
FreeFem++ Lessons 5-8

F. Hecht and I. Danaila
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie

Paris, France

http://www.freefem.org mailto:frederic.hecht@upmc.fr

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 1 / 61

http://www.freefem.org
mailto:frederic.hecht@upmc.fr


Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)

2 Non-linear problems (Lesson 6)

3 Mesh adaptation (Lesson 6)

4 Incompressible Fluid Dynamics (Lesson 7)

5 Moving boundaries/ Eigenvalue problems / Parallel computing (Lesson 8)

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 2 / 61



Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)
Linear elasticity equations
Static Linear Lamé equation, weak formulation
Representation of the Strain and Stress tensors
Solving the static linear elasticity equation in 2d with FreeFem++
Solving the static linear elasticity equation in 3d with FreeFem++
Solving the time-dependent linear elasticity equation in 2d and 3d

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 3 / 61



Linear Lamé equation and Hooke’s Law

Let us consider a beam and with transverse section Ω, subject to a force f , perpendicular to
the axis. The components along x and y of the displacement upxq in the section Ω are
governed by the Lamé’s system of linear equations.
Remark: we do not use this equation because the associated variational form does not give the
correct boundary conditions! We simply use the equilibrium between efforts and constraints:

´∇.pσq “ ρf in Ω,

where the constraint tensor σpuq is related to deformations using the Hooke’s law:

σpuq “ λtrpεpuqqI ` 2µεpuq.

λ, µ are the physical Lamé coefficients and the strain tensor is εpuq “ 1
2 p∇u`

t∇uq.
The corresponding variational (weak) form is:

ż

Ω

σpuq : εpvq dx´

ż

Ω

fv dx´

ż

BΩ

pσpuq.nqv “ 0, a : b “
ÿ

i,j

aijbij .

Finally, the variational form can be written as :
ż

Ω

λ ∇.v∇.u` 2µ εpuq : εpvq dx´

ż

Ω

fv dx´

ż

BΩ

pσpuq.nqv “ 0.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 4 / 61



Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)
Linear elasticity equations
Static Linear Lamé equation, weak formulation
Representation of the Strain and Stress tensors
Solving the static linear elasticity equation in 2d with FreeFem++
Solving the static linear elasticity equation in 3d with FreeFem++
Solving the time-dependent linear elasticity equation in 2d and 3d

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 5 / 61



Static Linear Lamé equations: weak formulation

Let Ω Ă Rd be a domain with a partition of BΩ “ Γd Y Γn.
Find u, the displacement field, such that:

´∇.σpuq “ ρ f in Ω, u “ 0 on Γd, σpuq.n “ 0 on Γn, (1)

where σpuq “ Aεpuq, with A a linear positive operator (symmetric dˆ d matrix)
corresponding to material properties. Let us denote Vg “ tv P H1pΩqd{v|Γd

“ gu.
The basic (displacement) variational formulation is: find u P V0pΩq, such that:

ż

Ω
εpvq : Aεpuq “

ż

Ω
ρ v.f`

ż

Γ
ppAεpuqqnq.v, @v P V0pΩq. (2)

The Hooke’s law says that A “ λ Id ` 2µ 1d,d, where Id is the Identity dˆ d matrix
and 1d,d the constant dˆ d matrix filled with 1.
Question: How to code this equation with FreeFem++?
Remark: the contraction operator (:) exists, but its priority is low: try to avoid it!

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 6 / 61



Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)
Linear elasticity equations
Static Linear Lamé equation, weak formulation
Representation of the Strain and Stress tensors
Solving the static linear elasticity equation in 2d with FreeFem++
Solving the static linear elasticity equation in 3d with FreeFem++
Solving the time-dependent linear elasticity equation in 2d and 3d

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 7 / 61



Representation of the Strain tensor ε: the Voigt notation

More details on https://en.wikipedia.org/wiki/Voigt_notation
We denote by lambda “ λ, mu “ µ, twomul “ 2λ` µ, and define
In 2d:
func A = [[twomul,lambda, 0. ],

[lambda,twomul, 0. ],
[ 0. , 0. , mu ]] ;

macro epsV(u1,u2) [dx(u1),dy(u2),dy(u1)+dx(u2)] // EOM
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM

In 3d:

func A = [[twomul,lambda,lambda, 0. , 0. , 0. ],
[lambda,twomul,lambda, 0. , 0. , 0. ],
[lambda,lambda,twomul, 0. , 0. , 0. ],
[ 0. , 0. , 0. , mu , 0. , 0. ],
[ 0. , 0. , 0. , 0. , mu , 0. ],
[ 0. , 0. , 0. , 0. , 0. , mu ] ] ;

macro epsV(u1,u2,u3) [dx(u1), dy(u2), dz(u3),
dz(u2)+dy(u3), dz(u1)+dx(u3), dy(u1)+dx(u2) ] // EOM

macro div(u1,u2,u3) ( dx(u1)+dy(u2)+ dz(u3) ) // EOM

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 8 / 61

https://en.wikipedia.org/wiki/Voigt_notation


Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)
Linear elasticity equations
Static Linear Lamé equation, weak formulation
Representation of the Strain and Stress tensors
Solving the static linear elasticity equation in 2d with FreeFem++
Solving the static linear elasticity equation in 3d with FreeFem++
Solving the time-dependent linear elasticity equation in 2d and 3d

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 9 / 61



Solving the static linear elasticity equation in 2d with FreeFem++
For the values of material constants, see
http://www.mstrtech.com/WebPages/matexam.htm

// Steel λ “ 9.695 1010N{m2,
// µ “ 7.617 1010N{m2, ρ “ 7700kg{m3.
real rho = 7700, mu = 7.617e10, lambda = 9.69e10 ;
real gravity = -9.81, twomul=2*mu+lambda; // Optimisation
cout << "lambda,mu,gravity ="<<lambda<< " " << mu << " " << gravity << endl;

The FreeFem++ code:
int[int] labs=[1,1,1,2];
mesh Th=square(50,5,[x*10,y],label=labs);
fespace Vh(Th,[P1,P1]);

Vh [u1,u2], [v1,v2],[un1,un2],[up1,up2];
solve Lame([u1,u2],[v1,v2])= int2d(Th)( epsV(u1,u2)’*A*epsV(v1,v2))

- int2d(Th) ( rho*gravity*v2) + on(2,u1=0,u2=0) ;

real dmax= u1[].linfty, coef= 3/dmax;
cout << " max deplacement = " << dmax << " coef " << coef << endl;
mesh Thm = change(movemesh(Th,[x+u1*coef,y+u2*coef]),fregion=1);
plot(Th,Thm,wait=1,cmm="coef amplification = "+coef);

Run:Beam-Static-2d.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 10 / 61

http://www.mstrtech.com/WebPages/matexam.htm


Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)
Linear elasticity equations
Static Linear Lamé equation, weak formulation
Representation of the Strain and Stress tensors
Solving the static linear elasticity equation in 2d with FreeFem++
Solving the static linear elasticity equation in 3d with FreeFem++
Solving the time-dependent linear elasticity equation in 2d and 3d

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 11 / 61



Solving the static linear elasticity equation in 3d with FreeFem++

Using the same physical parameters: λ “ 9.695 1010N{m2, µ “ 7.617 1010N{m2,
ρ “ 7700kg{m3.
The FreeFem++ code:
int[int] labs=[1,1,1,2,1,1];
mesh3 Th=cube(50,5,5,[x*10,y,z],label=labs);

fespace Vh(Th,[P1,P1,P1]);
Vh [u1,u2,u3], [v1,v2,v3],[un1,un2,un3],[up1,up2,up3];
solve Lame([u1,u2,u3],[v1,v2,v3])=

int3d(Th)( epsV(u1,u2,u3)’*A*epsV(v1,v2,v3))
- int3d(Th) ( rho*gravity*v3)
+ on(2,u1=0,u2=0,u3=0)
;

real dmax= u1[].linfty, coef= 5/dmax;
cout << " max deplacement = " << dmax << " coef " << coef << endl;
int[int] llm=[1,3];// just to change the color of plot mesh
mesh3 Thm=movemesh(Th,[x+u1*coef,y+u2*coef,z+u3*coef],label=llm);
plot(Th,Thm, wait=1,cmm="coef amplification = "+coef);

Run:Beam-Static-3d.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 12 / 61



Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)
Linear elasticity equations
Static Linear Lamé equation, weak formulation
Representation of the Strain and Stress tensors
Solving the static linear elasticity equation in 2d with FreeFem++
Solving the static linear elasticity equation in 3d with FreeFem++
Solving the time-dependent linear elasticity equation in 2d and 3d

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 13 / 61



Solving the time-dependent linear elasticity equation in 2d and 3d

The problem is (strong formulation)

ρBttu´∇.pσpuqq “ ρf in Ω.

We use a classical explicit 2nd order finite difference scheme for the time derivative:

ρ
un`1 ´ 2un ` un´1

pδtq2
´∇.pσpunqq “ ρfn

Let us denote by un = un`1, u = un, up = un´1;
the matrix formulation of the problem is:

un “M´1b, b “Mp´upq `Au` r, `B.C

M ”

ż

Ω
ρ
u.v

pδtq2
`B.C, A ”

ż

Ω
´εpvq : Aεpuq ` 2ρ

u.v

pδtq2
, r ”

ż

Ω
ρ g e3.v `B.C

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 14 / 61



Program for the time-dependent linear elasticity equation in 2d and 3d

include "Beam-Static-2d.edp"
real dt =1e-5, rhodt2= rho/dt/dt;
varf vA( [u1,u2],[v1,v2]) = int2d(Th)( -1*epsV(u1,u2)’*A*epsV(v1,v2)

+ 2*rhodt2*[u1,u2]’*[v1,v2]);
varf vM( [u1,u2],[v1,v2]) = int2d(Th)( rhodt2*[u1,u2]’*[v1,v2])

+ on(2,u1=0,u2=0);
varf vB( [u1,u2],[v1,v2]) = int2d(Th)( rho*[0,gravity]’*[v1,v2])

+ on(2,u1=0,u2=0);

matrix AA=vA(Vh,Vh), M=vM(Vh,Vh,solver=CG);
real[int] Rhs = vB(0,Vh);

func BB=[[-0.5,-7],[10.5,1.4]];// for fixe bounding box of the plot ..
up1[]=u1[]=0;
for(int i=0; i<100000; ++i) {

real[int] b = AA*u1[]; up1[]=-up1[]; b += Rhs; b += M*up1[];
un1[]= M^-1*b;
up1[]=u1[]; u1[]=un1[];
if(i%100==0) { cout << i << " " << u1[].linfty << endl;
mesh Thmm =movemesh(Th,[x+u1*coef,y+u2*coef]);

Run:Beam-Vibration2d.edp Run:Beam-Vibration3d.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 15 / 61



Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)

2 Non-linear problems (Lesson 6)

3 Mesh adaptation (Lesson 6)

4 Incompressible Fluid Dynamics (Lesson 7)

5 Moving boundaries/ Eigenvalue problems / Parallel computing (Lesson 8)

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 16 / 61



Outline

2 Non-linear problems (Lesson 6)
Algorithms for solving non-linear problems: fixed point algorithm, Newton method
Example of a non-linear problem: the Minimal Surface problem
A fixed-point method to solve the Minimal Surface problem
A Newton method to solve the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 17 / 61



The fixed-point algorithm

Consider the non-linear problem F pu, uq “ 0, with F p., uq affine with respect to the
first variable. To find a solution, you can try the following basic method, with no
guaranty of convergence:

1 set u0 an initial guess
2 do (iterations following n)

1 find un`1, the solution to F pun`1, unq “ 0,
2 if( ||un`1 ´ un|| ă ε) break;

The difficulty in this algorithm is to find an initial guess; sometimes this algorithm
explodes. The convergence is generally slow.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 18 / 61



The Newton method
To solve F puq “ 0 we can also use the Newton method (DF is the differential of F ):

1 set u0, an initial guess
2 do (iterations following n)

1 find wn, solution to DF punqwn “ F punq
2 un`1 “ un ´ wn

3 if( ||wn|| ă ε) break;

The Optimized Newton Method:
if F “ C ` L`N , with C the constant, L the linear, and N the non-linear part of F .
We obtain that DF “ L`DN and the Newton method can be written as:
DF punqun`1 “ DF punqun ´ F punq “ DNpunqun ´Npunq ´ C.
The new version of the algorithm is:

1 do
1 find un`1 solution to
DF punqun`1 “ DNpunqun ´Npunq ´ C “ DF punqun ´ F punq

2 if( ||un`1 ´ un|| ă ε) break;

The weakness of this algorithm is the need to start from an initial guess sufficiently
close to a solution.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 19 / 61



Outline

2 Non-linear problems (Lesson 6)
Algorithms for solving non-linear problems: fixed point algorithm, Newton method
Example of a non-linear problem: the Minimal Surface problem
A fixed-point method to solve the Minimal Surface problem
A Newton method to solve the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 20 / 61



Example of a non-linear problem: the Minimal Surface problem

Let us solve the following geometrical problem: Find a function u : Ω ÞÑ R, where u is
given on Γ “ BΩ, (i.e. u|Γ “ g) such as the area of the surface S, parametrized by
px, yq P Ω ÞÑ px, y, upx, yqq is minimal.
The mathematical formulation of the problem is:

arg min Jpuq “

ż

Ω

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

1
0
Bxu

˛

‚ˆ

¨

˝

0
1
Byu

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dΩ “

ż

Ω

b

1` pBxuq2 ` pByuq2 dΩ.

The Euler-Lagrange equation associated to the minimization of Jpuq is:

@v{v|Γ “ 0 : DJpuqv “

ż

Ω

pBxvBxu` ByvByuq
a

1` pBxuq2 ` pByuq2
dΩ “ 0.

We consider the case: Ω “s0, πr2 and gpx, yq “ cospnxq cospnyq,
n “ 1 (simplest problem) and n “ 2 or 4 (harder to solve).
We shall use the fixed-point algorithm and the Newton method.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 21 / 61



Outline

2 Non-linear problems (Lesson 6)
Algorithms for solving non-linear problems: fixed point algorithm, Newton method
Example of a non-linear problem: the Minimal Surface problem
A fixed-point method to solve the Minimal Surface problem
A Newton method to solve the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 22 / 61



A fixed-point method to solve the Minimal Surface problem

int nn=100,n=4;// n= 1 ,2,4
int[int] l1=[1,1,1,1];
mesh Th= square(nn,nn,[x*pi,y*pi],label=l1);
func g = cos(n*x)*cos(n*y);
fespace Vh(Th,P1);
Vh un,u,v;
for(int i=0; i< 1000; ++i)
{ verbosity =0;

solve Pb(un,v) = int2d(Th)( (dx(un)*dx(v)+ dy(un)*dy(v))
/ sqrt( 1. + (dx(u)*dx(u)+ dy(u)*dy(u))) )

+ on(1,un = g);
real J = int2d(Th)( sqrt( 1. + (dx(un)*dx(un)+ dy(un)*dy(un))) );
plot(un,dim=3,fill=1, wait=0);
u[]-=un[]; // diff
real err= u[].linfty;
cout << " iter " << i << " " << err <<" " << " J " << J << endl;
if( err < 1e-6) break;
u[]=un[]; }

Run:Min-Surf-FixPoint.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 23 / 61



Outline

2 Non-linear problems (Lesson 6)
Algorithms for solving non-linear problems: fixed point algorithm, Newton method
Example of a non-linear problem: the Minimal Surface problem
A fixed-point method to solve the Minimal Surface problem
A Newton method to solve the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 24 / 61



A Newton method to solve the Minimal Surface problem

// macro of compute all differentiel
macro grad2(u,v) ( dx(u)*dx(v)+ dy(u)*dy(v) ) //
macro JJ(u) sqrt( 1. + grad2(u,u) ) //
macro dJJ(u,du) ( grad2(u,du) / JJ(u) ) //
macro ddJJ(u,du,ddu) ( grad2(ddu,du)/JJ(u)

- (grad2(u,du)*grad2(u,ddu)/JJ(u)^3) ) // For Newton
fespace Vh(Th,P1);
Vh u,v,w;
// Stating point ...
solve Pb0(u,v) = int2d(Th)( grad2(u,v) ) + on(1,u = g);
plot(u,dim=3,wait=0);
// Newton loop
for(int i=0; i< 100; ++i)
{ verbosity =0;

solve PbTangent(w,v) = int2d(Th)( ddJJ(u,w,v) ) - int2d(Th)( dJJ(u,v) )
+ on(1,2,3,4,w = 0);
u[] -=w[];
real J = int2d(Th)( JJ(u) );
plot(u,dim=3,fill=1, wait=0,cmm=" J ="+J);
real err= w[].linfty;
cout << " iter " << i << " err= " << err <<" " << " J " << J << endl;
if( err < 1e-6 || err >100) break; }

Run:Min-Surf-Newton.edp Run:Min-Surf-Newton-V2.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 25 / 61



Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)

2 Non-linear problems (Lesson 6)

3 Mesh adaptation (Lesson 6)

4 Incompressible Fluid Dynamics (Lesson 7)

5 Moving boundaries/ Eigenvalue problems / Parallel computing (Lesson 8)

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 26 / 61



Outline

3 Mesh adaptation (Lesson 6)
Metrics and Unit Mesh
Metrics and norms
Solving the 2d Poisson equation using mesh adaptation
Solving the 3d Poisson equation using mesh adaptation
A Newton method with mesh adaptation for the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 27 / 61



Mesh adaptivity: Metrics and Unit Mesh

In Euclidean geometry the length |γ| of a curve γ of Rd parametrized by γptqt“0..1 is

|γ| “

ż 1

0

a

ă γ1ptq, γ1ptq ą dt

We introduce the metric Mpxq as a field of dˆ d symmetric positive definite matrices,
and the length ` of Γ w.r.t M is:

` “

ż 1

0

a

ă γ1ptq,Mpγptqqγ1ptq ądt

The key-idea is to construct a mesh for which the lengths of the edges are close to 1,
accordingly to M.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 28 / 61



Metrics intersection

For a metric M, the unit ball BM (obtained by plotting the maximum mesh size in all
directions), is a ellipse.
If you we have two unknowns u and v, we just compute the metrics Mu and Mv, find
a metric Muv, called intersection, defined by the biggest ellipse such that:

BpMvq Ă BpMuq X BpMvq

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 29 / 61



Example of an adaptive mesh

u “ p10x3 ` y3q ` tanhp500psinp5yq ´ 2xqqq;

v “ p10y3 ` x3q ` tanhp5000psinp5yq ´ 2˚qqq;

Run:Adapt-uv.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 30 / 61



Outline

3 Mesh adaptation (Lesson 6)
Metrics and Unit Mesh
Metrics and norms
Solving the 2d Poisson equation using mesh adaptation
Solving the 3d Poisson equation using mesh adaptation
A Newton method with mesh adaptation for the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 31 / 61



Building the metrics from the solution u

For P1 continuous Lagrange finite elements, the optimal metric norms for the interpolation
error (used in the function adaptmesh in FreeFem++) are:

L8 : M “
1

ε
|∇∇u| “ 1

ε
|H|, where H “ ∇∇u

Lp : M “ 1
ε |detpHq|

1
2p`2 |H|, (result by F. Alauzet, A. Dervieux)

For the norm W 1,p, the optimal metric M` for the P` Lagrange finite element is given by (with
only acute triangles) (thanks to J-M. Mirebeau)

M`,p “
1

ε
pdetM`q

1
`p`2 M`

and (see MetricPk plugin and function )

for P1: M1 “ H2 (sub-optimal: for acute triangles, take H)

for P2: M2 “ 3

d

ˆ

a b
b c

˙2

`

ˆ

b c
c a

˙2

with

Dp3qupx, yq “ pax3 ` 3bx2y ` 3cxy2 ` dy3q{3!,

Run:adapt.edp Run:AdaptP3.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 32 / 61



Outline

3 Mesh adaptation (Lesson 6)
Metrics and Unit Mesh
Metrics and norms
Solving the 2d Poisson equation using mesh adaptation
Solving the 3d Poisson equation using mesh adaptation
A Newton method with mesh adaptation for the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 33 / 61



The problem with a corner singularity (adaptivity with metrics)

The domain is a L-shaped polygon Ω “s0, 1r2zr12 , 1s
2 and the PDE is

find u P H1
0 pΩq such that ´∆u “ 1 in Ω.

The solution has a singularity at the re-entrant angle and we wish to capture it
numerically.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 34 / 61



The problem with a corner singularity (FreeFem++ program)

int[int] lab=[1,1,1,1];
mesh Th = square(6,6,label=lab);
Th=trunc(Th,x<0.5 | y<0.5, label=1);
fespace Vh(Th,P1);
Vh u,v;
real error=0.01;
problem Problem1(u,v,solver=CG,eps=1.0e-6) =

int2d(Th)( dx(u)*dx(v) + dy(u)*dy(v)) - int2d(Th)( v)
+ on(1,u=0);

for (int i=0;i< 7;i++)
{

Problem1; // solving the pde problem
plot(u,Th,wait=1);

Th=adaptmesh(Th,u,err=error,nbvx=100000); // the adaptation with Hessian of u
u=u;

} ;

Run:CornerLap.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 35 / 61



Outline

3 Mesh adaptation (Lesson 6)
Metrics and Unit Mesh
Metrics and norms
Solving the 2d Poisson equation using mesh adaptation
Solving the 3d Poisson equation using mesh adaptation
A Newton method with mesh adaptation for the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 36 / 61



Solving the 3d Poisson equation using mesh adaptation

load "msh3" load "tetgen" load "mshmet" load "medit"
int nn = 6; int[int] l1=[1,1,1,1,1,1];
mesh3 Th3=trunc( cube(nn,nn,nn,label=l1)

,(x<0.5)|(y < 0.5)|(z < 0.5), label=1);
fespace Vh(Th3,P1); Vh u,v,h;
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
problem Poisson(u,v,solver=CG) = int3d(Th3)( Grad(u)’*Grad(v) )

-int3d(Th3)( 1*v ) + on(1,u=0);
real errm=1e-2;// level of error
for(int ii=0; ii<5; ii++)
{ Poisson;

cout <<" u min, max = " << u[].min << " "<< u[].max << endl;
h=0. ;// for resizing h
h[]=mshmet(Th3,u,normalization=1,aniso=0,nbregul=1,hmin=1e-3,hmax=0.3,err=errm);
cout <<" h min, max = " << h[].min << " "<< h[].max << " " << h[].n << " "

<< Th3.nv << " " << Th3.nt << endl;
plot(u,wait=1);
errm*= 0.8;// change the level of error
Th3=tetgreconstruction(Th3,switch="raAQ",sizeofvolume=h*h*h/6.); }

Poisson;
medit("U-adap-iso-"+5,Th3,u,wait=1);

Run:Laplace-Adapt-3d.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 37 / 61



Outline

3 Mesh adaptation (Lesson 6)
Metrics and Unit Mesh
Metrics and norms
Solving the 2d Poisson equation using mesh adaptation
Solving the 3d Poisson equation using mesh adaptation
A Newton method with mesh adaptation for the Minimal Surface problem

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 38 / 61



A Newton method with mesh adaptation for the Minimal Surface problem

real errA=0.1;
for(int adap=0; adap<7; adap++)
{ verbosity =0;

for(int i=0; i< 100; ++i)
{ // ALGO NEWTOW OPTIMIZE
solve PbTangent(un,v) = int2d(Th)( ddJJ(u,un,v) ) - int2d(Th)( ddJJ(u,u,v) -

dJJ(u,v) )
+ on(1,2,3,4,un = g);
w[] =u[] -un[]; u[]=un[];
real J = int2d(Th)( JJ(u) );
plot(u,dim=3,fill=1, wait=0,cmm=" J ="+J);
real err= w[].linfty;
cout << " iter " << i << " " << err <<" " << " J " << J << " " << " " << errA

<< endl;
if( err < 1e-5) break;
assert(err<10); }

cout << "adaptmesh " << endl;
Th = adaptmesh(Th,u,err=errA,nbvx=100000,ratio = 1.5);
plot(Th,WindowIndex=1);
v=0;u=u; w=0; un=un; // resize
errA = errA/2;

}

Run:Min-Surf-Newton-Adapt.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 39 / 61



Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)

2 Non-linear problems (Lesson 6)

3 Mesh adaptation (Lesson 6)

4 Incompressible Fluid Dynamics (Lesson 7)

5 Moving boundaries/ Eigenvalue problems / Parallel computing (Lesson 8)

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 40 / 61



Outline

4 Incompressible Fluid Dynamics (Lesson 7)
The stress tensor for a Newtonian fluid
Stokes equation: variational formulation
Incompressible Navier-Stokes equation: steady states

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 41 / 61



The stress tensor for a Newtonian fluid
In the domain Ω of Rd, we denote by u the velocity field, p the pressure field and µ the
dynamic viscosity. The classical mechanical stress σ‹ of the fluid is:

σ‹pu, pq “ 2µDpuq ´ p Id, Dpuq “
1

2
p∇u` t∇uq (3)

or in the math formulation:
σ‚pu, pq “ µ∇u´ p Id (4)

So σ is one of these two stress tensors. Remark: if ∇.u “ 0 and µ is constant, then
∇.2Dpuq “ µ∇.∇u` µ∇.t∇u “ µ∇.∇u` µ∇ ∇.u

loomoon

“0

“ µ∇2u “ µ∆u.

Stokes Equation: find the velocity field u and the pressure field p, satisfying :

´∇.σpu, pq “ f (5)
´∇.u “ 0 (6)

or ´µ∆u`∇p “ f (7)
´∇.u “ 0 (8)

where f is the density of external forces.
+ Boundary conditions that will be defined through the variational (weak) form.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 42 / 61



Outline

4 Incompressible Fluid Dynamics (Lesson 7)
The stress tensor for a Newtonian fluid
Stokes equation: variational formulation
Incompressible Navier-Stokes equation: steady states

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 43 / 61



Stokes equation: variational formulation
Mechanical variational form of the Stokes equation:

@v, q;

ż

Ω
2µDpuq : Dpvq ´ q∇.u´ p∇.v “

ż

Ω
f .v `

ż

Γ

tnσ‹pu, pqv

Mathematical variational form of the Stokes equation:

@v, q;

ż

Ω
µ∇u : ∇v ´ q∇.u´ p∇.v “

ż

Ω
f .v `

ż

Γ

tnσ‚pu, pqv

But remember that tnσ‚pu, pq are boundary density forces fΓ and not tnσ‹pu, pq.

If the B.C. is u “ uΓ for all boundaries, then the two formulations are identical.
The pressure p is defined up to an additive constant and the weak formulation can use
a small regularization (to remove the problem of the additive constant and impose a
zero mean value for the pressure).

@v P pH1
0 q
d, q P L2;

ż

Ω
µ∇u : ∇v ´ q∇.u´ p∇.v ´ εpq “

ż

Ω
f .v

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 44 / 61



Solving the Stokes equation with FreeFem++: the entrained cavity flow

int nn=10;
mesh Th=square(nn,nn);
macro grad(u) [dx(u),dy(u)] //
macro Grad(u1,u2) [grad(u1),grad(u2)] //
macro D(u1,u2) [ [dx(u1),(dy(u1)+dx(u2))*.5] , [(dy(u1)+dx(u2))*.5,dy(u2)] ] //
macro div(u1,u2) (dx(u1)+dy(u2))//
real epsp =1e-8, mu = 1;

Choose the correct finite-element couple for velocity and pressure: (P2,P1), (P1b,P1),
(P1nc, P0), ...
fespace Vh(Th,P2); fespace Ph(Th,P1); // Taylor Hood Finite element

Vh u1,u2, v1,v2; Ph p,q ;
solve Stokes([u1,u2,p],[v1,v2,q]) =
int2d(Th) ( mu*(Grad(u1,u2):Grad(v1,v2))

- div(u1,u2)*q - div(v1,v2)*p -epsp*p*q )
+ on(1,2,4,u1=0,u2=0) + on(3,u1=1,u2=0) ;
plot([u1,u2],p,wait=1);
cout << " mean value pressure= " << int2d(Th)(p)/Th.area<<endl;

Run:Stokes-Cavity.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 45 / 61



Outline

4 Incompressible Fluid Dynamics (Lesson 7)
The stress tensor for a Newtonian fluid
Stokes equation: variational formulation
Incompressible Navier-Stokes equation: steady states

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 46 / 61



Incompressible Navier-Stokes equation: steady states
Computing steady states of the Incompressible Navier-Stokes equation: In the domain
Ω of Rd, find the velocity field u and the pressure field p, solution to:

pu.∇qu´∇.σpu, pq “ f , (9)
´∇.u “ 0, (10)

+ Boundary conditions.

First idea: use the Optimized Newton Method (see page 19)! the only non-linear term
is Npuq “ pu.∇qu and the differential is DNpuqw “ pu.∇qw ` pw.∇qu; so, the
iteration ` of the Newton algorithm is:
Find u`, p` such that

@v P pH1
0 q

d, q P L2;
ż

Ω

µp∇u` : ∇vq ´ q∇.u` ´ p`∇.v ` v.ppu`.∇qu`´1 ` pu`´1.∇qu`q ´ εp`q

“

ż

Ω

v.ppu`´1.∇qu`´1q ` f .v

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 47 / 61



Incompressible Navier-Stokes equation: steady states of the entrained cavity

real epsp =1e-8, mu = 1./Reynold , eps= 1e-5;
Vh u1=0,u2=0, un1,un2, v1,v2; Ph p,pn,q ;
macro UGradW( u1,u2, w1,w2) [ [u1,u2]’*grad(w1) , [u1,u2]’*grad(w2)]//
verbosity=0;
for(int iter=0; iter<20; ++iter)
{ // DF puqun “ DNpuqu´Npuq = UGradW(u1,u2,u1,u2)

solve Tangent ([un1,un2,pn],[v1,v2,q]) =
int2d(Th) ( UGradW(u1,u2, un1,un2)’*[v1,v2]

+ UGradW(un1,un2, u1,u2)’*[v1,v2]
+ mu*(Grad(un1,un2):Grad(v1,v2))

- div(un1,un2)*q - div(v1,v2)*pn -epsp*pn*q
)

- int2d(Th) ( UGradW(u1,u2,u1,u2)’*[v1,v2] )
+ on(1,2,4,un1=0,un2=0) + on(3,un1=1,un2=0) ;
u1[]-=un1[]; u2[]-=un2[]; p[]-=pn[]; //diff err
real err1=u1[].linfty, err2 =u2[].linfty , errp = p[].linfty;
cout << " iter =" <<iter << " errs= " << err1 << " "<< err2 << " " << errp <<

endl;
u1[]=un1[]; u2[]=un2[]; p[]=pn[];
plot([u1,u2],p,wait=1,cmm=iter);
if( err1 < eps & err2 < eps & errp < eps) break;

}

Run:Navier-Stokes-Cavity.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 48 / 61



Incompressible Navier-Stokes equation: unsteady computations
In the domain Ω of Rd, find the velocity field u and the pressure field p, solution to:

Btu` pu.∇qu´∇.σpu, pq “ f , (11)
´∇.u “ 0, (12)

+ Initial conditions + Boundary conditions.
We try to compute the classical Benchmark: Computations of Laminar Flow Around a
Cylinder form, by M. Schäfer, S. Turek, F. Durst, E. Krause, R. Rannacher
http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/

SchaeferTurek1996.pdf We compute the 2d case.
The Geometry and the physical constant are defined in file Run:2d-data-Turek-bm.edp.
One of the difficulties is to obtain the correct Strouhal number of the Bénard-von
Karman vortex street.
We need a high-order scheme for the time integration: we use a multi-step BDF scheme
of order 1, 2 or 3: BDF1 is Euler,
BDF2 is Btu „ 3un`1´4un`un´1

2δt and BDF3 is Btu „ 11un`1´18un`9un´1´2un´2

6δt
(https://en.wikipedia.org/wiki/Backward_differentiation_formula)

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 49 / 61

http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/SchaeferTurek1996.pdf
http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/SchaeferTurek1996.pdf
https://en.wikipedia.org/wiki/Backward_differentiation_formula


Incompressible Navier-Stokes equation: unsteady computations (program)

real[int,int] BDF= [ [1,-1, 0,0],
[3./2.,-4/2., 1/2.,0],
[11./6.,-18./6., 9./6., -2./6.]];

to empty the file
{ofstream ff(datafile); }// empty file ..

to write in a file,
drag = -int1d(Th,3) ( 2*nu* ([1.,0]’*D(un1,un2)*[N.x,N.y]) - p*N.x) ;
lift = -int1d(Th,3) ( 2*nu* ([0.,1.]’*D(un1,un2)*[N.x,N.y]) - p*N.y) ;
TCd[itime]=Cd = ccdrag*drag;
TCl[itime]=Cl = ccdrag*lift;
real deltap = p(xa,ya)-p(xe,ye);

cout << " Time "<< time+dt << " at " << time/ccfreq << " Cd " << Cd << " Cl "
<< Cl
<< " Delta P=" << deltap << "/ max: " << Cdx << " " << Clx << " " << Cpx

<< endl;
ofstream ff(datafile,append);
ff << time << " " << time/ccfreq << " " << Cd << " " << Cl << " "<< deltap

<< Cdx << " " << Clx << " " << Cpx <<endl;

Run:NS-Newton-Turek-bm.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 50 / 61



Unsteady incompressible Navier-Stokes equation: method of characteristics
For a flow field u the total (or material) derivative is

Du

Dt
“
Bu

Bt
` pu.∇qu,

A correct numerical scheme used to approximate Du
Dt has to take into account the

movement of a particle: let us denote by xn (resp. xn`1) the particle position at time
tn (resp. tn`1); we can write

Du

Dt
pxn`1q „

un`1pxn`1q ´ unpxnq

δt

Defining the characteristic flow (passing at time t through the point x)
#

BX
Bτ pτ, t,xq “ upτ,Xpτ, t,xqq, τ P p0, tmaxq

Xpt, t,xq “ x,
(13)

one can express the total derivative of any function Φpt,xq as

DΦ

Dt
pt,xq “

ˆ

BΦ

Bt
` u.∇Φ

˙

pt,xq “
B

Bt
pΦpτ,Xpτ, t,xqqq |τ“t (14)

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 51 / 61



Method of characteristics in FreeFem++
We use the time discretization:

ˆ

DΦ

Dt

˙n`1

pxq «
Φn`1pxq ´ Φn ˝Xnpxq

δt
, (15)

with Xnpxq a suitable approximation of Xptn, tn`1,xq, obtained by an integration
back in time of (13) from tn`1 to tn for each grid point x. The Galerkin characteristic
method is implemented in Freefem++ as an operator computing Φ ˝Xn for given:
mesh, convection velocity field and time step.
The FreeFem++ operator convect([u1,u2],-dt, ..) computes:

Du

Dt
pxn`1q „

un`1 ´ un ˝Xn

δt

Example: solve the convection equation with given velocity u
Bta` pu.∇qa “ 0, + initial condition

for (int i=0; i< 20 ; i++) {
t += dt; vo[]=v[];
v=convect([u1,u2],-dt,vo); // convect v by u1,u2, dt seconds, results in f
plot(v,fill=1,wait=0,dim=3,cmm="convection: t="+t

+ ", min=" + v[].min + ", max=" + v[].max); }

Run:convect.edp Exercise: use the characteristics method for the unsteady
Navier-Stokes computation of the entrained cavity flow.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 52 / 61



Outline

1 Linear Elasticity: weak formulations and programs (Lesson 5)

2 Non-linear problems (Lesson 6)

3 Mesh adaptation (Lesson 6)

4 Incompressible Fluid Dynamics (Lesson 7)

5 Moving boundaries/ Eigenvalue problems / Parallel computing (Lesson 8)

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 53 / 61



Outline

5 Moving boundaries/ Eigenvalue problems / Parallel computing (Lesson 8)
A free-boundary problem: modelling the water infiltration 1/2
Eigenvalue problems

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 54 / 61



A free-boundary problem: modelling the water infiltration

We use a simple model to study water infiltration = the process by which water on the
ground surface enters the soil.
Let Ω be a trapezoidal domain, defined in FreeFem++ by:
real L=10,h=2.1 h1=0.35; //Lenght, Left and Right Height
// trapeze
border a(t=0,L){x=t;y=0;}; // bas
border b(t=0,h1){x=L;y=t;}; // droite
border f(t=L,0){x=t;y=t*(h1-h)/L+h;}; // free surface
border d(t=h,0){x=0;y=t;}; // gauche

int n=10;
mesh Th=buildmesh (a(L*n)+b(h1*n)+f(sqrt(L^2+(h-h1)^2)*n)+d(h*n));
plot(Th);

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 55 / 61



A free-boundary problem: modelling the water infiltration 2/2

The model is: find p and Ω such that:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´∆p “ 0 in Ω
p “ y on Γb
Bp

Bn
“ 0 on Γd Y Γa

Bp

Bn
“

q
Knx on Γf pNeumannq

p “ y on Γf pDirichletq

where the input water flux is q “ 0.02, and K “ 0.5.
The velocity u of the water is given by u “ ´∇p.

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 56 / 61



Modelling the water infiltration: the algorithm

We use the following fixed-point method: (with bad main B.C. Run:freeboundaryPB.edp )
Let k “ 0, Ωk “ Ω. For the first step, we forget the Neumann B.C. and we solve the
problem: find p in V “ H1pΩkq, such as p “ y on Γkb and Γkf , and

ż

Ωk

∇p∇p1 “ 0, @p1 P V with p1 “ 0 on Γkb Y Γkf

With the residual of the Neumann boundary condition, we build a domain
transformation Fpx, yq “ rx, y ´ vpxqs, where v is solution to: v P V , such than v “ 0
on Γka (bottom) and

ż

Ωk

∇v∇v1 “
ż

Γk
f

p
Bp

Bn
´

q

K
nxqv

1, @v1 P V with v1 “ 0 sur Γka

Remark: we can use the previous equation to evaluate
ż

Γk

Bp

Bn
v1 “ ´

ż

Ωk

∇p∇v1

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 57 / 61



Modelling the water infiltration: implementation

The new domain is: Ωk`1 “ FpΩkq.
Warning: if is the displacement is too large we can have triangle overlapping.
Vh u,v,uu,vv;
problem Pu(u,uu,solver=CG) = int2d(Th)( dx(u)*dx(uu)+dy(u)*dy(uu))

+ on(b,f,u=y) ;
problem Pv(v,vv,solver=CG) = int2d(Th)( dx(v)*dx(vv)+dy(v)*dy(vv))

+ on (a, v=0) + int1d(Th,f)(vv*((q/K)*N.y- (dx(u)*N.x+dy(u)*N.y)));
real errv=1;
while(errv>1e-6) { j++;

Pu; Pv;
plot(Th,u,v ,wait=0);
errv=int1d(Th,f)(v*v);

Here tricky code to take account the triangle overlapping
Th=movemesh(Th,[x,y-coef*v]); // calcul de la deformation
cout << "\n\n"<<j <<"------------ errv = " << errv << "\n\n";

}

Run:freeboundary.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 58 / 61



Outline

5 Moving boundaries/ Eigenvalue problems / Parallel computing (Lesson 8)
A free-boundary problem: modelling the water infiltration 1/2
Eigenvalue problems

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 59 / 61



Computing eigenvalues and eigenvectors: an example

Find the first λ, uλ such as:

apuλ, vq “

ż

Ω
∇uλ∇v “ λ

ż

Ω
uλv “ λbpuλ, vq

Boundary conditions are imposed using exact penalization: we set to 1e30 “ tgv the
diagonal terms corresponding to locked degrees of freedom. Consequently, we impose
Dirichlet boundary conditions only for the variational form of a and not for the
variational form of b, because we compute eigenvalue of

1

λ
v “ A´1Bv

Otherwise we can get spurious mode.
FreeFem++ uses an Arpack interface:
int k=EigenValue(A,B,sym=true,value=ev,vector=eV);

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 60 / 61



Computing eigenvalues and eigenvectors: the program
real sigma = 0; // value of the shift
varf a(u1,u2)= int2d(Th)( dx(u1)*dx(u2) + dy(u1)*dy(u2) - sigma* u1*u2 )

+ on(1,2,3,4,u1=0) ; // Boundary condition
varf b([u1],[u2]) = int2d(Th)( u1*u2 ) ; // no Boundary condition
matrix A= a(Vh,Vh,solver=UMFPACK);
matrix B= b(Vh,Vh,solver=CG,eps=1e-20);

.....
for (int i=0;i<k;i++)
{ u1=eV[i];

real gg = int2d(Th)(dx(u1)*dx(u1) + dy(u1)*dy(u1));
real mm= int2d(Th)(u1*u1) ;
real err = int2d(Th)(dx(u1)*dx(u1) + dy(u1)*dy(u1) - (ev[i])*u1*u1) ;
if(abs(err) > 1e-6) nerr++;
if(abs(ev[i]-eev[i]) > 1e-1) nerr++;
cout << " ---- " << i<< " " << ev[i] << " == " << eev[i] << " err= " << err <<

" --- "<<endl;
plot(eV[i],cmm="Eigen Vector "+i+" valeur =" + ev[i] ,wait=1,value=1,dim=3,

fill=1);
}

Run:Lap3dEigenValue.edp Run:LapEigenValue.edp Run:free-cyl-3d.edp

Fields Institute, Toronto, March 2016. F. Hecht and I. Danaila

Lesson 5 Freefem++, Elasticity and Non Linear Problems 61 / 61


	Linear Elasticity: weak formulations and programs (Lesson 5)
	Linear elasticity equations
	Static Linear Lamé equation, weak formulation
	Representation of the Strain and Stress tensors
	Solving the static linear elasticity equation in 2d with FreeFem++
	Solving the static linear elasticity equation in 3d with FreeFem++
	Solving the time-dependent linear elasticity equation in 2d and 3d

	Non-linear problems (Lesson 6)
	Algorithms for solving non-linear problems: fixed point algorithm, Newton method
	Example of a non-linear problem: the Minimal Surface problem
	A fixed-point method to solve the Minimal Surface problem
	A Newton method to solve the Minimal Surface problem

	Mesh adaptation (Lesson 6)
	Metrics and Unit Mesh
	Metrics and norms
	Solving the 2d Poisson equation using mesh adaptation
	Solving the 3d Poisson equation using mesh adaptation
	A Newton method with mesh adaptation for the Minimal Surface problem

	Incompressible Fluid Dynamics (Lesson 7)
	The stress tensor for a Newtonian fluid
	Stokes equation: variational formulation 
	Incompressible Navier-Stokes equation: steady states

	Moving boundaries/ Eigenvalue problems / Parallel computing (Lesson 8)
	A free-boundary problem: modelling the water infiltration 1/2
	Eigenvalue problems


