech Model Mech 2011)

Outline

- Computational Hemodynamics
 - Motivations
 - Inverse problems in fluid-structure
- Electrocardiograms (ECGs)
- Reduced order modeling
 - Motivations
 - The Approximated Lax Pair method

Electrocardiograms

$$\begin{cases} C_{\rm m} \frac{\mathrm{d}V_{\rm m}}{\mathrm{d}t} + I_{\rm ion}(V_{\rm m}, \boldsymbol{g}) = 0 \\ \frac{\mathrm{d}\boldsymbol{g}}{\mathrm{d}t} + G(V_{\rm m}, \boldsymbol{g}) = \boldsymbol{0} \end{cases} \begin{cases} A_{\rm m} \left(C_{\rm m} \frac{\partial V_{\rm m}}{\partial t} + I_{\rm ion}(V_{\rm m}, \boldsymbol{g}) \right) - \operatorname{div}(\boldsymbol{\sigma}_{\rm i} \boldsymbol{\nabla} u_{\rm i}) = A_{\rm m} I_{\rm app}, \\ \operatorname{div}(\boldsymbol{\sigma}_{\rm r} \boldsymbol{\nabla} u_{\rm T}) = 0 \\ \frac{\mathrm{d}v(\boldsymbol{\sigma}_{\rm r} \boldsymbol{\nabla} u_{\rm e}) + \operatorname{div}(\boldsymbol{\sigma}_{\rm i} \boldsymbol{\nabla} u_{\rm i}) = 0 \\ \frac{\partial \boldsymbol{g}}{\partial t} + G(V_{\rm m}, \boldsymbol{g}) = 0, \end{cases} \begin{cases} \operatorname{div}(\boldsymbol{\sigma}_{\rm T} \boldsymbol{\nabla} u_{\rm T}) = 0 \\ + transmission \ condition \\ on \ the \ epicardium \end{cases}$$

e.g.: Pullan et al. 05, Sundes et al. 06,...

12-lead ECG

Boulakia, Cazeau, Fernández, JFG, Zemzemi, Annals Biomed Engng 2010

Bundle branch blocks

Chapelle, Fernández, JFG, Moireau, Sainte-Marie, Zemzemi, FIMH 2009

Outline

- Computational Hemodynamics
 - Motivations
 - Inverse problems in fluid-structure
- Electrocardiograms (ECGs)
- Reduced order modeling
 - Motivations
 - The Approximated Lax Pair method

Motivation: Blood flows

• Output of interest Ex: Pressure drop

Optimization

Ex: arterial by-pass optimization (*Quarteroni-Rozza*, *Sankaran-Marsden*)

Rapid prototyping

Boundary conditions (Windkessel), constitutive law coefficients,...

Moderate variability

Examples: pulmonary arteries

Astorino, JFG, Pantz, Traoré, CMAME 2009

Motivation: electrophysiology

Potential in heart and the torso

Electrocardiogram (ECG)

Reduced Order Modeling

Many options:

- *Simplify the geometry and/or the physics* Examples:
 - 1D model for blood flows (*Formaggia*, *Peiró*, ...)
 - Eikonal model in electrophysiology (Franzone, Sermesant, Frangi,...)
- *Keep the equations and the geometry, but reduce the approximation space* Examples:
 - Reduced Basis Method (Patera, Maday, Quarteroni, Rozza,...)
 - Proper Orthogonal Decomposition (POD), or Karhunen-Loève expansion (*Iollo, Farhat, Karniadakis, Kunisch, Gunzburger, Volkwein,...*)

POD in a nutshell

- Let $(\varphi_i)_{i=1..n}$ be a finite element basis
- Full Order Model (FOM): search for $u_h = \sum_{j=1}^n u_j \varphi_j$ such that: $\frac{d}{dt}(u_h, \varphi_i) + a(\theta; u_h, \varphi_i) = (f, \varphi_i), \forall i = 1..n$

• Compute p "snapshots" (i.e. solutions at p time instants, or parameters θ):

$$S^{1}(u_{1}^{1},\ldots,u_{n}^{1}),\ldots,S^{p}(u_{1}^{p},\ldots,u_{n}^{p})$$

• Let S be the matrix whose columns are the S^i , i = 1..p.

• Singular Value Decomposition: $S = \Phi \Sigma \Psi^T$, with $\Sigma = diag(\sigma_1, \ldots, \sigma_p)$

• (Φ_1, \ldots, Φ_N) : N columns of Φ corresponding to the N largest σ_i , $\mathbf{N} \ll \mathbf{n}$

• Reduced Order Model (ROM): search for $U_h = \sum_{j=1}^N U_j \Phi_j$ such that: $\frac{d}{dt}(U_h, \Phi_i) + a(U_h, \Phi_i) = (f, \Phi_i), \forall i = 1..N$

Example 1:
$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0$$

Simulation : D. Lombardi

Example 2:
$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

POD with 10 modes

Simulation : D. Lombardi

Basic idea

• Instead of

$$U_h = \sum_{j=1}^N U_j(t)\Phi_j(x)$$

• Try to work with something like :

$$U_h = \sum_{j=1}^N U_j \Phi_j(x,t)$$

• **Question** : how to propagate the modes ?

Step 1: Semi Classical Signal Analysis (SCSA) Laleg, Crépeau, Sorine (2007 & 2012)

• Let u(x) be a non-negative signal and the "scattering" operator

$$\mathcal{L}_{\chi}(u)\phi = -\Delta\phi - \chi u\phi$$

• Solve the eigenvalue problem

 $\mathcal{L}_{\chi}(u)\phi = \lambda\phi$

• And approximate u(x) by the Deift-Trubowitz formula

$$\tilde{u}(x) = \chi^{-1} \sum_{m=1}^{N_{-}} \kappa_m \phi_m^2$$

with $\kappa_m = \sqrt{-\lambda_m}$ where λ_m are the negative eigenvalues

- Choose $\chi > 0$ to achieve a given accuracy
- Remark: can be exact for "reflectionless" potentials

Reconstruction of aortic pressure

From: Laleg, Médigue, Papelier, Crépeau, et al. (2010)

Lax pair in a nutshell

- Let $\mathcal{L}(t)$ be a self-adjoint operator in a Hilbert space
- If an operator $\mathcal{M}(t)$ is such that

$$\partial_t \mathcal{L} + \mathcal{L}\mathcal{M} - \mathcal{M}\mathcal{L} = 0$$

• If $(\lambda_k(t), \phi_k(t))$ is an eigenpair of $\mathcal{L}(t)$ then

-
$$\partial_t \lambda_k = 0$$

- $\partial_t \phi_k(t) = \mathcal{M}(t)\phi_k(t)$

Lax pair in a nutshell

• Example: Korteweg de Vries equation: $\partial_t u + 6u\partial_x u + \partial_x^3 u = 0$

• Lax pair:

$$\mathcal{L}(u)v = -\partial_x^2 v - uv$$
$$\mathcal{M}(u)v = 4\partial_x^3 v + 6u\partial_x v + 3v\partial_x u$$

• Example: 1-soliton: if $u_0(x) = \frac{\kappa_1^2}{2}\phi_1^2(\kappa_1 x)$ then: $u(x,t) = \frac{\kappa_1^2}{2}\phi_1^2(\kappa_1(x-\kappa_1^2 t))$

with: $\phi_1(x) = \operatorname{sech}(x)$

Goal:

• Consider a general nonlinear evolution PDE :

$$\begin{cases} \partial_t u &= F(u) \\ u(0) &= u_0 \end{cases}$$

- For example: $F(u) = \Delta u + u(1 u)$
- Use the SCSA and the Lax pair to define a reduced order model
- Difficulty: the Lax pair are not known in general

Step 2: Approximation of Lax Pair (ALP)

Proposition: let *u* be solution to

$$\begin{cases} \partial_t u &= F(u) \\ u(0) &= u_0 \end{cases}$$

- For $m \in \{1, ..., N_M\}$, let $\lambda_m(t)$ be an eigenvalue of $\mathcal{L}_{\chi}(u(x, t))$ and $\psi_m(x, t)$ an associated eigenfunction, normalized in $L^2(\Omega)$
- \bullet Assume there exists an operator $\mathcal{M}(u)$ such that

 $\partial_t \psi_m = \mathcal{M}(u) \psi_m.$

• The evolution of λ_m is governed by

$$\partial_t \lambda_m = -\chi \langle F(u)\psi_m, \psi_m \rangle$$

• The evolution of ψ_m satisfies, for $p \in \{1, \ldots, N_M\}$,

$$\langle \partial_t \psi_m, \psi_p \rangle = M_{mp}(u)$$

with $\begin{cases} M_{mp}(u) = \frac{\chi}{\lambda_p - \lambda_m} \langle F(u)\psi_m, \psi_p \rangle, & \text{if } p \neq m \text{ and } \lambda_p \neq \lambda_m, \\ M_{mp}(u) = 0, & \text{if } p = m \text{ or } \lambda_p = \lambda_m. \end{cases}$

Step 3: Approximated "inverse scattering"

• $(\phi_m, \lambda_m)_{m=1..N_-}$: eigenfunctions/values of $\mathcal{L}_{\chi}(u)$

• We look for an approximation of u:

$$\tilde{u} = \sum_{k=1}^{N_{-}} \alpha_k \phi_k^2$$

• Inserting this expression in

$$\langle \mathcal{L}_{\chi}(\tilde{u})\phi_m, \phi_p \rangle = \lambda_m \langle \phi_m, \phi_p \rangle$$

• We find

$$\sum_{k=1}^{N_{-}} \alpha_{k} \langle \phi_{k}^{2}, \phi_{m}^{2} \rangle = -\frac{1}{\chi} \left(\lambda_{m} + \langle \Delta \phi_{m}, \phi_{m} \rangle \right).$$

which gives the α_k .

Summary: the ALP algorithm

Initialisation (SCSA of u_0): compute N_M eigenmodes ψ_m . The N_- first are denoted ϕ_m and

$$u_0(x) \approx \chi^{-1} \sum_{m=0}^{N_-} \kappa_m \phi_m(x)$$

- 1. Compute the matrix $M(u^n)$ approximating the operator $\mathcal{M}(u(t^n))$
- 2. Compute the eigenvalues λ_m^{n+1} : $\lambda_m^{n+1} = \lambda_m^n \delta t \langle F(u^n)\psi_m^n, \psi_m^n \rangle$
- 3. Compute the eigenfunctions ψ_m^{n+1} : $\psi_m^{n+1} = \sum_{p=1}^{N_M} \left[I + \delta t M(u^n) + \frac{\delta t^2}{2} M(u^n)^2 \right]_{mp} \psi_p^n$
- 4. Solve for α_p^{n+1} : $\sum_{p=1}^{N_-} \alpha_p^{n+1} \langle \phi_p^2, \phi_m^2 \rangle = -\frac{1}{\chi} \left(\lambda_p^{n+1} + \langle \Delta \phi_m^{n+1}, \phi_m^{n+1} \rangle \right)$.
- 5. Compute u^{n+1} with $u^{n+1} = \sum_{p=1}^{N_{-}} \alpha_p^{n+1} (\phi_p^{n+1})^2$

Numerical test cases

- Korteweg-de Vries:
 - * one-soliton (analytically known)
 - ★ only one negative eigenvalue

Simulation : D. Lombardi

- Korteweg-de Vries:
 - ★ three-soliton
 - ★ three negative eigenvalues
- Comparison of:
- projection of the analytic solution on 20 POD modes built of snapshots obtained from the half first time history
- ★ ALP integration with 20 modes

Simulation : D. Lombardi

• Fisher-Kolmogorov-Petrovski-Piskunov:

$$\frac{\partial u}{\partial t} - \Delta u = u(1-u)$$

- P1 Finite-element:
 - ★ 9000 dof
 - ★ Time step 2.5e-4
- Challenges:
 - ★ Sharp front, splitting in two directions
 - ★ No precomputed solutions : POD cannot work

• ALP

- ★ 6 modes for the solution, 25 modes for the operator
- ★ Time step 2.5e-3 (10 times larger than FEM)

In progress....

flow rate and mean pressure

55 main arteries

(D. Lombardi)

Perspectives

- Many things to do
 - ★ Adaptation of the number of modes
 - ★ Different operators for the scattering step
 - ★ Role of positive eigenvalues
 - ★ Error estimator
 - ★ Analysis
 - * ...
- Applications (in progress)
 - * systemic network of arteries (*Damiano Lombardi*)
 - * cardiac electrophysiology (Elisa Schenone)

Inria Research Report 8137 available on HAL <u>http://hal.inria.fr/hal-00752810</u>

• Remark:

$$\int_{\Omega} \left(\partial_t \psi_m\right)^2 \approx \sum_{n,l=1}^{N_M} M_{ml}(u) M_{mn}(u) \langle \psi_n, \psi_l \rangle = \sum_{n=1}^{N_M} M_{mn}(u)^2$$

• Thus, the Frobenius norm of M(u) can be used as an estimator of the approximation of the dynamics