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Linear Lamé equation and Hooke’s Law

Let us consider a beam and with transverse section Ω, subject to a force f , perpendicular to
the axis. The components along x and y of the displacement upxq in the section Ω are
governed by the Lamé’s system of linear equations.
Remark: we do not use this equation because the associated variational form does not give the
correct boundary conditions! We simply use the equilibrium between efforts and constraints:

´∇.pσq “ ρf in Ω,

where the constraint tensor σpuq is related to deformations using the Hooke’s law:

σpuq “ λtrpεpuqqI ` 2µεpuq.

λ, µ are the physical Lamé coefficients and the strain tensor is εpuq “ 1
2 p∇u`

t∇uq.
The corresponding variational (weak) form is:

ż

Ω

σpuq : εpvq dx´

ż

Ω

fv dx´

ż

BΩ

pσpuq.nqv “ 0, a : b “
ÿ

i,j

aijbij .

Finally, the variational form can be written as :
ż

Ω

λ ∇.v∇.u` 2µ εpuq : εpvq dx´

ż

Ω

fv dx´

ż

BΩ

pσpuq.nqv “ 0.
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Static Linear Lamé equations: weak formulation

Let Ω Ă Rd be a domain with a partition of BΩ “ Γd Y Γn.
Find u, the displacement field, such that:

´∇.σpuq “ ρ f in Ω, u “ 0 on Γd, σpuq.n “ 0 on Γn, (1)

where σpuq “ Aεpuq, with A a linear positive operator (symmetric dˆ d matrix)
corresponding to material properties. Let us denote Vg “ tv P H1pΩqd{v|Γd

“ gu.
The basic (displacement) variational formulation is: find u P V0pΩq, such that:

ż

Ω
εpvq : Aεpuq “

ż

Ω
ρ v.f`

ż

Γ
ppAεpuqqnq.v, @v P V0pΩq. (2)

The Hooke’s law says that A “ λ Id ` 2µ 1d,d, where Id is the Identity dˆ d matrix
and 1d,d the constant dˆ d matrix filled with 1.
Question: How to code this equation with FreeFem++?
Remark: the contraction operator (:) exists, but its priority is low: try to avoid it!
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Representation of the Strain tensor ε: the Voigt notation

More details on https://en.wikipedia.org/wiki/Voigt_notation
We denote by lambda “ λ, mu “ µ, twomul “ 2λ` µ, and define
In 2d:
func A = [[twomul,lambda, 0. ],

[lambda,twomul, 0. ],
[ 0. , 0. , mu ]] ;

macro epsV(u1,u2) [dx(u1),dy(u2),dy(u1)+dx(u2)] // EOM
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM

In 3d:

func A = [[twomul,lambda,lambda, 0. , 0. , 0. ],
[lambda,twomul,lambda, 0. , 0. , 0. ],
[lambda,lambda,twomul, 0. , 0. , 0. ],
[ 0. , 0. , 0. , mu , 0. , 0. ],
[ 0. , 0. , 0. , 0. , mu , 0. ],
[ 0. , 0. , 0. , 0. , 0. , mu ] ] ;

macro epsV(u1,u2,u3) [dx(u1), dy(u2), dz(u3),
dz(u2)+dy(u3), dz(u1)+dx(u3), dy(u1)+dx(u2) ] // EOM

macro div(u1,u2,u3) ( dx(u1)+dy(u2)+ dz(u3) ) // EOM
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Solving the static linear elasticity equation in 2d with FreeFem++
For the values of material constants, see
http://www.mstrtech.com/WebPages/matexam.htm

// Steel λ “ 9.695 1010N{m2,
// µ “ 7.617 1010N{m2, ρ “ 7700kg{m3.
real rho = 7700, mu = 7.617e10, lambda = 9.69e10 ;
real gravity = -9.81, twomul=2*mu+lambda; // Optimisation
cout << "lambda,mu,gravity ="<<lambda<< " " << mu << " " << gravity << endl;

The FreeFem++ code:
int[int] labs=[1,1,1,2];
mesh Th=square(50,5,[x*10,y],label=labs);
fespace Vh(Th,[P1,P1]);

Vh [u1,u2], [v1,v2],[un1,un2],[up1,up2];
solve Lame([u1,u2],[v1,v2])= int2d(Th)( epsV(u1,u2)’*A*epsV(v1,v2))

- int2d(Th) ( rho*gravity*v2) + on(2,u1=0,u2=0) ;

real dmax= u1[].linfty, coef= 3/dmax;
cout << " max deplacement = " << dmax << " coef " << coef << endl;
mesh Thm = change(movemesh(Th,[x+u1*coef,y+u2*coef]),fregion=1);
plot(Th,Thm,wait=1,cmm="coef amplification = "+coef);

Run:Beam-Static-2d.edp
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Solving the static linear elasticity equation in 3d with FreeFem++

Using the same physical parameters: λ “ 9.695 1010N{m2, µ “ 7.617 1010N{m2,
ρ “ 7700kg{m3.
The FreeFem++ code:
int[int] labs=[1,1,1,2,1,1];
mesh3 Th=cube(50,5,5,[x*10,y,z],label=labs);

fespace Vh(Th,[P1,P1,P1]);
Vh [u1,u2,u3], [v1,v2,v3],[un1,un2,un3],[up1,up2,up3];
solve Lame([u1,u2,u3],[v1,v2,v3])=

int3d(Th)( epsV(u1,u2,u3)’*A*epsV(v1,v2,v3))
- int3d(Th) ( rho*gravity*v3)
+ on(2,u1=0,u2=0,u3=0)
;

real dmax= u1[].linfty, coef= 5/dmax;
cout << " max deplacement = " << dmax << " coef " << coef << endl;
int[int] llm=[1,3];// just to change the color of plot mesh
mesh3 Thm=movemesh(Th,[x+u1*coef,y+u2*coef,z+u3*coef],label=llm);
plot(Th,Thm, wait=1,cmm="coef amplification = "+coef);

Run:Beam-Static-3d.edp
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Solving the time-dependent linear elasticity equation in 2d and 3d

The problem is (strong formulation)

ρBttu´∇.pσpuqq “ ρf in Ω.

We use a classical explicit 2nd order finite difference scheme for the time derivative:

ρ
un`1 ´ 2un ` un´1

pδtq2
´∇.pσpunqq “ ρfn

Let us denote by un = un`1, u = un, up = un´1;
the matrix formulation of the problem is:

un “M´1b, b “Mp´upq `Au` r, `B.C

M ”

ż

Ω
ρ
u.v

pδtq2
`B.C, A ”

ż

Ω
´εpvq : Aεpuq ` 2ρ

u.v

pδtq2
, r ”

ż

Ω
ρ g e3.v `B.C
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Program for the time-dependent linear elasticity equation in 2d and 3d

include "Beam-Static-2d.edp"
real dt =1e-5, rhodt2= rho/dt/dt;
varf vA( [u1,u2],[v1,v2]) = int2d(Th)( -1*epsV(u1,u2)’*A*epsV(v1,v2)

+ 2*rhodt2*[u1,u2]’*[v1,v2]);
varf vM( [u1,u2],[v1,v2]) = int2d(Th)( rhodt2*[u1,u2]’*[v1,v2])

+ on(2,u1=0,u2=0);
varf vB( [u1,u2],[v1,v2]) = int2d(Th)( rho*[0,gravity]’*[v1,v2])

+ on(2,u1=0,u2=0);

matrix AA=vA(Vh,Vh), M=vM(Vh,Vh,solver=CG);
real[int] Rhs = vB(0,Vh);

func BB=[[-0.5,-7],[10.5,1.4]];// for fixe bounding box of the plot ..
up1[]=u1[]=0;
for(int i=0; i<100000; ++i) {

real[int] b = AA*u1[]; up1[]=-up1[]; b += Rhs; b += M*up1[];
un1[]= M^-1*b;
up1[]=u1[]; u1[]=un1[];
if(i%100==0) { cout << i << " " << u1[].linfty << endl;
mesh Thmm =movemesh(Th,[x+u1*coef,y+u2*coef]);

Run:Beam-Vibration2d.edp Run:Beam-Vibration3d.edp
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The fixed-point algorithm

Consider the non-linear problem F pu, uq “ 0, with F p., uq affine with respect to the
first variable. To find a solution, you can try the following basic method, with no
guaranty of convergence:

1 set u0 an initial guess
2 do (iterations following n)

1 find un`1, the solution to F pun`1, unq “ 0,
2 if( ||un`1 ´ un|| ă ε) break;

The difficulty in this algorithm is to find an initial guess; sometimes this algorithm
explodes. The convergence is generally slow.
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The Newton method
To solve F puq “ 0 we can also use the Newton method (DF is the differential of F ):

1 set u0, an initial guess
2 do (iterations following n)

1 find wn, solution to DF punqwn “ F punq
2 un`1 “ un ´ wn

3 if( ||wn|| ă ε) break;

The Optimized Newton Method:
if F “ C ` L`N , with C the constant, L the linear, and N the non-linear part of F .
We obtain that DF “ L`DN and the Newton method can be written as:
DF punqun`1 “ DF punqun ´ F punq “ DNpunqun ´Npunq ´ C.
The new version of the algorithm is:

1 do
1 find un`1 solution to
DF punqun`1 “ DNpunqun ´Npunq ´ C “ DF punqun ´ F punq

2 if( ||un`1 ´ un|| ă ε) break;

The weakness of this algorithm is the need to start from an initial guess sufficiently
close to a solution.
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Example of a non-linear problem: the Minimal Surface problem

Let us solve the following geometrical problem: Find a function u : Ω ÞÑ R, where u is
given on Γ “ BΩ, (i.e. u|Γ “ g) such as the area of the surface S, parametrized by
px, yq P Ω ÞÑ px, y, upx, yqq is minimal.
The mathematical formulation of the problem is:

arg min Jpuq “

ż

Ω

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

1
0
Bxu

˛

‚ˆ

¨

˝

0
1
Byu

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dΩ “

ż

Ω

b

1` pBxuq2 ` pByuq2 dΩ.

The Euler-Lagrange equation associated to the minimization of Jpuq is:

@v{v|Γ “ 0 : DJpuqv “

ż

Ω

pBxvBxu` ByvByuq
a

1` pBxuq2 ` pByuq2
dΩ “ 0.

We consider the case: Ω “s0, πr2 and gpx, yq “ cospnxq cospnyq,
n “ 1 (simplest problem) and n “ 2 or 4 (harder to solve).
We shall use the fixed-point algorithm and the Newton method.
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A fixed-point method to solve the Minimal Surface problem

int nn=100,n=4;// n= 1 ,2,4
int[int] l1=[1,1,1,1];
mesh Th= square(nn,nn,[x*pi,y*pi],label=l1);
func g = cos(n*x)*cos(n*y);
fespace Vh(Th,P1);
Vh un,u,v;
for(int i=0; i< 1000; ++i)
{ verbosity =0;

solve Pb(un,v) = int2d(Th)( (dx(un)*dx(v)+ dy(un)*dy(v))
/ sqrt( 1. + (dx(u)*dx(u)+ dy(u)*dy(u))) )

+ on(1,un = g);
real J = int2d(Th)( sqrt( 1. + (dx(un)*dx(un)+ dy(un)*dy(un))) );
plot(un,dim=3,fill=1, wait=0);
u[]-=un[]; // diff
real err= u[].linfty;
cout << " iter " << i << " " << err <<" " << " J " << J << endl;
if( err < 1e-6) break;
u[]=un[]; }

Run:Min-Surf-FixPoint.edp
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A Newton method to solve the Minimal Surface problem

// macro of compute all differentiel
macro grad2(u,v) ( dx(u)*dx(v)+ dy(u)*dy(v) ) //
macro JJ(u) sqrt( 1. + grad2(u,u) ) //
macro dJJ(u,du) ( grad2(u,du) / JJ(u) ) //
macro ddJJ(u,du,ddu) ( grad2(ddu,du)/JJ(u)

- (grad2(u,du)*grad2(u,ddu)/JJ(u)^3) ) // For Newton
fespace Vh(Th,P1);
Vh u,v,w;
// Stating point ...
solve Pb0(u,v) = int2d(Th)( grad2(u,v) ) + on(1,u = g);
plot(u,dim=3,wait=0);
// Newton loop
for(int i=0; i< 100; ++i)
{ verbosity =0;

solve PbTangent(w,v) = int2d(Th)( ddJJ(u,w,v) ) - int2d(Th)( dJJ(u,v) )
+ on(1,2,3,4,w = 0);
u[] -=w[];
real J = int2d(Th)( JJ(u) );
plot(u,dim=3,fill=1, wait=0,cmm=" J ="+J);
real err= w[].linfty;
cout << " iter " << i << " err= " << err <<" " << " J " << J << endl;
if( err < 1e-6 || err >100) break; }

Run:Min-Surf-Newton.edp Run:Min-Surf-Newton-V2.edp
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Mesh adaptivity: Metrics and Unit Mesh

In Euclidean geometry the length |γ| of a curve γ of Rd parametrized by γptqt“0..1 is

|γ| “

ż 1

0

a

ă γ1ptq, γ1ptq ą dt

We introduce the metric Mpxq as a field of dˆ d symmetric positive definite matrices,
and the length ` of Γ w.r.t M is:

` “

ż 1

0

a

ă γ1ptq,Mpγptqqγ1ptq ądt

The key-idea is to construct a mesh for which the lengths of the edges are close to 1,
accordingly to M.
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Metrics intersection

For a metric M, the unit ball BM (obtained by plotting the maximum mesh size in all
directions), is a ellipse.
If you we have two unknowns u and v, we just compute the metrics Mu and Mv, find
a metric Muv, called intersection, defined by the biggest ellipse such that:

BpMvq Ă BpMuq X BpMvq
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Example of an adaptive mesh

u “ p10x3 ` y3q ` tanhp500psinp5yq ´ 2xqqq;

v “ p10y3 ` x3q ` tanhp5000psinp5yq ´ 2˚qqq;

Run:Adapt-uv.edp
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Building the metrics from the solution u

For P1 continuous Lagrange finite elements, the optimal metric norms for the interpolation
error (used in the function adaptmesh in FreeFem++) are:

L8 : M “
1

ε
|∇∇u| “ 1

ε
|H|, where H “ ∇∇u

Lp : M “ 1
ε |detpHq|

1
2p`2 |H|, (result by F. Alauzet, A. Dervieux)

For the norm W 1,p, the optimal metric M` for the P` Lagrange finite element is given by (with
only acute triangles) (thanks to J-M. Mirebeau)

M`,p “
1

ε
pdetM`q

1
`p`2 M`

and (see MetricPk plugin and function )

for P1: M1 “ H2 (sub-optimal: for acute triangles, take H)

for P2: M2 “ 3

d

ˆ

a b
b c

˙2

`

ˆ

b c
c a

˙2

with

Dp3qupx, yq “ pax3 ` 3bx2y ` 3cxy2 ` dy3q{3!,

Run:adapt.edp Run:AdaptP3.edp
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The problem with a corner singularity (adaptivity with metrics)

The domain is a L-shaped polygon Ω “s0, 1r2zr12 , 1s
2 and the PDE is

find u P H1
0 pΩq such that ´∆u “ 1 in Ω.

The solution has a singularity at the re-entrant angle and we wish to capture it
numerically.
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The problem with a corner singularity (FreeFem++ program)

int[int] lab=[1,1,1,1];
mesh Th = square(6,6,label=lab);
Th=trunc(Th,x<0.5 | y<0.5, label=1);
fespace Vh(Th,P1);
Vh u,v;
real error=0.01;
problem Problem1(u,v,solver=CG,eps=1.0e-6) =

int2d(Th)( dx(u)*dx(v) + dy(u)*dy(v)) - int2d(Th)( v)
+ on(1,u=0);

for (int i=0;i< 7;i++)
{

Problem1; // solving the pde problem
plot(u,Th,wait=1);

Th=adaptmesh(Th,u,err=error,nbvx=100000); // the adaptation with Hessian of u
u=u;

} ;

Run:CornerLap.edp
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Solving the 3d Poisson equation using mesh adaptation

load "msh3" load "tetgen" load "mshmet" load "medit"
int nn = 6; int[int] l1=[1,1,1,1,1,1];
mesh3 Th3=trunc( cube(nn,nn,nn,label=l1)

,(x<0.5)|(y < 0.5)|(z < 0.5), label=1);
fespace Vh(Th3,P1); Vh u,v,h;
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
problem Poisson(u,v,solver=CG) = int3d(Th3)( Grad(u)’*Grad(v) )

-int3d(Th3)( 1*v ) + on(1,u=0);
real errm=1e-2;// level of error
for(int ii=0; ii<5; ii++)
{ Poisson;

cout <<" u min, max = " << u[].min << " "<< u[].max << endl;
h=0. ;// for resizing h
h[]=mshmet(Th3,u,normalization=1,aniso=0,nbregul=1,hmin=1e-3,hmax=0.3,err=errm);
cout <<" h min, max = " << h[].min << " "<< h[].max << " " << h[].n << " "

<< Th3.nv << " " << Th3.nt << endl;
plot(u,wait=1);
errm*= 0.8;// change the level of error
Th3=tetgreconstruction(Th3,switch="raAQ",sizeofvolume=h*h*h/6.); }

Poisson;
medit("U-adap-iso-"+5,Th3,u,wait=1);

Run:Laplace-Adapt-3d.edp
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A Newton method with mesh adaptation for the Minimal Surface problem

real errA=0.1;
for(int adap=0; adap<7; adap++)
{ verbosity =0;

for(int i=0; i< 100; ++i)
{ // ALGO NEWTOW OPTIMIZE
solve PbTangent(un,v) = int2d(Th)( ddJJ(u,un,v) ) - int2d(Th)( ddJJ(u,u,v) -

dJJ(u,v) )
+ on(1,2,3,4,un = g);
w[] =u[] -un[]; u[]=un[];
real J = int2d(Th)( JJ(u) );
plot(u,dim=3,fill=1, wait=0,cmm=" J ="+J);
real err= w[].linfty;
cout << " iter " << i << " " << err <<" " << " J " << J << " " << " " << errA

<< endl;
if( err < 1e-5) break;
assert(err<10); }

cout << "adaptmesh " << endl;
Th = adaptmesh(Th,u,err=errA,nbvx=100000,ratio = 1.5);
plot(Th,WindowIndex=1);
v=0;u=u; w=0; un=un; // resize
errA = errA/2;

}

Run:Min-Surf-Newton-Adapt.edp
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The stress tensor for a Newtonian fluid
In the domain Ω of Rd, we denote by u the velocity field, p the pressure field and µ the
dynamic viscosity. The classical mechanical stress σ‹ of the fluid is:

σ‹pu, pq “ 2µDpuq ´ p Id, Dpuq “
1

2
p∇u` t∇uq (3)

or in the math formulation:
σ‚pu, pq “ µ∇u´ p Id (4)

So σ is one of these two stress tensors. Remark: if ∇.u “ 0 and µ is constant, then
∇.2Dpuq “ µ∇.∇u` µ∇.t∇u “ µ∇.∇u` µ∇ ∇.u

loomoon

“0

“ µ∇2u “ µ∆u.

Stokes Equation: find the velocity field u and the pressure field p, satisfying :

´∇.σpu, pq “ f (5)
´∇.u “ 0 (6)

or ´µ∆u`∇p “ f (7)
´∇.u “ 0 (8)

where f is the density of external forces.
+ Boundary conditions that will be defined through the variational (weak) form.
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Stokes equation: variational formulation
Mechanical variational form of the Stokes equation:

@v, q;

ż

Ω
2µDpuq : Dpvq ´ q∇.u´ p∇.v “

ż

Ω
f .v `

ż

Γ

tnσ‹pu, pqv

Mathematical variational form of the Stokes equation:

@v, q;

ż

Ω
µ∇u : ∇v ´ q∇.u´ p∇.v “

ż

Ω
f .v `

ż

Γ

tnσ‚pu, pqv

But remember that tnσ‚pu, pq are boundary density forces fΓ and not tnσ‹pu, pq.

If the B.C. is u “ uΓ for all boundaries, then the two formulations are identical.
The pressure p is defined up to an additive constant and the weak formulation can use
a small regularization (to remove the problem of the additive constant and impose a
zero mean value for the pressure).

@v P pH1
0 q
d, q P L2;

ż

Ω
µ∇u : ∇v ´ q∇.u´ p∇.v ´ εpq “

ż

Ω
f .v
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Solving the Stokes equation with FreeFem++: the entrained cavity flow

int nn=10;
mesh Th=square(nn,nn);
macro grad(u) [dx(u),dy(u)] //
macro Grad(u1,u2) [grad(u1),grad(u2)] //
macro D(u1,u2) [ [dx(u1),(dy(u1)+dx(u2))*.5] , [(dy(u1)+dx(u2))*.5,dy(u2)] ] //
macro div(u1,u2) (dx(u1)+dy(u2))//
real epsp =1e-8, mu = 1;

Choose the correct finite-element couple for velocity and pressure: (P2,P1), (P1b,P1),
(P1nc, P0), ...
fespace Vh(Th,P2); fespace Ph(Th,P1); // Taylor Hood Finite element

Vh u1,u2, v1,v2; Ph p,q ;
solve Stokes([u1,u2,p],[v1,v2,q]) =
int2d(Th) ( mu*(Grad(u1,u2):Grad(v1,v2))

- div(u1,u2)*q - div(v1,v2)*p -epsp*p*q )
+ on(1,2,4,u1=0,u2=0) + on(3,u1=1,u2=0) ;
plot([u1,u2],p,wait=1);
cout << " mean value pressure= " << int2d(Th)(p)/Th.area<<endl;

Run:Stokes-Cavity.edp
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Incompressible Navier-Stokes equation: steady states
Computing steady states of the Incompressible Navier-Stokes equation: In the domain
Ω of Rd, find the velocity field u and the pressure field p, solution to:

pu.∇qu´∇.σpu, pq “ f , (9)
´∇.u “ 0, (10)

+ Boundary conditions.

First idea: use the Optimized Newton Method (see page 19)! the only non-linear term
is Npuq “ pu.∇qu and the differential is DNpuqw “ pu.∇qw ` pw.∇qu; so, the
iteration ` of the Newton algorithm is:
Find u`, p` such that

@v P pH1
0 q

d, q P L2;
ż

Ω

µp∇u` : ∇vq ´ q∇.u` ´ p`∇.v ` v.ppu`.∇qu`´1 ` pu`´1.∇qu`q ´ εp`q

“

ż

Ω

v.ppu`´1.∇qu`´1q ` f .v
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Incompressible Navier-Stokes equation: steady states of the entrained cavity

real epsp =1e-8, mu = 1./Reynold , eps= 1e-5;
Vh u1=0,u2=0, un1,un2, v1,v2; Ph p,pn,q ;
macro UGradW( u1,u2, w1,w2) [ [u1,u2]’*grad(w1) , [u1,u2]’*grad(w2)]//
verbosity=0;
for(int iter=0; iter<20; ++iter)
{ // DF puqun “ DNpuqu´Npuq = UGradW(u1,u2,u1,u2)

solve Tangent ([un1,un2,pn],[v1,v2,q]) =
int2d(Th) ( UGradW(u1,u2, un1,un2)’*[v1,v2]

+ UGradW(un1,un2, u1,u2)’*[v1,v2]
+ mu*(Grad(un1,un2):Grad(v1,v2))

- div(un1,un2)*q - div(v1,v2)*pn -epsp*pn*q
)

- int2d(Th) ( UGradW(u1,u2,u1,u2)’*[v1,v2] )
+ on(1,2,4,un1=0,un2=0) + on(3,un1=1,un2=0) ;
u1[]-=un1[]; u2[]-=un2[]; p[]-=pn[]; //diff err
real err1=u1[].linfty, err2 =u2[].linfty , errp = p[].linfty;
cout << " iter =" <<iter << " errs= " << err1 << " "<< err2 << " " << errp <<

endl;
u1[]=un1[]; u2[]=un2[]; p[]=pn[];
plot([u1,u2],p,wait=1,cmm=iter);
if( err1 < eps & err2 < eps & errp < eps) break;

}

Run:Navier-Stokes-Cavity.edp
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Incompressible Navier-Stokes equation: unsteady computations
In the domain Ω of Rd, find the velocity field u and the pressure field p, solution to:

Btu` pu.∇qu´∇.σpu, pq “ f , (11)
´∇.u “ 0, (12)

+ Initial conditions + Boundary conditions.
We try to compute the classical Benchmark: Computations of Laminar Flow Around a
Cylinder form, by M. Schäfer, S. Turek, F. Durst, E. Krause, R. Rannacher
http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/

SchaeferTurek1996.pdf We compute the 2d case.
The Geometry and the physical constant are defined in file Run:2d-data-Turek-bm.edp.
One of the difficulties is to obtain the correct Strouhal number of the Bénard-von
Karman vortex street.
We need a high-order scheme for the time integration: we use a multi-step BDF scheme
of order 1, 2 or 3: BDF1 is Euler,
BDF2 is Btu „ 3un`1´4un`un´1

2δt and BDF3 is Btu „ 11un`1´18un`9un´1´2un´2

6δt
(https://en.wikipedia.org/wiki/Backward_differentiation_formula)
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Incompressible Navier-Stokes equation: unsteady computations (program)

real[int,int] BDF= [ [1,-1, 0,0],
[3./2.,-4/2., 1/2.,0],
[11./6.,-18./6., 9./6., -2./6.]];

to empty the file
{ofstream ff(datafile); }// empty file ..

to write in a file,
drag = -int1d(Th,3) ( 2*nu* ([1.,0]’*D(un1,un2)*[N.x,N.y]) - p*N.x) ;
lift = -int1d(Th,3) ( 2*nu* ([0.,1.]’*D(un1,un2)*[N.x,N.y]) - p*N.y) ;
TCd[itime]=Cd = ccdrag*drag;
TCl[itime]=Cl = ccdrag*lift;
real deltap = p(xa,ya)-p(xe,ye);

cout << " Time "<< time+dt << " at " << time/ccfreq << " Cd " << Cd << " Cl "
<< Cl
<< " Delta P=" << deltap << "/ max: " << Cdx << " " << Clx << " " << Cpx

<< endl;
ofstream ff(datafile,append);
ff << time << " " << time/ccfreq << " " << Cd << " " << Cl << " "<< deltap

<< Cdx << " " << Clx << " " << Cpx <<endl;

Run:NS-Newton-Turek-bm.edp
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Unsteady incompressible Navier-Stokes equation: method of characteristics
For a flow field u the total (or material) derivative is

Du

Dt
“
Bu

Bt
` pu.∇qu,

A correct numerical scheme used to approximate Du
Dt has to take into account the

movement of a particle: let us denote by xn (resp. xn`1) the particle position at time
tn (resp. tn`1); we can write

Du

Dt
pxn`1q „

un`1pxn`1q ´ unpxnq

δt

Defining the characteristic flow (passing at time t through the point x)
#

BX
Bτ pτ, t,xq “ upτ,Xpτ, t,xqq, τ P p0, tmaxq

Xpt, t,xq “ x,
(13)

one can express the total derivative of any function Φpt,xq as

DΦ

Dt
pt,xq “

ˆ

BΦ

Bt
` u.∇Φ

˙

pt,xq “
B

Bt
pΦpτ,Xpτ, t,xqqq |τ“t (14)
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Method of characteristics in FreeFem++
We use the time discretization:

ˆ

DΦ

Dt

˙n`1

pxq «
Φn`1pxq ´ Φn ˝Xnpxq

δt
, (15)

with Xnpxq a suitable approximation of Xptn, tn`1,xq, obtained by an integration
back in time of (13) from tn`1 to tn for each grid point x. The Galerkin characteristic
method is implemented in Freefem++ as an operator computing Φ ˝Xn for given:
mesh, convection velocity field and time step.
The FreeFem++ operator convect([u1,u2],-dt, ..) computes:

Du

Dt
pxn`1q „

un`1 ´ un ˝Xn

δt

Example: solve the convection equation with given velocity u
Bta` pu.∇qa “ 0, + initial condition

for (int i=0; i< 20 ; i++) {
t += dt; vo[]=v[];
v=convect([u1,u2],-dt,vo); // convect v by u1,u2, dt seconds, results in f
plot(v,fill=1,wait=0,dim=3,cmm="convection: t="+t

+ ", min=" + v[].min + ", max=" + v[].max); }

Run:convect.edp Exercise: use the characteristics method for the unsteady
Navier-Stokes computation of the entrained cavity flow.
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A free-boundary problem: modelling the water infiltration

We use a simple model to study water infiltration = the process by which water on the
ground surface enters the soil.
Let Ω be a trapezoidal domain, defined in FreeFem++ by:
real L=10,h=2.1 h1=0.35; //Lenght, Left and Right Height
// trapeze
border a(t=0,L){x=t;y=0;}; // bas
border b(t=0,h1){x=L;y=t;}; // droite
border f(t=L,0){x=t;y=t*(h1-h)/L+h;}; // free surface
border d(t=h,0){x=0;y=t;}; // gauche

int n=10;
mesh Th=buildmesh (a(L*n)+b(h1*n)+f(sqrt(L^2+(h-h1)^2)*n)+d(h*n));
plot(Th);
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A free-boundary problem: modelling the water infiltration 2/2

The model is: find p and Ω such that:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´∆p “ 0 in Ω
p “ y on Γb
Bp

Bn
“ 0 on Γd Y Γa

Bp

Bn
“

q
Knx on Γf pNeumannq

p “ y on Γf pDirichletq

where the input water flux is q “ 0.02, and K “ 0.5.
The velocity u of the water is given by u “ ´∇p.
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Modelling the water infiltration: the algorithm

We use the following fixed-point method: (with bad main B.C. Run:freeboundaryPB.edp )
Let k “ 0, Ωk “ Ω. For the first step, we forget the Neumann B.C. and we solve the
problem: find p in V “ H1pΩkq, such as p “ y on Γkb and Γkf , and

ż

Ωk

∇p∇p1 “ 0, @p1 P V with p1 “ 0 on Γkb Y Γkf

With the residual of the Neumann boundary condition, we build a domain
transformation Fpx, yq “ rx, y ´ vpxqs, where v is solution to: v P V , such than v “ 0
on Γka (bottom) and

ż

Ωk

∇v∇v1 “
ż

Γk
f

p
Bp

Bn
´

q

K
nxqv

1, @v1 P V with v1 “ 0 sur Γka

Remark: we can use the previous equation to evaluate
ż

Γk

Bp

Bn
v1 “ ´

ż

Ωk

∇p∇v1
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Modelling the water infiltration: implementation

The new domain is: Ωk`1 “ FpΩkq.
Warning: if is the displacement is too large we can have triangle overlapping.
Vh u,v,uu,vv;
problem Pu(u,uu,solver=CG) = int2d(Th)( dx(u)*dx(uu)+dy(u)*dy(uu))

+ on(b,f,u=y) ;
problem Pv(v,vv,solver=CG) = int2d(Th)( dx(v)*dx(vv)+dy(v)*dy(vv))

+ on (a, v=0) + int1d(Th,f)(vv*((q/K)*N.y- (dx(u)*N.x+dy(u)*N.y)));
real errv=1;
while(errv>1e-6) { j++;

Pu; Pv;
plot(Th,u,v ,wait=0);
errv=int1d(Th,f)(v*v);

Here tricky code to take account the triangle overlapping
Th=movemesh(Th,[x,y-coef*v]); // calcul de la deformation
cout << "\n\n"<<j <<"------------ errv = " << errv << "\n\n";

}

Run:freeboundary.edp
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Computing eigenvalues and eigenvectors: an example

Find the first λ, uλ such as:

apuλ, vq “

ż

Ω
∇uλ∇v “ λ

ż

Ω
uλv “ λbpuλ, vq

Boundary conditions are imposed using exact penalization: we set to 1e30 “ tgv the
diagonal terms corresponding to locked degrees of freedom. Consequently, we impose
Dirichlet boundary conditions only for the variational form of a and not for the
variational form of b, because we compute eigenvalue of

1

λ
v “ A´1Bv

Otherwise we can get spurious mode.
FreeFem++ uses an Arpack interface:
int k=EigenValue(A,B,sym=true,value=ev,vector=eV);
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Computing eigenvalues and eigenvectors: the program
real sigma = 0; // value of the shift
varf a(u1,u2)= int2d(Th)( dx(u1)*dx(u2) + dy(u1)*dy(u2) - sigma* u1*u2 )

+ on(1,2,3,4,u1=0) ; // Boundary condition
varf b([u1],[u2]) = int2d(Th)( u1*u2 ) ; // no Boundary condition
matrix A= a(Vh,Vh,solver=UMFPACK);
matrix B= b(Vh,Vh,solver=CG,eps=1e-20);

.....
for (int i=0;i<k;i++)
{ u1=eV[i];

real gg = int2d(Th)(dx(u1)*dx(u1) + dy(u1)*dy(u1));
real mm= int2d(Th)(u1*u1) ;
real err = int2d(Th)(dx(u1)*dx(u1) + dy(u1)*dy(u1) - (ev[i])*u1*u1) ;
if(abs(err) > 1e-6) nerr++;
if(abs(ev[i]-eev[i]) > 1e-1) nerr++;
cout << " ---- " << i<< " " << ev[i] << " == " << eev[i] << " err= " << err <<

" --- "<<endl;
plot(eV[i],cmm="Eigen Vector "+i+" valeur =" + ev[i] ,wait=1,value=1,dim=3,

fill=1);
}

Run:Lap3dEigenValue.edp Run:LapEigenValue.edp Run:free-cyl-3d.edp
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