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Summary

This report presents research activities that I have been developing since my arrival
in Laboratoire Jacques-Louis Lions in 1999. My contributions are mainly in the
scientific computing field, with two major application domains: the simulation of
classical fluid flows and the simulation of superfluids (Bose-Einstein condensates).

Each application theme is presented in a devoted part of the report, with its own final
chapter describing the work in progress and the specific research project. Chapter
titles mention not only the considered application, but also the specific numerical
methods developed for this purpose. Since a rich variety of problems are presented,
the bibliographic references are organized separately for each chapter, in the third
part of the report.

This report was conceived as a working document, with self-containing chapters.
Each chapter starts with an introductory record card summarizing the motivations,
the scientific context and the main obtained results; the keywords describing the
activity, the corresponding papers and scientific collaborations are also mentioned.
The presentation is intended to both specialists and readers looking to more general
information on the topic announced in the title. The inserts in text contain technical
information and is not compulsory to follow the general presentation.

My vision on scientific computing is that each physical problem requests specific
numerical tools. This explains the variety of the numerical developments presented
in this report. Numerical methods or algorithms were often taken from a general
theoretical analysis to the implementation on large 3D numerical codes used for the
simulation of more or less realistic problems. Transposing difficult real problems
into a more academic framework was also worthwhile in bringing useful informa-
tion on less documented cases. A particular attention was devoted to the physical
interpretation of the obtained numerical results. It is my intimate conviction that
the greatest satisfaction in scientific computing is to transform the computer into a
reliable experimental device reproducing real physics.

The last point that I should like to emphasize here is the importance that I grant in
passing the results of the research activity into teaching. To this purpose, I had the
pleasure to write together with my colleagues, F. Hecht, O. Pironneau, M. Postel,
P. Joly et S. M. Kaber, three text books in which some of the developed numerical
methods are presented in a simplified framework.
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The following paragraphs give an overview of the topics presented in each chapter.
The quest for vortex structures in all simulated systems may be regarded as the
general guideline of the presentation.

• The first part is devoted to the description of numerical simulations of classical
fluid flows.

The round jet flow, with typical vortex structures appearing in the near field, is the
main topic of Chapter 1. Spectral elements and finite differences methods are used
to solve the incompressible Navier-Stokes equations in three-dimensions. The ideas
behind each method is briefly recalled. Numerical results allow to introduce a first
family of vortices (or coherent structures): vortex rings, streamwise vortices and
helical vortices. The combination of such vortex structures, assimilated to unstable
modes in stability theories, resulted in a model used to simulate a particular class
of jet flows (bifurcating, blooming and flapping jets) with spectacular increasing of
the spreading angle.

Chapter 2 introduces numerical and theoretical tools for numerically solving the
compressible Navier-Stokes equations. In particular, a fictitious domain method is
presented for the simulation of flows with obstacles or moving walls embedded in
the computational domain. The method, based on a immersed boundary method-
ology, was tested on academic cases, as the simulation of the flow in a compression
squared machine and the interaction of vortex dipoles with obstacles. New vortex
structures will be thus introduced: the tumble vortex and the vortex dipole. The
chapter also presents more applied research activities, developed in collaboration
with industrial partners: modeling and simulating real injection conditions in an
engine and numerical evaluation of the behaviour of some industrial codes (AVBP,
IFP-C3D).

Chapter 3 describes my main research activity in the simulation of classical fluids:
the development of numerical solvers for the incompressible or low-Mach number
Navier-Stokes equations, using cylindrical coordinates. The finite differences method
used in my code called JETLES (JET Large Eddy Simulations) is described in great
detail. Numerical contributions to the study of the flow dominated by vortex rings
are presented as applications. This flow is relevant for the industrial flow that is
created when the fuel is injected in internal combustion engines.

The first part of the report is closed in Chapter 4 that outlines the work in progress
and my future plans in the field of the numerical simulation of classical flows. These
concern the mathematical and numerical analysis of ideal vortex ring models, the
numerical and theoretical analysis of the pipe-flow in the entry region, and further
numerical developments of the JETLES code for the simulation of conical injection
in internal combustion engines.
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• The second part of the report presents my very recent activities in the simulation
of superfluid systems, namely the Bose-Einstein condensate (BEC). This part is
divided in three chapters.

Chapter 5 introduces the physical problem and the experimental BEC configura-
tions with vortices studied in École Normale Supérieure (ENS) group. The mathe-
matical model for quantized vortices is also described, since different from that used
for vortices in classical fluids. The numerical code developed to simulate equilib-
rium states of 3D BEC with vortices is described in detail. This code was called
BETI (Bose-Einstein Temps Imaginaire), since the imaginary time propagation of
the Gross-Pitaevskii equation is its basic principle. This is one of the few existing
3D numerical codes used for the study of the physics of BECs.

The main results obtained using the numerical code BETI are shown in Chapter
6. I describe in detail the three-dimensional structure of vortices for different trap-
ping potentials used in experiments. The simulations offer a detailed 3D picture
of vortex configurations that is not available from experiments and 2D simulations.
A particular attention was devoted to the physical interpretation of the results by
using post-processing diagnostics close to experimental ones. Numerical data are
always compared to available experimental and theoretical results and a remarkably
good qualitative and quantitative agreement is found.

In Chapter 7 I briefly present the undergoing studies of new BEC configurations,
as the rotating BEC in one-dimensional optical lattices. These systems, in which the
initial cigar-shape condensate is divided in several quasi-2D condensates, start to be
studied experimentally. Further developments of the BETI code are also mentioned.

• The third part gathers the bibliographic references of each chapter.
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Editions Société Française de Thermique, p. 521-525, 2006.

[A5]

O. El Ganaoui, C. Habchi, G. Bruneaux and I. Danaila
Numerical simulation of an experimental gas-gas jet generated by single-hole
diesel-like injectiont,
Int. J. Numer. Meth. Fluids, 47, p. 1011-1018, 2005.

[A6]

I. Danaila
Three-dimensional vortex structure of a fast rotating Bose-Einstein conden-
sate with harmonic-plus-quartic confinement,
Physical Review A, 72, p. 013605(1-6), 2005.

[A7]
A. Aftalion, I. Danaila
Giant vortices in combined harmonic and quartic traps,
Physical Review A, 69, p. 033608(1-6), 2004.

[A8]
I. Danaila
Vortex dipoles impinging on finite aspect ratio rectangular obstacles,
Flow, Turbulence and Combustion, 72, p. 391-406, 2004.

[A9]
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1999.

xi



xii



Contents

Summary iii

Publications vii

I. Simulation of classical fluid flows 1

1. Spectral elements and finite differences methods for the incompressible
Navier-Stokes equations: three-dimensional simulations of round jets 3
1.1. Spectral elements method and weakly nonlinear stability for the study

of round jet instabilities . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2. Finite differences method for Navier-Stokes equations in spherical co-

ordinates: bifurcating, blooming and flapping jets . . . . . . . . . . . 9

2. Direct and large eddy simulations of internal combustion engine flows 13
2.1. Immersed boundary and finite differences methods for compressible

Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1. Simulation of the tumbling vortex motion . . . . . . . . . . . 18
2.1.2. Vortex dipoles interacting with obstacles . . . . . . . . . . . . 19

2.2. Evaluation of industrial codes and modelling realistic engine injection 20

3. Finite differences method for the simulation of incompressible fluid flows
in cylindrical coordinates: the JETLES code 25
3.1. Numerical resolution of the incompressible Navier-Stokes equations . 27

3.1.1. Navier-Stokes equations in cylindrical coordinates . . . . . . . 27
3.1.2. Time integration by a fractional step method . . . . . . . . . 28
3.1.3. Space discretization: finite differences on staggered grids . . . 29

3.2. Numerical resolution of low-Mach number Navier-Stokes equations . . 30
3.2.1. Low-Mach number approximation . . . . . . . . . . . . . . . . 31

3.3. Numerical simulation of the vortex ring flow . . . . . . . . . . . . . . 34
3.3.1. Vortex rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2. Evolution of the constant density vortex ring . . . . . . . . . . 35
3.3.3. Evolution of the variable density vortex ring . . . . . . . . . . 38

4. Work in progress and future plans 41

xiii



4.1. Numerical and theoretical analysis of vortex models . . . . . . . . . . 41
4.2. Numerical and theoretical analysis of the entry region of a pipe flow . 44
4.3. Numerical simulation of conical injection flows . . . . . . . . . . . . . 46

II. Simulations of superfluids: Bose-Einstein condensates 47

5. Numerical simulations of vortex configurations in Bose-Einstein conden-
sates 49
5.1. Experimental realisations of Bose-Einstein condensates . . . . . . . . 51
5.2. Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3. Numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6. Three-dimensional structure of quantized vortices in a Bose-Einstein
condensate 59
6.1. Single vortex lines in rotating BECs . . . . . . . . . . . . . . . . . . . 61
6.2. Giant vortex in rotating BECs . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1. Theoretical study . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.2. Comparison with experiments . . . . . . . . . . . . . . . . . . 67

6.3. Vortices with exotic shapes in non-rotating BECs . . . . . . . . . . . 69

7. Work in progress and future plans 71
7.1. Mathematical and numerical study of a BEC in 1D optical lattices . . 71
7.2. Numerical development of the code BETI . . . . . . . . . . . . . . . . 72

III. Bibliography 73

xiv



I

Simulation of classical fluid flows

1





1. Spectral elements and finite
differences methods for the
incompressible Navier-Stokes
equations: three-dimensional
simulations of round jets

General presentation

This chapter presents my very first numerical simulations, performed during my
PhD and in the first two years after my arrival to Laboratoire Jacques-Louis Lions.
It is helpful to show these results since they triggered subsequent numerical work
(presented in the next two chapters).

The near-field evolution of a round jet was simulated using either spectral elements
methods (PhD work, Danaila, 1997) or finite differences methods (Danaila and
Boersma, 2000) to solve the incompressible Navier-Stokes equations in 3D. At the
beginning of this activity, most of the numerical simulations of round jets were based
on a temporal model, assuming periodic boundary conditions in the streamwise di-
rection. My results were among the first direct numerical simulations (DNS) using
inflow/outflow boundary conditions to capture the evolution in time and space of
the 3D jet flow.

The numerical and theoretical tools developed during my PhD will be briefly pre-
sented. They will allow to introduce a first family of vortices (or coherent structures),
typical for the round jet flow: vortex rings, streamwise vortices and helical vortices.
The gallery of vortices will be completed in the next chapters.

My PhD work was followed by several research activities related to the development
of two new numerical codes, more effective when dealing with 3D round jet flows.
Both codes use finite differences schemes and projection methods for the incom-
pressible Navier-Stokes equations. I present in this chapter some results obtained
with the code using spherical coordinates. This code, provided by B. J. Boersma
(TU Delft), was used to investigate strategies to control the round jet. Spectacular
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evolutions (bifurcating of flapping jets) were observed when appropriate forcing was
imposed at the inlet.

The second code, that I have been developing since 1998, is based on a discretization
of the Navier-Stokes equations in cylindrical coordinates. The numerical method
used in this code will be presented in chapter 3.

Key words: spectral elements, finite differences, incompressible Navier-Stokes
equations, 3D simulation, round jet, weakly non-linear stability,
Landau model.

Publications :
articles : [A12], [A15]
(during my PhD) : [A14], [A17], [A16], [A18], [A19], [A20].

Collaborations :

B. J. Boersma (Delft University, The Netherlands),
D. Parekh (Georgia Tech, USA),
my PhD advisors
F. Anselmet (IRPHE, Marseille),
J. Dušek (Université Louis Pasteur, Strasbourg).
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1.1. Spectral elements method and weakly nonlinear
stability for the study of round jet instabilities

During my PhD I had the opportunity to use an academic version of the NEKTON
code, originally developed by Tony Patera (Patera, 1984). This code became a com-
mercial package and, to my knowledge, finally disappeared from the very competitive
world of Navier-Stokes commercial solvers.

NEKTON allowed fully 3D simulations using spectral elements methods to solve
the incompressible Navier-Stokes equations. The code was very effective in the
simulation of flow instabilities since its local (within one element) spectral accuracy
permitted to capture very disparate length scales in different regions of the flow.

Since the spectral elements methods is not largely used for flow simulations
(compared to finite volumes, finite elements or finite differences), it could
be helpful to remind here the main characteristics of the method. The
computational domain (Ω ⊂ IRn) is filled with 3D Lagrangian elements
(Ek)k=1...K . Only the C0 continuity is imposed, bringing about a drawback
in the form of discontinuities of the velocity field derivatives at element
interfaces. Local basis functions are high order polynomials (N ≥ 5):

φ
(Ek)
pql = hp(ξ)hq(η)hl(ζ), h ∈ PN =⇒ u(x, y, z)|(Ek) =

N∑
p,q,l=0

ûkpql φ
(Ek)
pql ,

where local coordinates (ξ, η, ζ) correspond to the transformation of each
element into the cube [−1, 1]3. The collocation points are uniformly dis-
tributed on each side of the element and form an orthogonal grid. The
approximation error is of order of O[K−N exp(−ct. · N)] (see also Neitzel
et al., 1995; Henderson and Karniadakis, 1995). The best strategy to obtain
a good numerical approximation is to use relatively large spectral elements
and very high order polynomials as basis functions. The high accuracy of
spectral methods and the flexibility of the finite elements are thus used for
the simulation.

The originality of the numerical approach used in this study was the spontaneous
destabilization of the jet flow by the numerical noise. This noise is introduced at the
interface of the elements modeling the jet nozzle, where the velocity has a jump and
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the pressure gradient is discontinuous. Similar random noise exists in experimental
devices.

Since the simulated jet flow is spontaneously destabilized without any forcing, we
could observe different coherent structures appearing naturally in the near field
region of the jet. A Fourier decomposition of the flow field allowed the extraction
of the unstable modes and the identification of the coherent structures resulting
from their interaction. The evolution in time and space of these structures was
carefully analyzed. The parameter of the study was the Reynolds number, defined
as Re = V0D/ν < 500, where V0 is the injection velocity, ν the kinematic viscosity
of the fluid, and D the diameter of the nozzle.

For high Reynolds numbers (Re = 500), the classical scenario of the jet evolution is
found in the simulation: Kelvin-Helmholtz instability, roll-up of vortex rings, vortex
pairing (see animation 1.1), secondary instability with streamwise vortices appearing
in the flow. The break-up of coherent structures was put into evidence as the last
stage before the chaotic and turbulent state (see Danaila et al., 1996a, 1997a,b).

Figure 1.1.: (Animation) Numerical simulation of the pairing of vortex rings in the
near field of a round jet. This film was selected for the new edition of
the Multimedia Fluid Mechanics (Homsy, 2008).

For very low Reynolds numbers, the flow field is dominated by the two counter–
rotating helical modes (Fig. 1.2). This change of topology with the Reynolds num-
ber, already reported in experimental studies, was found for the first time by means
of direct numerical simulations (Danaila et al., 1997a).
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Figure 1.2.: Superposition of counter-rotating helical modes in a round jet.

From a mathematical point of view, we had to deal with the very interesting problem
of the degeneracy of the spectrum of the linearized Navier-Stokes equations. More
in detail, writing the Navier-Stokes equations in cylindrical coordinates (r, θ, z) (the
complete form of these equations is given in chapter 3) and linearizing around an
axisymmetric base-flow, we obtain the following operator

∇2
m2 =

1

r

∂

∂r
r
∂

∂r
+

∂2

∂z2
− m2

r2
, (1.1.1)

that depends on the square of the azimuthal wavenumber m. This means that, if an
eigenvalue λ(m2) exists for m 6= 0, there are two linearly independent eigenvectors
Φ±|m| = φ±|m| exp(∓i|m|θ). The result suggests that when the flow is dominated by
a helical mode m 6= 0, its counter-rotating pair is present as well. This is the case
for the round jet dominated by helical modes m = ±1 (Fig. 1.2).

The flow field decomposition (see, for instance Van Dyke, 1975; Carte et al., 1995)
was added to the original code to calculate during the simulation the Fourier compo-
nents of the velocity field for each time period T = 2π/ω of the primary instability:

v −V = ṽ
′
(r, θ, z; t, s)|s=t =

∞∑
n=−∞

cn(., s)einωt, with cn = c−n. (1.1.2)

In the previous decomposition, the new time scale s will capture the slow evolution
of the amplitude of the rapid oscillations of period T . An interesting idea (see also
Dušek et al., 1994; Carte et al., 1995) was to replace the original Navier-Stokes
equations by a set of evolution equations for the Fourier coefficients cn (depending
on s and space variables). In the round jet case, the fluctuating field corresponding
to the most unstable mode was:

ṽ
′
(r, θ, z; t, s) =

[
A+(s)φ+(r, z) e−iθ + A−(s)φ−(r, z) eiθ

]
eiωt. (1.1.3)
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Using the periodicity in the azimuthal θ direction, we finally calculated the fluctu-
ating field by a double Fourier decomposition:

v
′
(r, θ, z; t, s) =

∞∑
n=−∞

∞∑
l=−∞

cn,l(r, z, s)e
inωt e−ilθ, with cn,l = c−n,−l. (1.1.4)

The analysis of the evolution of the Fourier coefficients resulted in a weakly nonlinear
theory for the interaction of the two counter–rotating helical modes (m = ±1). The
final Landau-type model (Danaila et al., 1998a,b) described the evolution of the
complex amplitudes of the two helical modes:

∂Ã+

∂s
= γÃ+ − Ã+(C̃|Ã+|2 + D̃|Ã−|2)− Ã+(ã|Ã+|4 + b̃|Ã+|2|Ã−|2 + c̃|Ã−|4),

∂Ã−
∂s

= γÃ− − Ã−(C̃|Ã−|2 + D̃|Ã+|2)− Ã−(ã|Ã−|4 + b̃|Ã−|2|Ã+|2 + c̃|Ã+|4).

(1.1.5)
The coefficients of the model could be expressed from Navier-Stokes equations. For
the round jet instabilities dominated by helical modes, the theoretical predictions
were very well supported by the results of direct numerical simulations (Fig. 1.3).
It is interesting to note that the theoretical framework based on the competition of
two unstable modes arising as a result of a degenerated linear spectrum is of a more
general interest and could be applied for the study of different flows (e.g. the wake
behind a sphere).

Figure 1.3.: Round jet flow dominated by the two counter-rotating helical modes
m = ±1. Theoretical reconstruction of the azimuthal velocity signal and
comparison with the signal provided by the direct numerical simulation.
The oscillation period being very small, only the envelope of the signal
is visible.
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1.2. Finite differences method for Navier-Stokes
equations in spherical coordinates: bifurcating,
blooming and flapping jets

The analysis developed during my PhD was used in a research project on a partic-
ular class of jets: bifurcating and blooming jets. Bifurcating jets, which split into
two distinct branches, are of particular interest for many practical applications, due
to their increased spreading angle and mixing properties. Such flows were experi-
mentally obtained (Lee and Reynolds, 1985; Parekh et al., 1988) by mechanically
forcing the flow at the jet nozzle. Figure 1.4 shows the spectacular evolution of what
was called a blooming jet. A recent review (Reynolds et al., 2003) describes in detail
these experiments.

Figure 1.4.: Blooming jet obtained experimentally by Lee and Reynolds (1985).

This research activity was initiated during the Summer Program 1998 in Center for
Turbulence Research, Stanford University. This was also the starting point of a nice
collaboration with B.J. Boersma from TU Delft, The Netherlands. He provided
a 3D incompressible Navier-Stokes numerical code using spherical coordinates. I
continue to use this finite differences code and adapt it to new configurations (see
also chapter 3).

The idea to use spherical coordinates for the round jet simulations is quite original.
The computational domain (Fig. 1.5) results from the intersection between the
shell defined by two surfaces (r = const) and the cone starting from the center of
the sphere with a fixed opening angle. Such a discretization is able to follow the
streamwise spreading of the jet and allows a well-balanced resolution of the flow
field with a reasonable number of grid points. Besides, the code, using an explicit
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integration scheme, is parallel and make possible direct numerical simulation of
turbulent jets also.

Figure 1.5.: Finite differences method in spherical coordinates. Computational do-
main and examples of forcing applied at the jet nozzle to control the jet
flow.

Starting from a linear stability analysis, we have established different analytical
forms for the disturbances (Fig. 1.5) that have to be applied at the jet nozzle in
order to obtain bifurcating jets. The model is based on the superposition of the
most unstable modes in the jet (the axisymmetric m = 0 and the counter-rotating
helical modes m = ±1):

Vz = 1 +
∑
m0,±1

Amsin (2πfmt−mθc + Φm)

(
2rc
D

)|m|
. (1.2.1)

The frequencies for individual modes came from linear stability analysis. With
this model, we could numerically reproduce the spectacular evolution (Fig. 1.6)
observed experimentally for such jets (Parekh et al., 1988). New forcing forms
(flapping excitation), not explored experimentally, were proved to trigger bifurcating
jets (Danaila and Boersma, 1998, 2000).

The optimization of the parameters defining the forcing (1.2.1) was studied in Hilgers
and Boersma (2001). It should be noted that the investigation of bifurcating jets is
still topical – see the recent review of Reynolds et al., 2003 and new experiments of
Suzuki et al., 2004. Besides, Navier-Stokes numerical simulation of blooming jets are
not, to my knowledge, available in the open literature – this is a nice computational
case that I intend to tackle one day!
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Figure 1.6.: Bifurcating (left) and flapping (right) jets obtained numerically. A sim-
ilar image from Danaila and Boersma (1998) was used as illustration in
the book by Durbin and Pettersson Reif (2000).
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2. Direct and large eddy simulations
of internal combustion engine
flows

General presentation

This activity started in 1998 with my post-doctoral research in Institut Français
du Pétrole (IFP) and continued several years by concluding with IFP two research
contracts on numerical simulations of flows developing in internal combustion en-
gines. I have also co-advised in this framework a post-doc (O. El Ganaoui) and a
master-degree (M. Ballestra) research activities taking place at IFP.

I present in this chapter only the numerical tools developed for the compressible
Navier-Stokes equations. In particular, I developed and implemented in an IFP
code a fictitious domain method allowing the simulation of obstacles or moving
walls. The method based on an immersed boundary methodology was tested on
academic cases, as the simulation of the flow in a compression squared machine
(Danaila and Baritaud, 1999; Danaila, 2001), and the interaction of vortex dipoles
with obstacles (Danaila, 2004). New vortex structure will be thus introduced: the
tumbling vortex and the vortex dipole.

The collaboration with IFP researchers also gave me the opportunity to work on
more industrial topics, as modeling and simulating real injection conditions in an
engine (El Ganaoui et al., 2005), and the numerical evaluation of the behaviour of
industrial codes, as AVBP and IFP-C3D on well defined academic cases (Danaila
and Benteboula, 2004).

In connection with this activity I have also developed a new numerical code for
the incompressible Navier-Stokes equations in cylindrical coordinates – this will be
presented in chapter 3.

Key words: finite differences, compact schemes, compressible Navier-Stokes
equations, immersed boundary, body force, internal combustion
engines, vortex dipole.
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2.1. Immersed boundary and finite differences
methods for compressible Navier-Stokes
equations

Numerical simulations of industrial flows
must usually cope with complex geome-
tries. Moving boundaries and multi-body
geometries are other factors increasing
the complexity of the numerical method.
Currently, the most widely used method
for simulating industrial configurations in-
volves unstructured mesh techniques (see
figure/animation 2.1). This approach is
very powerful for arbitrarily complex ge-
ometries, but encounters some difficul-
ties when dealing with moving boundaries.
Global or local remeshing that preserves
boundaries and avoids mesh skewness is
necessary, and therefore, increased com-
puter resources are required. The struc-
tured mesh approach can use multi-block
domains to simulate complex geometries.
Local body-fitted curvilinear coordinates
are used to reproduce the shape of indi-
vidual components of the geometry.

Figure 2.1.: (Animation) Mesh for the
industrial computation of
engine flows (courtesy of
J. Hélie, Continental Auto-
motive France).

Moving bodies can be simulated by mesh embedding techniques, as Chimera (see Ste-
ger et al., 1983) or FAME (flexible mesh embedding techniques) (see Albone, 1992).
The mesh associated to the body moves with it, while the background mesh remains
unchanged. Interpolation on the overlapping meshes and storage of the curvilinear
metrics for each block are the main drawbacks of the method. The method is very
time consuming since the efficiency of the basic flow solver is dramatically reduced.

A third possibility consists in using a completely Cartesian fixed mesh and ficti-
tious domain techniques. Among these methods, the immersed boundary approach,
introduced by C. S. Peskin in his PhD in 1972 to simulate the blood flow in the
human heart (see also ?), has recently been regaining popularity. Several versions
of the method for different applications have been published (for a recent review,
see Mittal and Iaccarino, 2005).
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The general idea of the method is very simple: the solid bodies are immersed in
the computational domain and mimicked by the forces of pressure and shear that
exist along the body surface. The initial solver can thus be used on the entire
computational domain, that keeps a simple global shape embedding complicated or
moving bodies. The question of how modifying the initial evolution equations is
answered differently in the numerous versions of the method.

I have used a particular method, called the body-force method, which explicitly
prescribes the force acting on the fluid flow due to the presence of the solid body.
Suitable volume forces (f) are numerically introduced as source terms in the Navier-
Stokes equations. These forces are such calculated as to yield a controlled value
Vb of the velocity on the surface of the mimicked solid body (Vb 6= 0 for moving
bodies). The volume force field acts only inside the body and can be prescribed in
several ways (see Saiki and Biringen, 1996; Angot et al., 1999).

I have adapted the body-force method proposed by Mohd-Yosuf (1997) for incom-
pressible flows to the numerical simulation of compressible flows. The method was
also implemented in the NTMIX solver developed in IFP. I present in the following
the main ideas of the approach, since it can be easily implemented in any Navier-
Stokes solver using an explicit time-integration scheme.

The compressible Navier-Stokes equations, written in their general form:

∂

∂t

 ρ
ρ ·V
ρe

+ div

 ρ ·V
ρ ·V⊗V + p · ~~I
ρe ·V + p ·V

 =

 0
f

f ·V

+ div

 0
~~τ

~~τ ·V− q

 ,

(2.1.1)
include a volume source term f, which is generally derived from a potential (e.g.
gravity). The idea of the body-force method is to impose such an external force
field to mimic the presence of solid bodies. The force field will be thus function of
time and space and will act only on the cells corresponding to the modeled body.
The procedure introduced by Mohd-Yosuf (1997) uses a discrete time-derivation of
the forcing to fix the velocity at a desired value. We apply this technique only for the
momentum conservation equations. For a generic Runge-Kutta time advancement
scheme, one can write the discretized Navier-Stokes equations as:

Y(tn + α∆t) = Y(tn) + β∆t [RHS(tn) + F(tn)] , Y = ρV, (2.1.2)

where RHS contains the non-linear terms, pressure and viscous terms. If the value
Yb = ρVb have to be imposed at the time instant tn + α∆t, the body force vector
will be calculated as:

F(tn) =
Yb(tn + α∆t)−Y(tn)

β∆t
−RHS(tn). (2.1.3)

For the compressible formulation, the work of the external force field is added as a
source term f ·Vb in the energy conservation equation (2.1.1).
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RK step time Compute
0 tn initialize

Y
′
= Y n + 1

4
∆tRHSn

1 tn + 1
4
∆t ∆tF(tn + 1

4
∆t) = −1

4
∆tRHSn +

[
Yb(tn + 1

4
∆t)− Y n

]
Y

′
= Y

′
+ ∆tF(tn + 1

4
∆t)

Y
′′

= Y n + 8
15

∆tRHSn

2 tn + 8
15

∆t ∆tF(tn + 8
15

∆t) = − 8
15

∆tRHSn +
[
Yb(tn + 8

15
∆t)− Y n

]
Y

′′
= Y

′′
+ ∆tF(tn + 8

15
∆t)

Y iv = Y
′
+ 5

12
∆tRHS

′′

3 tn + 2
3
∆t ∆tF(tn + 2

3
∆t) = − 5

12
∆tRHS

′′
+
[
Yb(tn + 2

3
∆t)− Y ′]

Y iv = Y iv + ∆tF(tn + 2
3
∆t)

Y n+1 = Y
′
+ 3

4
∆tRHSiv

4 tn + ∆t ∆tF(tn + ∆t) = −3
4
∆tRHSiv +

[
Yb(tn + ∆t)− Y ′]

Y n+1 = Y n+1 + ∆tF(tn + ∆t)

Table 2.1.: Intermediate steps for low-storage forth-order Runge Kutta method when
the body-force method is applied. Time advancement from tn to tn+1 =
tn + ∆t. The RHS term is evaluated using the conservative variables:
RHS∗ = RHS(Y ∗).

The numerical algorithm is summarized in Table 2.1. Some remarks on the imple-
mentation of the method are in order:

• The implementation of the method in fully explicit solvers is straightforward.
Nevertheless, as shown in table 2.1 for the Runge-Kutta method, the algorithm
depends on the time-integration method. The main computational features
of the original code (vectorization or parallel solver) are not affected by the
method and the additional computational time is negligible.

• The forcing term introduces discontinuities at the interface between the sim-
ulated flow and the immersed bodies. When high order methods are used for
the spatial discretization, this could trigger unrealistic spatial oscillations (see
also Saiki and Biringen, 1996). This is the case of the NTMIX code using sixth
order compact finite differences schemes (see also chapter 5 for the description
of compact schemes). The most natural way to remove these short-wavelength
oscillations was to apply a compact low-pass filter. The sixth-order compact
filter (Lele, 1992) was chosen for its lower value of the cut-off wavenumber
(only 2% of the flow energy is removed by the filter).

• There exists a flow inside the immersed bodies, which, of course, is not realistic,
but it can destabilize the numerical scheme. Interpolation procedures to avoid
this phenomenon are necessary at the flow-body interfaces.
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2.1.1. Simulation of the tumbling vortex motion

The first application of the implemented body-force method was the simulation of
the flow developing in a squared piston compression machine used at IMFT (Insti-
tut de Mécanique des Fluides de Toulouse) to study the tumbling vortex motion
(Maurel et al., 2001). This typical motion is generated during the intake phase
in combustion chambers of spark ignition engines and is characterized by a large
scale rotational flow, with the rotation axis perpendicular to the cylinder axis. The
large tumbling vortex breaks-up during the compression phase, generating turbulent
small scales. Figure 2.2 shows the computational 2D configuration, with a virtual
piston moving vertically following a trigonometric law. The original boundary con-
ditions using characteristics analysis of the 1D linearized Navier-Stokes equations
(NSCBC method of Poinsot and Lele, 1992) were modified in order to model inflow
and outflow conditions through the same boundary. The temporal evolution of the
tumbling flow is illustrated by instantaneous velocity field in the animation 2.3.

X

Y
Ypmax

r = L/(L-Ypmax)

St = f L/a0=1 / T

(L, a0, L/a0 )

Figure 2.2.: 2D sketch of the
squared piston
compression
machine. Figure 2.3.: (Animation) Time evolution of ve-

locity vectors during an admission-
compression cycle (simulation using an
immersed body method).

The method was easily extended to simulate the equivalent three-dimensional con-
figuration. The observed tumbling motion was different, showing the break-up of
the tumbling vortex in small vortices, as reported in experimental studies. More
details on these simulations are included in an IFP internal report (Danaila, 2001).
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2.1.2. Vortex dipoles interacting with obstacles

I have also used the immersed body method to simulate a more academic flow
resulting from the interaction of a vortex dipole with obstacles of different shapes.
A vortex dipole consists of a pair of opposite-sign vortices, which move together by
self induction. Such couples of vortices are encountered in many areas of practical
interest (meteorological and coastal flows, trailing vortices from aircrafts, swirled
injection in stratified charge engines). Since the interaction of vortex dipoles with
walls is an interesting and severe validation test for numerical solvers, I present in the
following the analytical formulae that can be used to set, by example, a numerical
initial condition.

The structure of a vortex dipole can be analytically described by the Lamb-
Chaplygin model (Lamb, 1932), which corresponds to a steady solution of
the two-dimensional Euler equations. The vorticity ω is concentrated in a
circle of radius a and vanishes outside. The corresponding stream-function
for a dipole moving along the negative y-axis is written in polar coordinates
(r, θ) under the form:

ψin = CJ1(kr) cos θ, r ≤ a,

where J1 is the first order Bessel function and C a constant giving the
intensity of the dipole. The exterior flow is considered as irrotational, with
constant velocity at infinity equal to the translation velocity (Vc) of the
dipole:

ψout = −Vc
(
r − a2

r

)
cos θ, r > a.

Matching the two solutions at the circular boundary r = a requires that
J1(ka) = 0, with a first zero corresponding to ka ≈ 3.83. The translation
velocity is obtained by imposing the continuity of the tangential velocity
vθ = −∂ψ/∂r :

Vc = −C
2
kJ

′

1(ka) ≈ −0.771
C

a
.

Note that the radial velocity is also continuous at r = a (vr = 1/r∂ψ/∂θ =
0). The vorticity is finally given by ω = −∆ψ:

ωin = k2ψin, ωout = 0.

For a numerical simulation, the velocity field to be imposed is finally:

vr = 1/r∂ψ/∂θ, vθ = −∂ψ/∂r.
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The animations 2.4 show two examples of vortex dipole interaction with obstacles
modeled (gray patches) by the immersed body method. The velocity induced by
the vortices generates at the walls thin boundary layers that roll-up to form new
dipoles. The complex interaction between different dipoles was carefully investi-
gated in Danaila (2004). This study permitted to document new cases of vortex
dipole interactions with walls (for the interaction with infinite walls, see Orlandi
and Verzicco, 1993).

Figure 2.4.: (Animations) Vortex dipole interacting with obstacles modeled (gray
patches) with an immersed boundary method. Vorticity field evolution.

2.2. Evaluation of industrial codes and modelling
realistic engine injection

The collaborations with IFP also gave me the opportunity to tackle more industrial
problems, as the evaluation of industrial codes (Danaila and Benteboula, 2004) and
the modeling of real injection in internal combustion engines (El Ganaoui et al.,
2005). Even thought this research is time consuming and not always considered
from an academical point of view, I have the intimate conviction that analyzing real
industrial problems could be very useful for a researcher in developing new numerical
approaches.

In a technical report (Danaila and Benteboula, 2004) I test the industrial code AVBP
on the academic case of the gas-gas injection leading to the formation of a vortex
ring. AVBP is a recent example of an academic code (Schönfeld and Rudgyardt,
1999) that became in ten years a largely used industrial code. Initially developed
at CERFACS1, AVBP is nowadays used by a large team including 60 academic and
industrial researchers.

1Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse.
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I was interested in evaluating the behavior of the numerical schemes implemented
in AVBP for the resolution of the compressible Navier-Stokes equations. The solver
is based on a fully explicit schemes using either a Runge-Kutta or a Lax-Wendroff
method. Cell-vertex finite volumes on structured or unstructured meshes are used for
the space discretization. Third-order (in space and time) Taylor Galerkin schemes
are also available in the code. Characteristics (NSCBC method of Poinsot and
Lele, 1992) treatment is used for the boundary conditions. Several subgrid-scale
models are available for large eddy simulations (LES) of turbulent flows. The code
is announced with impressive performances on MPI parallel computers, with a speed-
up of 4078 on 4096 processors (parallel efficiency of 99.5%, http://www.cerfacs.
fr/cfd/parallel.php#efficiency). I have installed the code on the Linux cluster
of our laboratory, and generally used four processors for the computations.

The considered test case is the gas injection into a quiescent surrounding. The flow
is dominated by the vortex ring that rolls-up at the top of the injected jet – this
flow will be analyzed in detail in chapter 3. Figure 2.6 shows the propagation of the
vortex ring in the cylindrical domain displayed on Fig. 2.5.

Figure 2.5.: Vortex ring simu-
lation with AVBP:
3D computational
domain.

Figure 2.6.: Vortex ring simulation with AVBP:
injection of CH4 in air (2D cuts).
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The results obtained using a 3D structured mesh (Fig. 2.5) and the Lax–Wendroff
integration method were compared to the results given by my code JETLES (de-
scribed in chapter 3) that solves incompressible Navier-Stokes equations in cylin-
drical coordinates. For low injection velocities (Mach number M = 0.4), the flow
field computed with AVBP is distorted by the presence of pressure (acoustic) waves.
However, AVBP accurately predicts important flow quantities, as the vortex ring
trajectory and jet penetration length. On the other side, the restrictions on the
time step makes this simple 3D computation relatively expensive, even when four
or eight processors are used.

In order to reduce the computational (CPU) time, I set up an axisymmetric calcula-
tion, which is rarely employed with AVBP. The results are similar to those obtained
in the 3D simulation, with an important reduction of the CPU time by a factor of
70. Pressure waves are not visible in the axisymmetric computation if the Mach
number of the flow is diminished: for M < 0.04 the AVBP and JETLES results are
identical for this case.

It is important to mention that this AVBP set-up was also used as a verification tool
during the development of the low-Mach version of the JETLES code. Preliminary
calculations of variable density vortex rings (see section 3.2) were validated against
the results generated with AVBP (see Fig. 2.6 for an example of variable density
gas-gas injection).

A second part of this applied research activity considered the analysis of real in-
jection conditions, experimentally studied at IFP. This was the main topic of the
post-doc research of O. El Ganaoui. An important effort was devoted to the accurate
modelling of experimental data in order to provide numerical settings for a numerical
simulation of the gas-gas jet generated by a single-hole diesel-like injector. The sim-
ulation used the IFP-C3D code, based on Reynolds averaged Navier-Stokes (RANS)
equations. Hexahedral finite volume unstructured grids are used for the spatial dis-
cretization. The code includes several numerical algorithms like time splitting, the
SIMPLE iterative method, explicit subcycle convection. Models like the k − ε are
used for turbulence description and arbitrary Lagrangian Eulerian (ALE) method
to compute flows with moving grids.

The numerical results were progressively refined by considering both subsonic and
supersonic models for inflow boundary conditions and by evaluating the influence
of numerical parameters on the results (mesh sensitivity, numerical dissipation, tur-
bulence model). The final axisymmetric computational set-up (Fig. 2.7) allowed
to obtain the best agreement between experimental and numerical jet penetrations,
head jet shapes and fuel density profiles (Fig. 2.8). The results are described in
El Ganaoui et al. (2005).

It should be noted that the considered case (high pressure direct injection) is not
easy to simulate and it represents a severe test case for industrial codes.
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Figure 2.7.: Simulation using the IFP-C3D code (El Ganaoui et al., 2005). Axisym-
metric and 2D computational domains.

Figure 2.8.: Simulation using the IFP-C3D code (El Ganaoui et al., 2005). Evo-
lution of the fuel jet: comparison between axisymmetric computation,
experimental visualization and 2D computation.
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3. Finite differences method for the
simulation of incompressible fluid
flows in cylindrical coordinates:
the JETLES code

General presentation

This is the main research activity that I have been developing in the field of numerical
simulation of classical fluid flows. After my PhD, I have decided to build my own
Navier-Stokes code for the simulation of low-speed round jets. I have naturally
chosen to develop an incompressible Navier-Stokes solver in cylindrical coordinates.
The new code JETLES (JET Large Eddy Simulations) allows numerical simulations
of 3D or axisymmetric flows evolving in time and space in cylindrical domains (round
jets, vortex rings, etc.). The code uses ideas from the homonymous temporal code
written by Paolo Orlandi (University of Rome); I acknowledge here his useful input
during the initial development of this code. A detailed description of the numerical
method for the temporal simulation (i. e. with periodic boundary condition in the
streamwise direction) is now available in the book of Orlandi (1999).

Finite differences schemes and time-integration methods that are appropriate for
the formulation of the equations in cylindrical coordinates were studied and pro-
gressively integrated in the code. Important theoretical issues related to this for-
mulation (treatment of the singularity introduced by the axis, boundary conditions,
Poisson solver) were also addressed. From the implementation point of view, the
code has been optimized to be effective on individual workstations. Using a single
processor, the computational time for high resolution simulations is considerably
reduced, compared to industrial or commercial codes. Written in Fortran, the code
has a simple architecture permitting to be rapidly understood by students with re-
duced programming experience. The development of the code was also part of the
research of my students, M. Ballestra (MSc) and S. Benteboula (PhD).

The JETLES code was used to simulate academic flows related to industrial appli-
cations, such as the fuel injection in internal combustion engines. This applicative
part was partially supported by the Institut Français du Pétrole (IFP) and, re-
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cently, by Continental Automotive France. The code, described in the report [R1],
continuously evolves towards new applications presented in the next chapter.

This chapter describes in great detail the numerical method used for the incom-
pressible Navier-Stokes equations in cylindrical coordinates. The extension of the
code to deal with low-Mach number flows (PhD of S. Benteboula) is also briefly
presented. The main obtained results on the analysis of the vortex ring flow are
finally reported.

Key words: finite differences, staggered grids, incompressible Navier-Stokes
equations, low-Mach approximation, cylindrical coordinates,
round jet, vortex ring.

Publications :

articles : [A1, A2, A4, A5, A12],
reports : [R2, R3],
JETLES handbook : [R1],
numerical codes : [Code3].

Collaborations :
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3.1. Numerical resolution of the incompressible
Navier-Stokes equations

3.1.1. Navier-Stokes equations in cylindrical coordinates

The incompressible Navier-Stokes equations, written in cylindrical coordinates (r, θ, z)
are discretized by a finite differences method described in Orlandi (1999). The sin-
gularity introduced by the axis r = 0 is avoided by using a formulation in primitive
variables (qθ = vθ, qr = vr·r, qz = vz, p) and a staggered grid.

Navier-Stokes equations in cylindrical coordinates are:
• the mass conservation equation:

1

r

(
∂qθ
∂θ

+
∂qr
∂r

+ r
∂qz
∂z

)
= 0 (3.1.1)

• the momentum conservation equations:
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with substantial derivatives:
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(3.1.3)

The Reynolds number is a dimensionless parameter of the flow, defined as
Re = V L/ν, where ν is the kinematic viscosity of the flow, V a characteristic
velocity scale and L a length scale of the flow.
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3.1.2. Time integration by a fractional step method

Momentum equations are advanced in time using a fractional-step method (Kim
and Moin, 1985), based on a combination of a low-storage third-order Runge–Kutta
scheme for the convective terms and a semi-implict Crank–Nicolson scheme for the
viscous terms. For each substep of the integration scheme, a Poisson pressure cor-
rection equation is solved to satisfy the continuity equation.

More in detail, the equations (3.1.1) and (3.1.2) are solved by a projection method,
also called fractional step method. This method was proposed by Rai and Moin
(1991) and modified by Verzicco and Orlandi (1996). The time integration is based
on a three-steps Runge–Kutta method: for each substep l = 1, 2, 3:

(A) a non-solenoidal velocity field (q̂l) is computed from the momentum equations
with an explicit treatment of convective and pressure gradient terms and semi-
implicit treatment (Crank–Nicolson scheme) of viscous terms: the discretized
equations are written in the compact form as:

q̂lc − qlc
∆t

=
[
γlHl

c + ρlHl−1
c − αlGcpl +

αl
2
Ac
(
q̂lc + qlc

)]
, pour c = θ, r, z,

(3.1.4)
whereH contains explicit terms (convective and cross-derivatives viscous terms)
and A the remaining viscous terms.

The time integration coefficients are analytically derived in order to obtain a
second order accuracy in time. Rai and Moin (1991) obtained the values for
(αl, γl, ρl) for a 3-step second order scheme. In Danaila (1999–2008), I derive
a family of Runge–Kutta methods for which the second order is obtained in
two steps only. These latter schemes bring an important computational time
reduction. Note that it is important to impose in these integration schemes
that ρ1 = 0 in order to make the method self starting.

The discretized equations (3.1.4) are solved by an approximate factorization
procedure (ADI). The resulting tridiagonal linear systems are solved by an
optimized LU method.

(B) the field (q̂l) is corrected to satisfy the continuity equation (3.1.1).

The correction equation:

ql+1
c − q̂lc = −αl ∆t GcΦl+, c = θ, r, z, (3.1.5)

leads to a Poisson equation if substituted in the continuity equation:

LΦl+1 =
1

αl∆t
D~̂q

l
. (3.1.6)
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The gradient, divergence and Laplacian operators are defined in the classical
way by:
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It is important to note that the boundary conditions needed in (3.1.6) have to
be compatible, via the correction equation (3.1.5), with the boundary condi-
tions imposed to the non-solenoidal field.

The Poisson equation (3.1.6) is solved using a FFT (Fast Fourier Transform) in
the (naturally periodic) azimuthal direction θ and a cyclic reduction algorithm
for the remaining two-dimensional system. The last step is implemented via a
subroutine from the FISHPACK Fortran library (for details, see Ballestra,
2002).

(C) Once the scalar field Φ computed, the correction equation (3.1.5) is used to
calculate the solenoidal field ql+1

c , with c = θ, r, z. The pressure gradient is
finally updated by:

Gcpl+1 = Gcpl + GcΦl+1 − αl ∆t

2
Ac
(
GcΦl+1

)
. (3.1.7)

The steps (A)-(B)-(C) are repeated for each substep of the Runge–Kutta
method.

3.1.3. Space discretization: finite differences on staggered grids

The computational domain is cylindrical (Fig. 3.1), defined by its maximum length
(Lz) and radius Rmax. The grid points are distributed uniformly in the azimuthal
(θ) and axial (z) directions; the uniform grid in θ direction is required by the use
of a FFT in the Poisson solver. In the radial direction r, the grid is stretched
using different coordinate transformations based on hyperbolic tangent functions
(for details, see Ballestra, 2002).

Spatial derivatives are approximated by centered finite differences schemes on a
staggered grid. Velocity fluxes are defined on the cell surfaces (see Fig. 3.1) while
the pressure p and the variable Φ, related to it, are defined at the cell centers. At
r = 0, only qr is defined, and since by definition qr = 0 at this location, no ad-hoc
boundary conditions are required at r = 0. For the stretched grid in the radial
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Figure 3.1.: Computational domain and staggered grids.

direction, we have studied (Ballestra, 2002) different approximations schemes for
the derivatives: the best approximation is given by a numerical evaluation of the
metrics instead of their analytical expressions.

The boundary conditions are adapted to each computational case and recalled in
section 3.3 presenting numerical results. Several issues on the behaviour of different
boundary conditions are discussed in Danaila (1999–2008) and Benteboula (2006).

3.2. Numerical resolution of low-Mach number
Navier-Stokes equations

An existing Navier-Stokes solver for incompressible (constant density) flows can be
easily extended to deal with variable density flows by implementing a low-Mach
number approximation. The Mach number M is defined as the ratio V/a, where
V is the characteristic velocity scale of the flow and a the sound velocity. The
Navier-Stokes equations in the low-Mach approximation keep similar forms as the
incompressible equations, with a supplementary evolution equation for the density
(or temperature). From a practical point of view, this is a considerable advantage
since the projection method described in the previous section can be used. In partic-
ular, the Poisson solver, which is a major part of a numerical code, remains exactly
the same.

Another advantage of the low-Mach formulation is the possibility to simulate vari-
able density flows for low speeds. As we have already seen in section 2.2 of this
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report, using compressible Navier-Stokes solvers to simulate such flows results in
important restrictions on the time step, imposed by the existence of pressure waves
in the flow. The time step goes theoretically to zero when M → 0. The low-
Mach formulation removes this restriction, but is valid only for flows with density
variations due exclusively to temperature gradients. Hopefully, such flows are en-
countered in many areas of practical interest (oceanic flows, combustion, reacting
flows with heat release, etc.)

Mathematical theories of low-Mach number flows are used in an attempt to prove
the convergence of the compressible formulation to the incompressible one when the
Mach number tends to zero. A review of such mathematical theories is given in the
Special issue on low Mach number flows, M2AN, Vol. 39, 2005. From the numerical
implementation point of view, several formulations are used in the literature (see,
for instance, Knio et al., 2000; Majda and Sethian, 1985; Cook and Riley, 1996),
depending on the flow and the numerical scheme.

The low-Mach formulation implemented in cylindrical coordinates in the JETLES
code is described in great detail in the PhD Thesis of my student S. Benteboula. I
give in the following only the main ideas for deriving the governing equations and for
building a low-Mach Navier-Stokes solver. The results on the evolution of a variable
density vortex ring are presented in the next section (3.3) of this chapter.

3.2.1. Low-Mach number approximation

The low-Mach formulation is obtained from the compressible Navier-Stokes equation
by introducing a power series expansion of primitive variables. The small parameter
will obviously depend on the Mach number M . We have used a methodology with
a single pressure scale that eliminates the acoustic waves from the flow field. The
small parameter in this case is chosen as ε = γM2. The power series expansions of
the density ρ, velocity v, pressure p et volume energy e become:

ρ = ρ0 + ερ1 +O(ε2), (3.2.1)

v = v0 + εv1 +O(ε2), (3.2.2)

T = T0 + εT1 +O(ε2), (3.2.3)

p = p0 + εp1 +O(ε2), (3.2.4)

ρe =
p0

γ − 1
+ ε

p1

γ − 1
+ ερ0

v0
2

2
+O(ε2). (3.2.5)

Substituting these expansions in the dimensionless compressible Navier-Stokes equa-
tions (see, for example, the equation 2.1.1) and after separation of terms of the same
order, several simplifications are obtained. The first comes from the momentum
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equation and states that the hydrodynamic pressure p0 does not depend on spatial
variables (∇p0 = 0). If open flows are considered, as in our case, it is reasonable
to suppose that p0 is constant in time also. In other terms, the fluctuations of the
dynamical pressure p1 are negligible compared to the value of p0. A second sim-
plification is obtained for the energy equation, which can be combined to the mass
conservation equation to get (see also Cook and Riley, 1996) an evolution equation
for the density ρ:

∂ρ0

∂t
= −v0 · ∇ρ0 −

1

T0

[
1

RePr
∇ · (µ∇T0)

]
, with the state law p0 = ρ0T0.

(3.2.6)
The momentum equations have the same form as the incompressible equations:

∂ρ0v0

∂t
+∇ · (ρ0 v0 ⊗ v0) = −∇p1 +

1

Re
∇ · ~~τ0, (3.2.7)

τ0 = −2

3
µ(∇v0) ·

~~I + µ(∇v0 +∇tv0),

which suggests to use the same numerical algorithms to solve these equations. The
only technical difficulty is introduced by the fact that the viscosity (µ) is now vari-
able, depending on the temperature T following the Sutherland law: µ = T b, with
b = 0.75. This means that the coefficients of the matrices of the linear systems have
to be updated at each time step, resulting in an increase of the computational time.

The lengthy form of the final equations written in cylindrical coordinates is presented
in Benteboula (2006) and will not be given here. I summarize in exchange, some
ideas on the numerical algorithm developed for the implementation of the low-Mach
approximation:

• The cylindrical computational domain and the staggered grid (Fig. 3.1) remain
unchanged; the new variable ρ is computed at cell centers.

• The evolution of the density is governed by the convection-diffusion equation
(3.2.6). Since large density gradients have to be captured by the numerical scheme
without introducing oscillations, we have used a TVD (Total Variation Diminishing)
scheme.
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The TVD scheme developed by Vreugenhil and Koren (1993) for computing
combustion flows allows to keep the density value inside the prescribed
range (usually 0 < ρ ≤ 1). The general form of the scheme, applied for the
treatment of convective terms, is:

∂

∂x
(ρv) =

Fi+ 1
2
−Fi− 1

2

δx
, (3.2.8)

where

• for vi+ 1
2
> 0 the flux at the interface i+ 1

2
is computed as:

Fi+ 1
2

=

[
ρi +

1

2
Φ(ci+ 1

2
)(ρi − ρi−1)

]
vi+ 1

2
,

ci+ 1
2

=
ρi+1 − ρi + ε

ρi − ρi−1 + ε
,

(3.2.9)

• while for vi+ 1
2
< 0 the same flux becomes:

Fi+ 1
2

=

[
ρi+1 +

1

2
Φ(ci+ 1

2
)(ρi+1 − ρi+2)

]
vi+ 1

2
,

ci+ 1
2

=
ρi − ρi+1 + ε

ρi+1 − ρi+2 + ε
,

(3.2.10)

with ε = 10−11 and the limiter

Φ(c) = max

[
0,min

(
2c,min

(
1

3
+

2

3
c+ 2

))]
. (3.2.11)

• For the time integration of the momentum equations (3.2.7) the same projection
method as for the incompressible equations can be used. The Poisson correction
equation has now a supplementary source term:

LΦl+1 =
1

αl∆t

[
D~̂q

l
+

(
∂ρ

∂t

)n+1
]
, (3.2.12)

but the elliptic solver remains strictly the same (FFT+cyclic reduction), which is a
real advantage for the implementation.
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• Several numerical schemes have been studied in Benteboula (2006):
1- A fully explicit Adams-Bashforth scheme (second order in time).
2- A predictor-corrector Adams-Bashforth/Adams-Moulton scheme (second order in
time).
3- An explicit (first order) Euler scheme for the density equation and a semi-implicit
(second order) Adams-Bashforth/Crank-Nicolson scheme for the momentum equa-
tions.
4- An explicit (first order) Euler scheme for the density equation and an explicit
(second order) Adams-Bashforth scheme for the momentum equations.
Intensive numerical tests showed that the fourth scheme displays the best stability
characteristics and the lowest computational time for the same overall convergence
rate. This scheme was proved effective in simulating flow with very large density
gradients; some examples from Benteboula (2006) are presented in the next sec-
tion.

3.3. Numerical simulation of the vortex ring flow

3.3.1. Vortex rings

The fundamental and practical interest of the scientific community in vortex rings
has generated a large volume of literature for at least a hundred years. Theoreti-
cal analysis of this flow can be found in classical textbooks (e. g. Saffman, 1992;
Batchelor, 1988) or several review papers (Shariff and Leonard, 1992). The com-
pact toroidal structure of vortex rings is encountered in many real flows. The most
common is the smoke ring that skilled smokers are able to form by controlling the
flow at their lips. Vortex rings also appear when the blood enters the left ventricle
of the heart, during volcano eruptions (Fig. 3.2), in the wake of flying of swimming
animals, etc.

I was interested in such flows because of more practical reasons, related to the
presence of vortex rings in the flow developing in internal combustion engines during
the injection phase (see also chapter 2). The fuel charge in direct-injection spark-
ignition internal combustion engine is directly injected in the combustion chamber by
an injector delivering a jet of fuel droplets (or spray) (see Fig. 3.3). An axisymmetric
vortex forms at the top of the spray and dominates the flow determining the main
characteristics of the flow (as the penetration length) important for engine design.
The purpose of this processus is to generate an enhanced mixing in the vicinity of
the spark plug. Industrial codes have to deal with a lot of parameters of the real in-
cylinder flow and generally under-predicts the penetration length of the spray. This
is illustrated in Fig. 3.3 showing a calculation with the KIVA-MB code, compared
to experimental data.
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Figure 3.2.: Smoke vortex ring formed during the eruption of Etna volcano
(http://www.stromboli.net).

Figure 3.3.: Sketch of a direct-injection spark-ignition combustion engine. (a) Sim-
ulation of a two-phase flow (spray) with the KIVA-MB code (b) Corre-
sponding experience performed at IFP. From Ballestra (2002).

3.3.2. Evolution of the constant density vortex ring

Laminar vortex rings are usually generated in laboratory by a piston/cylinder ar-
rangement sketched in Fig. 3.4. A column of fluid is pushed by a piston into a
quiescent surrounding. The flow is visualized by injecting a passive marker (dye in
water and smoke in air). The boundary layer at the edge of the cylinder separates
and rolls-up into a vortex ring. This is the formation phase of the vortex ring.

After the piston stops, the vortex ring continues to entrain surrounding irrotational
fluid and a part of its wake. At later times, a vortex bubble is formed, also called
vortex atmosphere. Inside the vortex atmosphere, the fluid circulates over closed

35



streamlines. The vortex ring has the shape of an oblate ellipsoid of revolution, with
the vorticity concentrated in the vortex core ∂Ωc. This is the postformation phase.

c
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D

δΩc

zWp

θ

δΩb

O AB

Figure 3.4.: Sketch of the formation and postformation phases of a vortex ring. Ex-
perimental visualizations by Gharib et al. (1998).

For long duration injections, Kelvin–Helmholtz instabilities develop in the wake of
the vortex ring, as displayed in Fig. 3.4. The animation 3.5 shows complex vortex
interactions in an annular jet flow submitted to controlled perturbations at the
nozzle.

In a recent paper (Danaila and Hélie, 2008) we study the postformation evolution of
a laminar vortex ring by means of high resolution axisymmetric simulations (301×
1251 grid points). The vortex topology is described by calculating the embedded
domains of the vortex inner core, vortex core and vortex bubble. The structure of
the vortex ring is found to be self-similar during the entire postformation phase.
Numerical simulations also allowed to correct the apparent discrepancy between
different experimental (Dabiri and Gharib, 2004) and theoretical studies reporting
power-laws for the mathematical description of the evolution of translation velocity
and integrals of motion (circulation, impulse and energy).

The practical interest of these computations was to evaluate if ideal vortex models
are pertinent in describing realistic vortex rings. The computationally generated
vortex rings are matched to the classical Norbury–Fraenkel model and the recent
model proposed by Kaplanski and Rudi. It is proved that these models offer a good
prediction of integral quantities, and a relatively accurate description of the vortex
ring topology (see Fig. 3.6). In exchange, both models underestimate the volume
of fluid carried inside the vortex bubble.
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Figure 3.5.: (Animation) Vortex roll-up and vortex interactions in an annular jet for
a long time injection. Evolution of the passive scalar in an axisymmetric
simulation.

It could be interesting to recall here the ideal vortex model derived by
Kaplanski and Rudi (2005). Their viscous vortex ring model displays more
realistic characteristics, when computing the vortex topology or the vortex
signature (Moffatt, 1988). A vortex from this family is identified by the
ratio τ = Rc/`, where Rc is the radius of the vortex and ` a viscous scale.
The vorticity distribution is Gaussian:

ω = Ω exp

(
−1

2

(
σ2 + η2 + τ 2

))
I1(στ), (3.3.1)

with σ = r/`, η = (z−Zc(t))/` and Zc the axial coordinate of the vortex cen-
ter. Analytical expressions for the circulation Γ, energy E and translation
velocity W are derived from Navier-Stokes by analytical developments us-
ing modified Bessel functions (I) and generalized hypergeometric functions
(2F2):
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(3.3.4)
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Figure 3.6.: Constant density vortex ring. Comparison between numerical results
and ideal vortex ring models. Iso-contours of vorticity (ω), stream
function (ψ) and contours of embedded domains defining the vortex
topology. From Danaila and Hélie (2008).

3.3.3. Evolution of the variable density vortex ring

The structure of the vortex ring changes when the injected flow has different tem-
perature from the surrounding (Fig. 3.7). Simulations with the low-Mach number
version of the JETLES code used as parameter the ratio α = Tj/Ta = ρa/ρj be-
tween the jet temperature Tj and ambiance temperature Ta. A large range of values
(α ∈ [1/10, 10]) was explored in the PhD of Benteboula (2006), with a large variety
of vortex topologies reported. The new vortex dynamics is found to be strongly
influenced by the baroclinic torque.

From a practical point of view, the temperature ratio α affects the quantities of
interest for the engine design: penetration length, vortex circulation, decay of the
fuel concentration along the axis, etc. Figure 3.8 shows a quasi-linear time variation
of the penetration length, with greater slopes for the cold injection. This results was
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Figure 3.7.: Vorticity and temperature maps for different cases of variable density
vortex rings. From Benteboula (2006).

expected, since the cold jet is heavier and propagates faster in a lighter ambiance.
A related phenomenon is the decrease with α of the propagation velocity of the
jet. The flow circulation is also affected: colder is the jet, bigger is the maximum
circulation, as illustrated in Fig. 3.8. This phenomenon was explained by the fact
that for a hot jet, the baroclinic torque is opposed to the roll-up of the vortex ring.

As a last remark, I should emphasize the fact that,when starting this activity, the-
oretical or numerical results on variable vortex rings were not available in the lit-
erature. This was the reason why the first simulations were validated by running
other similar numerical codes. The low-Mach version of the spherical coordinates
code provided by B. J. Boersma (code also presented in section 1.2) was used for this
purpose. The results on the evolution of variable density vortex rings are presented in
Benteboula (2006); Benteboula and Danaila (2007); Danaila and Benteboula (2004);
Benteboula and Danaila (2006).
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Figure 3.8.: Time evolution of the penetration length Zf and circulation Γ for dif-
ferent cases of variable density injection. From Benteboula (2006).
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4. Work in progress and future plans

Future work on the numerical simulation of classical fluids will follow three main
directions:

• numerical and theoretical analysis of ideal vortex models,

• numerical simulations and modeling of the injection velocity profile by studying
the flow in the entry region of a pipe,

• further development of the JETLES code for the simulation of conical injection
flows that are used in recent internal combustion engines.

4.1. Numerical and theoretical analysis of vortex
models

In Danaila and Hélie (2008), we have compared numerical data with the description
of vortex rings by ideal vortex models. The commonly used vortex ring model
is the Norbury–Fraenkel model, based on a numerical study by Norbury (1973).
Only tabulated data are available to describe vortex topology, which makes the use
of this model cumbersome. Besides, the used numerical algorithms are not well
documented and their convergence is not proved. Consequently, I have started to
revisit the numerical work on ideal vortex models.

The mathematical theory of steady, non viscous, vortex ring models considers the
following elliptical nonlinear partial differential equation:

Lψ =
∂2ψ

∂z2
+ r

∂

∂r

(
1

r

∂ψ

∂r

)
=

 −r
2f(ψ), in Ωc

0, in Π\Ω̄c,
(4.1.1)

where Π = {(z, r)|r > 0}. The unknown function ψ is the Stokes stream function of
the flow and Ωc is the domain defining the vortex core (Fig. 4.1). Ωc is the domain
where the vorticity, represented by the function f(ψ), is non zero.
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Figure 4.1.: Structure of a vortex ring and domain definition of the mathematical
problem of steady vortex rings.

The following constraints are also imposed:

• ψ et ∇ψ are continuous on δΩc ;

• ψ = k on δΩc that has to be a streamline,

• the translation velocity W is equal to the free stream velocity at infinity:

ψ +
1

2
Wr2 → 0 for r2 + z2 →∞. (4.1.2)

The difficulties of the global problem come from the unbounded domain Π, asso-
ciated with a lack of compactness theorems, and from the fact that δΩc = Γc is a
free boundary that has to be calculated. Under certain hypotheses, existence and
uniqueness results were obtained by Fraenkel and Berger (1974); Esteban (1983).
For more realistic conditions, only mathematical conjectures were formulated (for a
discussion, see Berestycki et al., 1984).

From a numerical point of view, the idea to use the software FreeFem++ (http:
//www.freefem.org) for this 2D problem came naturally. This free software is
developed in Laboratoire Jacques-Louis Lions by F. Hecht, O. Pironneau and A.
LeHyaric. Some of the finite elements numerical algorithms used in FreeFem++ are
presented in a simplified form in the book [O3].
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FreeFem++ proposes a large variety of triangular finite elements (linear
and quadratic Lagrangian elements, discontinuous P1, Raviart-Thomas el-
ements, etc.) to solve partial differential equations (PDE) in two dimensions
(2D). FreeFem++ is an integrated product with its own high level program-
ming language with a syntax close to mathematical formulations. Among
the features making FreeFem++ an easy-to-use and highly adaptive soft-
ware we recall the advanced automatic mesh generator, mesh adaptation,
problem description by their variational formulations, automatic interpola-
tion of data, color display online, postscript printouts, etc.

The general problem is greatly simplified if the boundary Γb of the vortex bubble is
fixed (Fig. 4.1). As a first step, I have considered elliptic shapes for Γb with different
aspect ratios. The vortex core δΩc is then calculated. The developed numerical
algorithm has faster convergence than other published algorithms (Durst et al.,
1981). Figure 4.2 illustrates a numerical result obtained for the case f(ψ) = Cr,
with C a constant; the fast convergence of the algorithm is also shown.
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Figure 4.2.: Elliptic steady vortex ring. Convergence history of the algorithm and
solutions ψ for different parameters. Simulations with FreeFem++.

The mathematical analysis of this problem will involve collaborations with S. Serfaty
(Professor, UPMC) and N. Le (post-doc,University of Columbia, USA). The ongoing
work concerns the theoretical estimation of critical parameters defining the domain
of existence of non zero solutions for the elliptic vortex problem. These estimations
are currently compared to numerical results.

A practical motivation for this study comes from the experimental investigation of
industrial flows. Figure 4.3 shows PIV (Particle Image Velocimetry) experimental
images of a spray injection. The vortex ring that obviously forms at the top of the
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Figure 4.3.: Experimental PIV velocity field in a conical injection two-phase flow
(spray). Courtesy of J. Hélie, Continental Automotive France.

jet is not visible because of the large density of spray droplets in this region. The
flow inside the spray is not visible and a theoretical reconstruction of the velocity
field would be useful for such diagnostics. Such theoretical reconstruction will be
based on ideal vortex ring models, calculated numerically and theoretically. Similar
problems of (real-time) field reconstruction are encountered in theoretical modeling
of plasmas trapped in a Tokamak reactor (see, for instance Blum et al., 2007).

4.2. Numerical and theoretical analysis of the entry
region of a pipe flow

Numerical simulation of vortex rings presented in section 3.3 used a model for the
imposed velocity profile at the inlet. This model approximates the experimentally
measured mean profiles, but does not take into account the time variation of the
vorticity layer thickness at the nozzle lip. A more realistic simulation would in-
clude in the computational domain the upstream part of the flow that develops in
a cylindrical pipe. This approach is time consuming, since the pipe flow has to be
correctly resolved. An alternative is to develop new models for the inflow profile by
considering the flow developing in the entry region of the pipe. It should be recalled
that this region (Fig. 4.4) has completely different behaviour that the well known
developed (Poiseuille) region of the pipe flow.

From a numerical point of view, the code JETLES can be easily modified to simulate
pipe flows. This work has been already done in collaboration with C. Vadean (PhD
student, University Politehnica of Bucarest, Romania). Preliminary results (Fig.
4.5) were validated against existing numerical data and will be used as a data base
for the theoretical developments.
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Figure 4.4.: Sketch of the laminar flow in a pipe.

Theoretical modeling is not an easy task since unsteady effects dominate the entry
region. Several simplified approaches were proposed in the literature, but analytical
descriptions of the velocity profiles depending on the time t and space (r, z) variables
are not currently available (see Fargie and Martin, 1971; Das and Arakeri, 1998).
This topic will be addressed in a joint research work with S. Danaila (Professor,
University Politehnica of Bucarest, Romania).
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Figure 4.5.: Laminar flow in the entry region of a pipe flow. Iso-contours and profiles
of streamwise velocity Vz. Simulation with JETLES.
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Figure 4.6.: (Animation) Evolution of the vorticity for a conical injection. Simula-
tion with JETLES.

4.3. Numerical simulation of conical injection flows

Further developments of the JETLES code [Code2] will include theoretical analy-
sis (behaviour of high order finite differences, as compact schemes, study of new
boundary conditions) and numerical developments (code optimization, MPI paral-
lelization). This academic code, easy to use and modify, will serve as numerical
laboratory to test numerical analysis theories. By example, the new theories devel-
oped by Sani et al. (2006) and Pironneau and Gresho (2008) on the formulation of
boundary conditions for incompressible flows could be numerically tested with this
code. This could be interesting since the cited theories correct the classical theory
of Gresho and Sani (2000).

A new class of flows will be simulated with JETLES. The conical injection is closer
to real configuration in recent automotive internal combustion engines (see Fig.
figure 4.3). Conical vortex rings with constant or variable density will be analyzed
in collaboration with C. Vadean (PhD student, University Politehnica of Bucarest,
Romania). Preliminary results (see animation 4.6) suggests that new physics is to
be explored in such configurations.
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II

Simulations of superfluids:
Bose-Einstein condensates
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5. Numerical simulations of vortex
configurations in Bose-Einstein
condensates

General presentation

This is a recent research activity that I have started in 2001 after a Workshop
organized by Amandine Aftalion. The main accomplishment of this work is the
development of a numerical code (BETI – Bose-Einstein en Temps Imaginaire) that
propagates in imaginary time the three-dimensional (3D) Gross-Pitaevskii (GP)
equation. The numerically converged states represent critical points of the GP
energy. From a physical point of view, these states are equivalent to stable or meta-
stable equilibrium configurations in a Bose-Einstein condensate (BEC). At the time
when the very first results were obtained with this code, there were only two studies
(Garćıa-Ripoll and Pérez-Garćıa, 2001) (the preprint of Modugno et al., 2003) using
3D simulations to investigate single vortex configurations in BECs. Even at the
present time, there exists few 3D numerical codes (Berloff, 2004; Kasamatsu et al.,
2005) for the study of the physics of BECs.

Since numerical methods that directly minimize the GP energy (Garćıa-Ripoll and
Pérez-Garćıa, 2001; Modugno et al., 2003), using conjugate gradient or Sobolev
gradients algorithms, proved to be cumbersome in simulating BEC configurations
with multiple vortices (dense lattices), I have developed a finite differences method
to find critical points of the GP energy by solving the corresponding Euler-Lagrange
equation. At this level, I acknowledge useful discussions with Qiang Du (Penn State
University) who used finite elements methods to solve the same equation in 2D
(Aftalion and Du, 2001).

The new numerical code allows to simulate configurations close to experimental ones.
I have generally used physical parameters corresponding to experiments performed
in the Cold Atoms group of Jean Dalibard from Laboratoire Kastler-Brossel (LKB),
École Normale Supérieure Paris. I acknowledge here many stimulating discussions
with Jean Dalibard and the members of his group, Vincent Bretin and Sabine Stock.
They had the patience to explain physical features of experimental BEC and to
propose new configurations to be explored numerically.
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This chapter starts with a short description of experimental BEC configurations
with vortices. The mathematical model for quantized vortices is introduced, since
it is different from that used for vortices in classical fluids. The numerical method
used to compute 3D vortex configurations is presented in detail. The next chapter
will show some of the numerous results obtained with this method.

Key words: finite differences, compact schemes, Gross–Pitaevskii equation,
Bose-Einstein condensate, quantized vortex.

Publications :
articles : [A3], [A6], [A7], [A9], [A10],
numerical codes : [Code1].

Collaborations :

A. Aftalion (CNRS, Lab. Jacques-Louis Lions),
L. C. Crasovan (Universitat Politecnica de Catalunya, Barcelona),
J. Dalibard, S. Stock, V. Bretin (Lab. Kastler Brossel, ENS),
Q. Du (Penn State University, USA),
V. M. Pérez-Garćıa (University of Castilla–La Mancha).
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5.1. Experimental realisations of Bose-Einstein
condensates

Bose Einstein condensates (BEC) owe their name to the prediction of Bose and
Einstein in 1925: for a gas of non interacting particles at very low temperature, a
macroscopic fraction of the gas is in the state of lowest energy, that is condensed.
As a consequence, the atoms in the condensate oscillate following the same complex
wave function ψ, which evolution is described by the nonlinear Schrödinger equation.

The first experimental realization of atomic BEC in 1995 was awarded the Nobel
Prize in 2001, the laureates being E. A. Cornell (University of Colorado), W. Ketterle
(MIT) and Carl E. Wieman (University of Colorado). Since then, a lot of proper-
ties of these systems have been studied both experimentally and theoretically (see,
for instance, http://www.lkb.ens.fr/-Condensats-de-Bose-Einstein-, http:

//jilawww.colorado.edu).

In recent years, several experimental studies proved the superfluidity of BECs by
putting into evidence different properties related to this state, as the appearance
of a permanent current when moving a laser beam in a condensate (Raman et al.,
1999), or the nucleation of quantized vortices when rotating the condensate (Madison
et al., 2000, 2001; Abo-Shaeer et al., 2001). The second approach was used in the
experiments performed by the Cold Atoms group in Laboratoire Kastler-Brossel
(LKB), École Normale Supérieure (ENS). These experiments will be described in
the following.

The condensate is typically confined by a magnetic potential and set into rotation
using a laser beam, which can be assimilated to a spoon stirring a cup of tea (see
Fig. 5.1). Since the solid body rotation is not possible in a superfluid system,
the condensate has the choice between staying at rest and rotating by nucleating
quantized vortices. The number and shape of vortices depend on the rotational
frequency and the geometry of the trap. In ENS experiments, the trapping frequency
ωz is much smaller than ωx and ωy, which explains the cigar shape of the condensate.
Typical size of the condensate is 100 µm for the length and 10 µm for the diameter.

Quantized vortices start to nucleate in the condensate when the rotation frequency
Ω exceeds a critical value Ωc. If the condensate is described by the macroscopic
wave function

ψ =
√
ρ(x, y, z) eiθ(x,y,z), (5.1.1)

where ρ is the local density and θ the phase, a quantized vortex is a topological
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Figure 5.1.: Experimental realization of a
BEC in Laboratoire Kastler-
Brossel and sketch of the con-
figuration with rotating cigar-
shape condensate (see also
http://www.lkb.ens.fr).

Figure 5.2.: (Animation) Numerical
simulation of a singly
quantized vortex in a
cigar-shape condensate.
Identification by means of
iso-surface of low density
ρ = |ψ|2.

defect of ψ. In other words, ρ = 0 in the core of the vortex (there are no atoms) and
around the vortex there exists a frictionless superfluid flow with a discontinuous
phase field. Therefore, if the local velocity in a point, with non-zero density, is
defined, by analogy with classical fluids, as

v =
h

2πm
∇θ =

~
m
∇θ, (5.1.2)

the circulation around a vortex will be quantized (Fig. 5.2)

Γ =

∮
v.dl = n

h

m
, (5.1.3)

where h is the Planck’s constant, m the atomic mass and n an integer. The quan-
tification of the circulation is a striking feature of superfluid vortices compared to
vortices in classical fluids. The flow around a vortex is also called super-current.
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This description suggests a simple method for
the identification of vortices in numerical sim-
ulations by plotting iso-surfaces of low den-
sity ρ = |ψ|2, as shown in Fig. 5.2 for a
singly quantized vortex (n = 1). The integer n
is evaluated by counting phase discontinuities
around the vortex line. This method also vi-
sualize the boundary of the condensate, since
the atomic density goes to zero out of the mag-
netic trap. It is interesting to note in passing
that in classical fluid dynamics there are still
controversial debates on the general definition
of a vortex.
For the trapping potentials considered in the
following, only singly quantized vortices are
obtained. When increasing Ω > Ωc, more and
more vortices appear and arrange themselves
into a regular triangular (Abrikosov) lattice,
as seen in Fig. 5.3.
Because of the small dimensions of the BEC,
the details of each vortex line is difficult, and
sometimes impossible, to observe from exper-
imental visualizations. This recalls the inter-
est in 3D numerical simulations to investigate
such configurations.

Figure 5.3.: Abrikosov lattice of
vortices in a BEC.
Experiments per-
formed in JILA, Uni-
versity of Colorado
(http://jilawww.
colorado.edu).

5.2. Theoretical model

The condensates obtained from alkali gases are characterized by a uniform density
imprinted by the trapping potential that confines the atoms. In the same time,
the condensates are diluted, and the interactions between atoms are week. As a
consequence, a good mathematical description is to consider that all the atoms are
described by the same wave function that obeys the nonlinear Schrödinger equation,
with a supplementary term taking into account the trapping potential.

We consider a pure BEC of N atoms confined in a trapping potential Vtrap rotating
along the z axis at angular velocity Ω. The energy of the system in the rotating
frame is described by the Gross-Pitaevskii (GP) functional:

E(ψ) =

∫
D

~2

2m
|∇ψ|2 + Vtrap |ψ|2 +

N

2
g3D|ψ|4 − ~Ω·(iψ,∇ψ × x), (5.2.1)

where we denote by Ω = Ωez, the rotation frequency. The interaction coefficient is
defined as g3D = 4π~2as/m, where as is the scattering length. The wave function
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is normalized to unity, i.e.
∫
D |ψ|

2 = 1. The trapping potential has usually the
harmonic form:

Vtrap(x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (5.2.2)

with ωx,y,z the trap frequencies along each spatial direction. We shall see in the
following other types of trapping potentials used in experiments. In equation (5.2.1),
the first term is the kinetic energy, the second comes from the trapping interactions,
the third is the atomic interactions term, and the last is introduced by the change
of frame.

An important mathematical work on this model was provided in Laboratoire Jacques-
Louis Lions by A. Aftalion and her collaborators (Aftalion and Du, 2001; Aftalion
and Jerrard, 2002; Aftalion and Riviere, 2001). For theoretical and numerical anal-
ysis, it is convenient to use the scaling introduced in Aftalion and Riviere (2001):

d =

(
~

mωx

)1/2

, ε =

(
d

8πNa

)2/5

, R =
d√
ε
, (5.2.3)

r = x/R, u(r) = R3/2φ(x),

Ω̃ = Ω/(εωx), α = ωy/ωx, β = ωz/ωx.

The 3D dimensionless energy becomes

E(u) = H(u)− Ω̃Lz(u), (5.2.4)

where H is the Hamiltonian

H(u) =

∫
1

2
|∇u|2 +

1

2ε2
V (r)|u|2 +

1

4ε2
|u|4 , (5.2.5)

V the dimensionless potential and Lz the angular momentum

Lz(u) = i

∫
ū

(
y
∂u

∂x
− x∂u

∂y

)
. (5.2.6)

The equilibrium of the system corresponds to minima of the Gross-Pitaevskii energy.
The small parameter ε plays the role of asymptotic parameter for the study of the
condensate in the Thomas-Fermi regime. Mathematical analysis usually consider
the problem of finding minima of E(u) for different Ω, proving if the minimum
displays vortices in the condensate and describing the shape and position of such
vortices. For a recent revue of the mathematical work in this area, see the recent
book by Amandine Aftalion (Aftalion, 2006).
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5.3. Numerical approach

Critical points of E(u) may be computed in several ways: either by directly mini-
mizing the energy functional using conjugate-gradient algorithms (Modugno et al.,
2003) or Sobolev gradients techniques (Garćıa-Ripoll and Pérez-Garćıa, 2001), or
by solving the corresponding Euler-Lagrange. In this study, we use the second ap-
proach because of its ability in simulating 3D configurations with multiple vortices
in the condensate

The Euler-Lagrange equation derived from (5.2.4) is propagated in imaginary time
(by adding the term ∂u/∂t) until convergence to a steady state corresponding to
equilibrium configurations of the condensate. Consequently, the numerical algorithm
solves the PDE equation:

∂u

∂t
− 1

2
∇2u+ i(Ω̃× r).∇u = − 1

2ε2
u(V + |u|2) + µεu, (5.3.1)

on a spatial domain D, with homogeneous boundary conditions u = 0 on ∂D. The
Lagrange multiplier µε is computed in order to respect the unitary norm constraint,∫
D |u|

2 = 1,

µε =

∫
D

{
1

2
|∇u|2 +

1

2ε2
(V + |u|2)|u|2

}
− Ω̃Lz.

The computational domain is rectangular (see
Fig. 5.4). The size of the computational domain
is estimated from the theoretical Thomas-Fermi
(TF) density distribution law:

ρTF(r, z) =
m

4π~2as

(
µ− Vtrap(r, z) +

1

2
mΩ2r2

)
,

(5.3.2)
where r =

√
x2 + y2 and µ is the chemical

potential analytically calculated from the con-
straint: ∫

{ρTF>0}
ρTF(r) = 1. (5.3.3)

The maximum transverse radius R⊥ and longi-
tudinal half-length Rz of the condensate can be
then calculated from (5.3.2). In fact, the com-
putational domain has to be larger in order to
allow the relaxation to zero of the wave function
on the border ∂D.

Figure 5.4.: Computational do-
main.
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The PDE (5.3.1) is propagated in imaginary time by a hybrid 3 steps Runge-Kutta-
Crank-Nicolson scheme, inspired from my work in classical fluids simulations (see
also section 3.1):

ul+1 − ul
δt

= alHl + blHl−1 + cl∇2

(
ul+1 + ul

2

)
, (5.3.4)

where H contains the remaining non-linear terms. The corresponding constants for
every step (l = 1, 2, 3),

a1 =
8

15
, a2 =

5

12
, a3 =

3

4
, b1 = 0, b2 = −17

60
, b3 = − 5

12
, c1 =

8

15
, c2 =

2

15
, c3 =

1

3
,

are analytically found in order to obtain a second order scheme in time. The result-
ing semi-implicit scheme allows reasonably large time steps, making it appropriate
for the long time integration necessary to check the stability of the equilibrium con-
figuration. The large linear systems with sparse matrices resulting from the implicit
terms are solved by an alternating direction implicit (ADI) factorization technique.
Final linear systems with tridiagonal matrices are solved by an optimized direct LU
algorithm.

For the spatial discretization we use finite differences on a Cartesian uniform mesh.
To accurately resolve sharp gradients of the variable in presence of vortices, low
numerical dissipation and very accurate schemes are required for the spatial deriva-
tives. A sixth-order compact finite difference scheme with spectral-like resolution
was chosen to this end.

Compact schemes are based on implicit relationships between the discrete
values of derivatives. These values are computed for all grid points in one
direction by inverting a linear system. Several families of implicit finite
differences schemes are derived in Lele (1992). The most popular are the
compact (or Padé) schemes that allows to get sixth-order accuracy using a
three-point stencil only. For this scheme, the first and second derivatives at
the grid point i, far from the boundaries, are computed from:

1

3
u

′

i−1 + u
′

i +
1

3
u

′

i+1 =
14

9

ui+1 − ui−1

2δx
+

1

9

ui+2 − ui−2

4δx
, (5.3.5)

2

11
u

′′

i−1 + u
′′

i +
2

11
u

′′

i+1 = (5.3.6)

12

11

ui+1 − 2ui + ui−1

δx2
+

3

11

ui+2 − 2ui + ui−2

4δx2
,

where δx is the (constant) grid step. Another advantage of these schemes
is their spectral-like behavior (no numerical dissipation and good spectral
resolution).

56



The grid is uniform in all three space directions. Convergence tests are made for
each run in order to fix the grid density. For high rotation frequencies Ω (when
the condensate is nearly spherical and more than 100 vortices are present), up to
240× 240× 240 grid points are used to compute equilibrium states.

It is worth at this point to describe how the condensate evolves in ”imaginary” time
(i.e. how it relaxes to an equilibrium state). A typical simulation starts either from
an initial condition (ground state) with no vortices in the condensate, or from an
artificial field obtained by superimposing to the ground state a simplified model for
vortices. The ground state corresponds to the TF density distribution (5.3.2) for a
given trapping potential Vtrap. When solution branches are followed, the converged
field for lower Ω is used as initial condition. When suddenly increasing Ω, new vor-
tices are generated at the border of the condensate and enter the condensate. In
the first stages of the computation, 3D vortex lines are strongly distorted, giving a
spaghetti image of the lattice (see Fig. 5.5). Close to equilibrium, vortices become
straight in their central part and arrange themselves in a more and more regular
lattice (Fig. 5.5). Convergence is particularly slow at the end of the computation
when the position and shape of vortices evolve very slowly. Convergence is consid-
ered when the energy remains constant (relative fluctuations |δE/E| less than 10−6)
for a relatively long time to be sure that a stable state was obtained. The conver-
gence time is longer for high values of the rotation frequency (the lattice continues
to slowly evolve, with minor changes in the vortex positions).

Figure 5.5.: Illustration of the convergence of an imaginary time numerical simula-
tion. Spaghetti-like vortex structure in the condensate before conver-
gence to an equilibrium state (iso-surface of low density ρ = |ψ|2). Ex-
ample of energy decrease during the propagation of 3D Gross-Pitaevskii
equation in imaginary time. Energy is normalized by the equilibrium
(final) value Ef . Inserts show iso-contours of the integrated (along z)
density corresponding to three successive time instants represented on
the energy curve.
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As a final remark, we have to emphasize the fact that the present numerical method
is well adapted to the imaginary time propagation of the GP equation (which can be
regarded in this context as a heat equation with complex variables). The numerical
scheme displays the requested property of diminishing the energy of the system, as
described in Bao and Du (2004). For the real-time propagation of the GP equation
(with the term i∂u/∂t instead of ∂u/∂t), different algorithms that conserve energy
(see Bao and Du, 2006) have to be used.
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6. Three-dimensional structure of
quantized vortices in a
Bose-Einstein condensate

General presentation

We present in this chapter the main results obtained using the numerical approach
described in the previous chapter. This work was motivated by recent experimental
achievements of rotating BECs by the École Normale Supérieure (ENS) group of
Jean Dalibard. We have tried, not only to reproduce their experimental configu-
rations, but also to suggest new ones resulting from the theoretical analysis of our
numerical results.

We describe in detail the three-dimensional structure of vortices for different trap-
ping potentials used in experiments. Our simulations offer a detailed 3D picture
of vortex configurations that is not available from experiments and 2D simulations.
A particular attention was devoted to the physical interpretation of the results by
using post-processing diagnostics close to experimental ones. Numerical data are
always compared to available experimental and theoretical results and a remarkably
good qualitative and quantitative agreement is found.

A rich variety of vortex configurations are illustrated in this chapter, from single-
line vortices to Abrikosov lattices and giant vortices, depending on the trapping
potential and the rotation frequency. The gallery of vortex structures that will be
shortly presented in the following (more details can be found in the published papers,
recalled for each item) will include:

• singly quantized vortex, which may take a U , a S shape, or a 3D-S shape, in
a condensate with harmonic trapping potential; this is the case considered in
most experimental and theoretical studies; (Aftalion and Danaila, 2003);

• giant vortex, obtained for weak rotation frequencies when a quartic-minus-
quadratic potential is used to trap the condensate; this configuration was not
yet studied experimentally ; (Aftalion and Danaila, 2004);

• vortex latices and giant vortex in fast rotating condensates trapped by a
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quartic-plus-quadratic potential; this numerical configuration used exactly the
experimental parameters and allowed to go beyond experimental observations,
since experiments failed to reach rotation frequencies to obtain giant vortices;
(Danaila, 2005);

• vortices with exotic shapes (vortex stars, parallel vortex lines, parallel vortex
rings, etc.) that we have imagined in non rotating condensates; these config-
uration could be realized by new phase-engineering capabilities developed in
experiments; (Crasovan et al., 2004).

A very new configuration that is currently under consideration consists in a rotat-
ing condensate in 1D optical lattices. Some preliminary numerical results for this
configuration will be presented in the next chapter describing my research program
in this field.

Key words: Bose-Einstein condensate, quantized vortex, giant vortex, vortex
lattice.
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6.1. Single vortex lines in rotating BECs

In experiments, the condensate is typically confined by the harmonic (quadratic)
potential given by (5.2.2). This type of potential was used to experimentally study
single vortex lines in a prolate condensate (Madison et al., 2001; Rosenbusch et al.,
2002; Bretin, 2004). Experimental evidence was provided to prove that the vortex
line is not straight along the axis of rotation, but bending. The vortex displays there-
fore a U shape. More complicated configurations (S vortices) were also observed in
experiments (see Fig. 6.1).

Figure 6.1.: Single line vortex configurations observed in experiments (Rosenbusch
et al., 2002).

Figure 6.2.: Single vortex lines in a prolate rotating condensate with harmonic trap-
ping potential: U vortex (a), planar S vortex (b) and non-planar S
vortex (c). Iso-surfaces of low density ρ = |u|2.
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The numerical parameters are set accordingly to ENS experiments. The dimension-
less potential (5.2.2) becomes:

V = x2 + α2y2 + β2z2, (6.1.1)

with α = 1.06, β = 0.067, corresponding to physical values:

m = 1.445·10−25 [kg], as = 5.8·10−9 [m], N = 1.4·105, ωx = 1094 [s−1].

The small parameter ε is set to 0.02. The angular frequency Ω is varied from 0
to the maximum value of 0.9ωx, i.e. Ω̃ ∈ [0, 0.9[. A typical numerical simulation
starts from an initial condition defined by a Thomas-Fermi density distribution
(condensate without vortex) – the rotation frequency is then suddenly increased to
get equilibrium states with vortices. Some simulations starts from a simple ansatz
describing condensates with 3D vortex lines inside.

For example, an initial condition with a centered straight vortex of radius
ε is obtained by imposing:

u(x, y, z) =
√
ρTF · uε, (6.1.2)

uε =

√
0.5

{
1 + tanh

[
4

ε
(r − ε)

]}
· exp(iϕ),

where (r, ϕ) are the polar coordinates in the (x, y) plane. The 3D shape of
the vortex can be easily modified by shifting the center r0 of the vortex in
successive (x, y) planes; for instance, to obtain a planar S shape vortex, the
following function can be used:

r0(z) =


−1 + tanh

[
αv

(
1 + z

βv

)]/
tanh(αv), z < 0

1 + tanh
[
αv

(
−1 + z

βv

)]/
tanh(αv), z ≥ 0.

The constants αv, βv control, respectively, the curvature and the height of
the vortex.

Our numerical simulations reproduce remarkably well vortex shapes observed ex-
perimentally (Fig. 6.2). The U vortex was numerically obtained by starting the
simulation from an initial condition containing a straight vortex away from the z
axis. For a relatively large value of the rotation frequency, the final steady state
(i.e. the local minimum of the GP energy) displays a planar U shape with a straight
central part on the z axis and an outer part reaching the condensate boundary per-
pendicularly.
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The U vortex exists for the range Ω̃ ∈ [0.42, 0.86]. When varying Ω̃ at the lower
bound, the U vortex disappears and a vortex-free configuration is obtained, while
at the higher bound the U vortex degenerates in a three-vortex configuration. As a
consequence of the anisotropy of the trap, the branches of the U vortex lies either
in the x − z or y − z plane. These characteristics confirm the theoretical predic-
tions (Aftalion and Riviere, 2001; Aftalion, 2006) based on the minimization of the
approximate GP energy for a vortex line.

Planar S vortices similar to those dis-
played in experimental pictures (see Fig.
6.1) were numerically obtained (see Fig.
6.2b) from artificial generated initial con-
ditions containing such a vortex. We
checked that the final steady state for a
given Ω̃ is always the same (different ini-
tial planar S shapes evolved to the same fi-
nal configuration). The S vortex exists for
all values of Ω̃ – they are only local minima
of the GP energy. An animation showing
the structure of this vortex is shown in
Fig. 6.3.
We also obtained S vortices with the
bent arms rotated by 90 degrees (see Fig.
6.2c). We could check that non planar S
configurations with an angle between the
branches different from 90 degrees, do not
exist. For a given Ω̃, the three configu-
rations (U , S and 3D-S) are topologically
equivalent by a z-rotation of the bent arms
of the vortices: the U vortex has a slightly
lower energy that the others.

Figure 6.3.: (Animation) S-vortex in a
rotating BEC.

Solution branches with two, three or four vortices in the condensate were also ob-
tained by abruptly increasing Ω̃ to a very large value; these configurations are de-
scribed in Aftalion and Danaila (2003).
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6.2. Giant vortex in rotating BECs

6.2.1. Theoretical study

The harmonic trapping potential (5.2.2) allows for rotation frequencies lower than
ωx; for Ω = ωx the centrifugal force compensates the trapping force and the confine-
ment of the atoms vanishes. The fast rotation regime, corresponding to Ω & ωx, is
the focus of a lot of attention since new physical phenomena are expected.

The experimental approach to reach the fast rotation regime explored by the ENS
group (Bretin et al., 2004; Stock et al., 2005; Bretin, 2004) consists in modifying
the quadratic (harmonic) trapping potential by superimposing a blue detuned laser
beam to the magnetic trap holding the atoms. The resulting Gaussian-plus-quadratic
potential removes the singularity at the limit Ω = ωx and allows to reach rotation
rates up to Ω ' 1.05ωx:

Vtrap(r, z) =
1

2
m(ω

(0)
⊥ )2(x2 + y2) +

1

2
mω2

zz
2 + U0 e

−2r2/w2

, (6.2.1)

with r2 = x2 + y2 and physical parameters:

ω
(0)
⊥ = 2π·75.5 [Hz], ωz = 2π·11 [Hz], w = 25 [µm], U0 = kB·90 [nK],

where kB is the Boltzmann constant. For r/w sufficiently small, the potential V (r)
can be approximated by:

V = (1− α)r2 +
1

4
kr4 + β2z2. (6.2.2)

The centrifugal force makes that the effective trapping potential for the rotating
condensate is decreased to:

Veff = (1− α)r2 − ε2Ω̃2r2 +
1

4
kr4 + β2z2. (6.2.3)

In Aftalion and Danaila (2004) we have theoretically analyzed possible vortex con-
figurations corresponding to the trapping potential (6.2.2). Depending on the choice
of α, the Thomas-Fermi density profile for the non-rotating (Ω̃ = 0) condensate can
display three different shapes, as shown in Fig. 6.4:

(1) the weak attractive case, obtained for α < 1: this is the case closest to exper-
iments and is strongly influenced by the (positive) harmonic part. For Ω̃ = 0,
a classical prolate condensate is obtained (Fig. 6.4-1).
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Figure 6.4.: Different shapes of the condensate for the trapping potential (6.2.2).

Thomas-Fermi density distribution at Ω̃ = 0 for α = 0.9 (picture 1), 1.1
(picture 2), 1.2 (picture 3). These configurations were used as initial
conditions for the imaginary time simulations.

(2) the intermediate repulsive case, obtained when 1 < α < 1 + ξ, with ξ =
β1/4k5/8/

√
π: at Ω̃ = 0, as an imprint of the negative harmonic part, the

density profile has a depletion close to the center but no hole (Fig. 6.4-2).

(3) the strong repulsive case, corresponding to α > 1 + ξ: the density profile has
a hole for all Ω̃.

The experiments correspond to the first regime. As Ω̃ increases, the effective trap-
ping potential (6.2.3) starts to have a Mexican hat structure. An Abrikosov vortex
lattice appears for intermediate values of Ω̃; for very large Ω̃, the theory predicts the
appearance of a central hole in the condensate, also called giant vortex. This type
of vortex, obtained in our simulations, has not yet been observed in experiments
because of the instability of the experimental system for very large rotation rates.

We have numerically proved in Aftalion and Danaila (2004) that the trapping po-
tential corresponding to the second regime allows to obtain a giant vortex in the
condensate for lower rotation frequencies. This could be realized by increasing the
amplitude U0 of the detuned laser beam (see equation 6.2.1). The animations 6.5
show how the giant vortex appears in the condensate when the rotation frequency is
increased. Each animation describes the converged (equilibrium) configuration for
a given Ω̃. The condensate has initially a Mexican hat structure. When progres-
sively increasing Ω̃, a vortex lattice is formed and, finally, central vortices merge
into a giant vortex. This process, proved to be highly three-dimensional, is clearly
observed, which is not the case in experiments. The giant vortex can be regarded
as the region containing singly quantized vortices with such low density that they
are discernible only by the phase defects.
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It is interesting to note that vortex merging leading to the central hole does not
involve all the singly quantized vortices in the condensate – an array of such vor-
tices persists around the hole. The observations were confirmed by later theoretical
studies (see, for instance Kim and Fetter, 2005).

(a)

(c)

(b)

(d)

Figure 6.5.: (Animations) Appearance of a giant vortex in a condensate trapped
in a quartic-minus-quadratic potential. Each animation corresponds to
converged (equilibrium) configuration for a given rotation frequency Ω̃.
Increasing values of Ω̃ from a) to d).
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6.2.2. Comparison with experiments

I have also addressed the challenging proposition of using real experimental pa-
rameters (Bretin et al., 2004; Stock et al., 2005) in a three-dimensional numerical
simulation of fast rotating Bose-Einstein condensates. The experimental pictures
(Fig. 6.6) show a very dense vortex lattice that becomes unstable for very large ro-
tation frequencies. Numerical simulations of such configurations, containing around
one hundred vortices, request refined computational grids and long integration times
because of the slow convergence rates. The code BETI was again optimized in order
to deal with grid resolutions of 2403 (∼ 14 millions) grid points. A typical simulation
for this case takes approximately one week on a single processor computer.

The numerically generated 3D-condensates can be seen in Fig. 6.7. The results
(Danaila, 2005) reproduce experimental pictures (Fig. 6.6) for rotation frequencies
allowing clear experimental observations. For increasing rotation frequencies, the
vortex lattice evolves to a vortex array with hole, which confirms the scenario the-
oretically predicted and also observed in 2D simulations. Since such transition was
not observed in experiments, we have qualitatively analyzed the obtained vortex
states, with a particular emphasize on the 3D features of vortex merging leading to
a central hole in the condensate.

Figure 6.6.: Experimental pictures of a fast rotating BEC (Bretin et al., 2004).

Interesting quantitative information could also be extracted from these simulations.
I have developed for this purpose Matlab post-processing tools that allows to auto-
matically compute the characteristics of the vortex lattice, namely the inter-vortex
spacing bv and the vortex core size rv. Since contrast images (lower row in Fig. 6.7)
are the inputs for these programs, they could be also used to analyze experimental
pictures.

I found that rv scales with the healing length ξ =
√

8πasρ, as is usually assumed in
theoretical studies. The variation of bv with the distance to the center of the con-
densate describes the vortex lattice inhomogeneities; a remarkably good agreement
is found with the theoretical findings of Sheehy and Radzihovsky (2004) (Fig. 6.8).
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Figure 6.7.: Numerically generated condensates obtained using a quartic-plus-
quadratic trapping potential with the parameters corresponding to ex-
periments of Bretin et al. (2004). Equilibrium configurations for differ-
ent rotation rates: from left to right, Ω/2π = 60, 64, 66, 70.6, 73. Three-
dimensional views of the vortex lattice identified by means of iso-surfaces
of low atomic-density (top rows) and 2D views of the integrated density
along the z-axis (lower row).

Figure 6.8.: Vortex lattice and variation of vortex core radius rv and inter-vortex
spacing bv (values in µm) as functions of the non-dimensional radius
r/R⊥. Quantitative data extracted from numerical simulations. Com-
parison with theoretical predictions (solid lines) of Sheehy and Radzi-
hovsky (2004).
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6.3. Vortices with exotic shapes in non-rotating BECs

The new phase-engineering capabilities, recently developed by the MIT group (Lean-
hardt et al., 2002), open many possibilities for the generation of topological defects.
This makes very interesting the question of finding theoretical methods for the de-
sign of new types of vortices. We have imagined in Crasovan et al. (2004) some
original vortex shapes that could be obtained in non-rotating condensates by phase-
imprinting. We show that the spatial structure of the wave function of the conden-
sate with exotic vortices can be written as:

ψ(x, y, z) = φ(x, y, z)e−
∑

k=x,y,z λkx
2
k/2, (6.3.1)

where φ is a polynomial form resulting from the combination of Hermite polynomials.
We can obtain a rich variety of vortices:

• vortex stars (Fig. 6.9a) described by

φstar = H2(x)H0(y)H0(z)−H0(x)H2(y)H0(z)

+ i(H2(x)H0(y)H0(z)−H0(x)H0(y)H2(z))

= 4
[
(x2 − y2) + i(x2 − z2)

]
. (6.3.2)

• pairs of parallel vortex rings (Fig. 6.9b)

φ‖ = H2(x)H0(y)H0(z) +H0(x)H2(y)H0(z)

+ H0(x)H0(y)H2(z) + iH0(x)H0(y)H2(z)

=
[
(4x2 + 4y2 + 4z2 − 6) + i(4z2 − 2)

]
(6.3.3)

• pairs of perpendicular vortex rings (Fig. 6.9c)

φ⊥ = H2(x)H0(y)H0(z) +H0(x)H2(y)H0(z)

+ H0(x)H0(y)H2(z) + iH1(x)H1(y)H0(z)

=
[
(4x2 + 4y2 + 4z2 − 6) + 4ixy

]
, (6.3.4)

• antiparallel vortex lines (Fig. 6.9d)

φ(x, y, z) = H2(x)H0(
√

2y) + iH0(x)H1(
√

2y)

= 4x2 − 2 + 2i
√

2y (6.3.5)
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• stationary n-vortex rings (Fig. 6.9e, for n = 1)

φ(x, y, z) = H0

(√
2/n z

)
[H2(x)H0(y) +H0(x)H2(y)]

+ iH0(x)H0(y)Hn

(√
2/n z

)
= 4(x2 + y2 − 1) + iHn

(√
2/n z

)
. (6.3.6)

For the configurations (a, b, c) we set λx = λy = λz = 1 and for the cases (d,
e) λx = λz = 1 and λy = 2. A very important question we have answered is the
stability of these stationary states. Numerical (real and imaginary time) simulations
showed that they are robust excited states that could last in BECs for long times.

Figure 6.9.: Theoretical exotic vortex shapes that could be obtained in a non-
rotating BEC by phase-engineering techniques (Crasovan et al., 2004).
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7. Work in progress and future plans

Future work concerning the numerical investigation of Bose-Einstein condensates
will focus on two main topics: rotating BECs in optical lattices and development of
new numerical schemes for BEC simulations.

7.1. Mathematical and numerical study of a BEC in
1D optical lattices

New experiments performed by the ENS
group (Hadzibabic et al., 2004) consider a
prolate (cigar-shaped) condensate placed in
an 1D optical lattice directed along the z-
axis. The modified trapping potential is for
this case:

V (r, z) = Vh(r, z) + Us sin2(πz/d),

where Vh(r, z) is the classical harmonic po-
tential (5.2.2). For large values of the am-
plitude Us, the initial condensate is divided
in several sites, depending on the value of
the parameter d. In experiments, 30 to 32
sites are obtained, but they are difficult to
distinguish in pictures, as shown in Fig. 7.1.

Figure 7.1.: Non-rotating BEC in 1D
optical lattice. Ex-
perimental visualization
(Hadzibabic et al., 2004).

Three-dimensional simulations are compulsory for the study of such systems. I
have recently considered similar configurations, but with the condensate in rotation.
Preliminary numerical results (Fig. 7.2) show a large variety of arrangements of
vortex lattices, different from one site to another, and strongly depending on the
rotation frequency and the amplitude of the optical lattice. Since experimental data
are not yet available for such rotating configuration, these numerical simulations
will contribute to the theoretical description of new phenomena in rotating BECs.

Theoretical and numerical analysis of such systems will first focus on configurations
with two or three sites. Numerical results for these cases are already available.
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Figure 7.2.: Rotating cigar-shape condensate placed in an 1D optical lattice along
the longitudinal z-axis. The rotation frequency is the same for the
three (converged) configurations. The amplitude Us of the optical lattice
increases from left to right.

The mathematical analysis of this problem is the main topic of the post-doctoral
research that Parimah Kazemi, (PhD from North Texas University) will start in
October in our laboratory. I shall co-advise this post-doc together with Sylvia
Serfaty (Professor, Paris 6).

7.2. Numerical development of the code BETI

Numerical simulations of condensates in optical lattices request large spatial grids
and, consequently, large computational time. Future work on the numerical code
BETI will include the optimization of the numerical schemes and the development of
a parallel version of the code. This is not an easy task since several implicit schemes
are used in the code (compact schemes, Crank-Nicolson time integration).

A new version of the code using cylindrical coordinates is currently under develop-
ment. The extension for the real-time simulation using methods described in Bao
and Du (2006) is also planned.
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masse volumique variable. Congrès Français de Thermique, 2006.
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échelles (LES) des écoulements incompressibles en coordonnées cylindriques. doc-
umentation du code jetles, Paris 6, 1999–2008.

I. Danaila and S. Benteboula. Etude numérique et théorique des structures
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