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Three—dimensional direct numerical simulations of unforced, incompressible, free, spatially
evolving round jets are used to investigate the onset of instability at low diametral Reynolds
numbers Re<500). Compact, coherent structures are identified by means of iso-surfaces of
vorticity and pressure fields and shown to be synonymous with instability modes. Once the inflow
velocity profile is fixed, as the Reynolds number increases from 200 to 500, the most amplified
unstable mode switches from the helical mode to the axisymmetric one, as expected from the
predictions of the viscous linear stability theory analysis and from experimental obsenfakions
Fluid Mech.77, 511(1976; Prog. Aerosp. Sci21, 159(1984] [ J. Fluid Mech.48, 547 (1971)].

At the upper limit of the investigated range of Reynolds numbers, the present simulations are
consistent with the widely accepted scenario of the space time development of the round jet
instability. This scenario is analyzed in detail. The appearance of pairs of axially counter-rotating
vortex filaments is foundfor the first time, to our knowledge, in unforced, spatial numerical
simulations to characterize the destabilization of initial axisymmetric vortical structures. The
spatial evolution of these structures is investigated and their role in vortex rings reconnection is
evidenced. For lower Reynolds numbers, a superposition of symmetry-brealkiiica) modes is
shown to characterize the instability of the round jet. The Fourier decomposition of the fluctuating
flow field allows the extraction of the helical modes and the identification of the flow patterns
resulting from their interactions. The attractor is shown to be a limit torus very close to the onset of
the instability. © 1997 American Institute of Physids$1070-663197)01911-9

I. INTRODUCTION The main purpose of this paper is to examine the coher-
ent structures dominating the flow at the onset of instability

. L L . in a naturally evolving axisymmetric jet. We shall focus,
(1884 for flow visualizations and analyzed the jet instability primarily, on low diametral Reynolds number jet flowRd

proble.m(1879 (cf. R?f' D, th? multitude .Of experimental, <500), which are of basic theoretical importance for the

analytical and numerical studies concerning the free, homo- . S . .

. N . : development of instabilities and for which the available ex-

geneous, axisymmetric jet instability have considered two erimental data appear to be incomplete and sometimes con-
distinct types(modes$ of instabilities. P '. pp. : . P . '.

tradictory. We examine the selection of the dominating un-

(1) Varicose instability, characterized by axisymmetric stable modes — varicose or helical — during the instability

modes in which waves travel as a succession of symdevelopment and for different Reynolds numbers. Quantita

metncal syvell|ng§ and contractions. . _ tive tools for their detailed description are provided. The

) Sinuous |nst.ab|||ty, characterized by hehcéd;_plral) originality of the present simulations is given by the fact that

modes in which the waves appear as a rhythmic undulage instability onset is not forced, but it naturally occurs due

tion or twisting of the jet. to the “numerical noise.”

At the present time, the onset of one type of instability orp  gxperimental point of view
another for the naturally evolving jet is not well defined in . o
terms of the Reynolds number range. In the literature, most T1he early experimental work indicates that a general
of the studies dedbecause of engineering applicatipmsth ~ agreement on the critical Reynolds number and the evolution
high Reynolds number jet®ften forced where the axisym- with the Reynolds number of the instability in an axisymmet-
metric modes are the most amplified. The presence of theic jet is difficult to obtain. Viilltf reports the presence of
helical (symmetry-breaking modes in the jet flow is re- instability for diametral Reynolds numbers exceeding 10.
ported, at low Reynolds numbers, by both linear stabilityReynolds investigated the minimum Reynolds number for
analysis and experimental studies, but reliable experimentahstability in an axisymmetric dyed water jet submerged in a
and numerical data are not available for these Reynolds nunwater tank. Four different shapes of the flow, defined by
ber values. ranges of Reynolds number, were reported. FoxK R@

Since Rayleigh introduced stroboscopic illumination
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< 30 the steady state of the jet could be maintaiftedugh  dynamics(near the jet exjtand the jet diameter) govern-
with difficulty). For 30<Re<150 axisymmetric condensa- ing the evolution in the far fiel§above the end of the poten-
tions were observed, but further wérkhowed that the axi- tial core. The two corresponding instability modes are the
symmetric condensations were due to the presence of apprkigh frequencyshear-layer modand the low frequencjet-
ciable background disturbances in the experimentatolumn moddor preferred modg®

apparatus. For 150Re<300 sinuous, long wavelength, un- Stability characteristics of the round jet flow can be lo-
dulations and a complex breakup occurred. Rer>300 the  cally described by the linear stability analysis, assuming an
flow was disordered, even near the nozzle. undisturbedbase parallel jet flow, infinitely extended in the

Becker and Massataised air jets with a Reynolds num- up and downstream directions. As in a real jet the shape of
ber in the range 660Re<20000. For the low Reynolds the local mean velocity profile evolves along the downstream
number regime, the observations are less detailed: for thgirection, different types of base velocity profiles are ana-
unforced jet aRe= 1690 the disturbance observed was sinu-lyzed. The inviscid linear analysis of Batchelor and il
ous and occurred at some distance downstr¢amozzle demonstrated the unstable character of tthhat velocity
diametery sinuous instability was not observed at Reynoldsprofile (representing the flow close to the jet gxitith re-
numbers above 2300. spect to axisymmetric as well as helical modes for all values

The experiments of Crow and Champaymshowed a  of the stream-wise wavenumber.
continuous evolution of the dyed water jet shape from a si-  Mattingly and Chantf considered the inviscid instabil-
nusoid to a helix, and finally to a train of axisymmetric ity of the experimental velocity profiles for a Reynolds num-
waves, as the Reynolds number increases from 100 to 1008er of 300 and showed that the axisymmetric mode domi-

Mollendorf and Gebhattstudied buoyant water jets at nated close to the jet exit, whereas downstream of three

low Reynolds numbers (138Re<537). For slightly buoy- nozzle diameters the helical mode achieved the maximum
ant jets at Reynolds numbers of 250 and 316 the symmetricymplification.

disturbances introduced in the flow were seen to damp out, The inviscid linear analysis of PlaschKoallows for

while the asymmetrichelica) disturbances were highly de- sjightly diverging flows. It indicates that for large values of

stabilizing. Very small amounts of buoyancy destabilize thethe Strouhal number of the perturbatiire., near the nozzle

flow, but the spiral modes are still the most amplified. lip) the axisymmetric instabilities are more amplified than
As a consequence of the convectively unstable nature gheir spiral counterparts; at a lower Strouhal numfoecur-

the incompressible, spatially evolving mixing layea, free  ring at the end of the potential corthe first helical mode is
homogeneous jet is expected to be driven by surrounding,gre unstable than the axisymmetric one.

disturbances, which can explain the existence of few and less  \jichalke!® used a family of tanh-velocity profiles to

conclusive experimental studies at low Reynolds numberssyajuate the local instability of the jet flow to the end of the
Nevertheless, the existing studies pointed out two importansatential core. For the inviscid linear stability analysis, the
features of the evolution of the jet flow instability for low [ejevant jet parameter is the local ratio between the jet half-
Reynolds numbersRe<1000): the Reynolds number is a \igin (R) and the momentum thicknes®J. The growth
relevant parameter for the selection of the most amplifiedie of the first helical disturbancemé 1) for R/@>25 is
mode, and the typical evolution of the jet instability, as thepot mych different to that of axisymmetric disturbances
Reynolds number increases, is the continuous shift from th?m=0). ForR/@® = 10 the growth rate fom=0 is larger than
helical mode to the axisymmetric mode. that for m=1, while the inverse is true foR/®=5. In the

~ Experiments show that high Reynolds numbers or forcede g jet, the jet parametd®/© decreases in the downstream
jets can reduce the influence of external mechanisms on th& «ction and consequently, the initial region of the jet is

onset of instability; an abundant literature was constituted iréqually unstable to botm=1 andm=0 modes, while at the
the last 50 years in this fieltsee Ref. 7 for referencesFor 4 of the potential corm=1 is the most amplified mode.

a Igrge range C_’f, Reynolds numbers (55(e< 10) ' the The linear stability analysis was extended to include vis-
varicose instability was observed an'd the scenario Of, th@ous effects by Morrig® Jet velocity profiles characterizing
early stages of evolution of the round jet seems to be universoyaral stages of development of the round jet were exam-
sal (independent of the Reynolds numbethe shear layer o4 Apove a Reynolds number of 1000 the influence of

originating from the nozzle lip is inviscidly unstable via the viscosity on the growth rate was obviously small for a fixed
Kelvin—Helmholtz primary instability mechanisfnthe in- .

bil q d roll : h et parameterR/®). For a tanh-velocity profile, representa-
stability .Wavge S grow downstream and roll up Into coherent, o ot the region towards the end of the potential core, the
vortex rings; the structures merge as they are convecte

q dd ) he sh | ofat eynolds number is the parameter selecting the most ampli-
anstream and determine the shear layer spreatieam- fied unstable mode in the range X0Be<500. For Re
wise vortex structures develop through a secondary three—

: : ; o : h . =500, the maximum growth rate @h=1 is slightly larger
dimensional |nstabll!ty of the th!n vorticity layebraid) be- than that ofm=0 and with decreasinBe, the axisymmetric
tween two neighboring vortex rinds.

mode becomes significantly less unstable than the helical
one.
The viscous, linear stability analysis was applied by
From a theoretical point of view, the axisymmetric jet Mollendorf and Gebhattor the round jet, using a boundary-
has two distinct instability length-scales: the initial shear-layer base flow(characteristic of the far fie)d It was found
layer momentum thicknesdd), describing the near field that the first helical mode was amplified over shorter dis-

B. Theoretical point of view
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tances as the frequency and Reynolds number increased. Thembers (18<Re<1(P) flows. Recent development of the
axisymmetric mode was found to be unconditionally stable.large eddy simulation techniques allowed fully 3D, spatial
The local parallel theory describes well the initial devel- simulations of free forced jets, for relatively high Reynolds
opment of the instability in high Reynolds number jets, buthumbers Re~20000)?%2° but, surprisingly, the extent of
its applicability in analyzing real jet flows is limited to short literature on detailed numerical simulations of spatially, un-
distances in the stream-wise direction. For the unperturbetbrced 3D jet flows, for low Reynolds numbers is very lim-
jet (Re=42000), Cohen and Wygnanskfound good agree- ited.
ment between the inviscid linear stability results and the ex-
perimental data for a narrow zone near the nozzle (0.125 o
<2/D<0.25), where the variation of the local momentum D- Paper organization
thickness was negligible. They also underlined the main  The paper is organized as follows. The main features of
drawback of the local linear stability theory which is unable the numerical implementation and data concerning the influ-
to account for the spread of the shear layer; in realdy, ence of the numerical discretization and boundary conditions
increases downstream and the most amplified instabilityyn the accuracy of the solution will be presented in Section
waves shift toward lower and lower frequencies. Indeed, if|. The techniques used for the coherent structures visualiza-
has been showfthat the unstable wave is sensitive only to tions are briefly discussed in Section Ill. In Section IV we
mean flow features extending over length-scales exceedingill describe the numerical results for a Reynolds number of
its wavelength. In jets, this wavelength is typically of the 500, when the varicose mode dominates the instability onset.
order of the diameter even close to the nozze0(6 for  Our simulations follow the instability development until a
R/®=50 andRe=500 in the parallel analysis of the initial chaotic asymptotic state is reached. A behavior very similar
mixing region profile of Ref. 16 Consequently, one could to that reported from experiments and other simulations at
expect the entire evolution of the mean velocity profiles insignificantly higher Reynolds numbers is found. The experi-
the initial zone corresponding to the first wavelengths to benentally and numerically reported coherent structures de-
significant for the development of the unstable mode, and nofcribed at the end of subsection | A are obtained and com-

only the inflow velocity profile, as usually assumed. pared with previous simulations in periodic configurations.
. . . In Section V we will focus on the primary instability inves-
C. Numerical point of view tigations. At low Reynolds numbetat Re=300 and below

Direct numerical simulations have proven very effecti\,ethe.observed characteristics of the; instability confirm that the
in elucidating features of the primary and secondary instab@lical modes are the most amplified. A method for the split-
bilities of the axisymmetric jet. The numerical “experi- ting of the fluctuating flow field in helical modes and a de-
ments” eliminate uncontrollable disturbances, usually occurScription of the dynamic characteristics for Reynolds num-
ring in the laboratory experimental devices, but they bringP®rs near the onset of unsteadiness are given. Finally, in
the problem of boundary conditions. Inflow and outflow Section V!, we WlII (_jraw some conclusions and possibilities
boundary conditions must be asansparentas possible, for future investigations.
meaning that unphysical reflections at the boundaries should
be minimgl. I_Dartly to elude this diffic_ulty, partly to reduce Il NUMERICAL IMPLEMENTATION
the domain size and to zoom on a single coherent structure
the great majority of the simulations use the so-called “tem-  Direct numerical simulations of three-dimensional, spa-
poral” model, which assumes the flow to be spatially peri-tially evolving jets at low Reynolds numbers, are performed
odic in the downstream direction. using the NEKTON code based on a spectral element

Temporally evolving three-dimensional calculations, us-method. The NEKTON code was successfully used in vari-
ing vortex filament3? spectral®?! finite-difference$® or  ous studies concerning flow instabiliti#s3? A detailed de-
combined spectral-finite-differences technigtiéate helpful  scription of the numerical procedures allowed by the NEK-
in understanding the dynamics of the vorticity flow field and TON code (domain design, computation of the time-
the evolution of coherent structures. Meanwhile, it should belependent solution and data post-processisggiven by
emphasized that there is no exact transformation betweeNeitzel et al>?
temporally and spatially evolving shear flodfs.Conse- The code allows fully 3D simulations by filling the com-
qguently, temporal simulations are depleted of apwgtialin- putational domain with spectral elements in all three spatial
formation (as flow spreadingand offer only a qualitative directions. NEKTON uses Langrangian interpolation on a
description of the evolution of vortex structures. Gauss—Lobatto—Legendre mesh. In the predictor step, the

However, laboratory flows evolve both in space and invelocity field is calculated; the pressure and convective terms
time, and a more realistic simulation must be based on thare treated explicitlfa third order Adams—Bashforth multi-
“spatial” model. For non parallel flows, the parallel or step scheme is providedThe diffusion terms are treated
weakly parallel theory may be unable to distinguish reallyimplicitly by using a third-order backward differentiation
unstable global modé$,the stream-wise coupling being es- multi-step scheme. The corrector step provides the pressure
sential for the determination of their instabilftyfNumerical ~ correction as the solution of a Poisson equation and the ve-
simulations for forcetf or unforced®?’ spatially developing locity field correction as that of a Helmholtz equation. Both
axisymmetric mixing layers assume that the essential jet dylinear systems are solved by a pre-conditioned conjugate gra-
namics is inviscid and consequently, simulate high Reynoldslient method.
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The most important advantage of the spectral element
discretization is its locafwithin one elementspectral accu-
racy that can be non uniformly distributed throughout the
computational domain in order to capture very disparate
length scales existing in different regions. It has to be re-
marked that this flexibility brings about a drawback in the
form of discontinuities of the velocity field derivatives at
element interfaces. This might be a nuisance if a specific
local detail of the flow needs to be known. For the purpose of
instability investigation it appeared, however, that the impact
of these discontinuities on the instability investigation is
quite moderate and can fairly easily be quantifiéd. simi-
lar three-dimensional discretization has recently been used
with success to simulate the dynamics of the wake of a finite
cylinder®* the impact of local inaccuracies on the global
behavior was shown to result barely in shifting the critical
Reynolds number downward and the frequencies upward.

A. Selection of physical parameters of the spatial
simulation. The inflow velocity profile

The simulation of a spatially evolving jet approaches
most closely an experimental setup. Our geometrical con-
figuration simulates an unconfined round jet issuing from a
circular orifice of diameteb =2R;, in a solid(no slip wall.

As mentioned in Section | B, the diameter of the orifice fixes
the characteristic length scale of the simulation. The velocity
scale is given by the maximum of the inflow stream-wise
velocity (V,0)max- The ratioty=D/(V ) max Yi€lds the used
time scale. In what follows, all the quantities are non dimen-
sionalized using these characteristic scales. The resulting
Reynolds number is defined &e=(V,0) maD/v.

An important effort has been made to optimize the dis-
cretization parameters in order to capture all possible states
of the jet flow in the Reynolds number range ofiRe
<500. The mesh is shown in Fig. 1. It has 65 three-
dimensional spectral elements, covering an axisymmetric

computational domain of radial siz2,.=10.66 and longi- FIG. 1. Spectral elemental mesh obtained with 9 collocation points in each

tudinal lengthL ,=20. Note that the slowly diverging distri- spatial direction. The computational domain has 65 spectral elements
bution of the 3D spectral elements in the downstream directgrid 1).

tion was iteratively obtained in order to follow the space
evolution of the jet mixing layer.

In the absence of reliable experimental data, the choic&ation has to accommodate a global length scale 5@
of the inflow profile is not straightforward. Two types of Of almost one thousand. The spectral element spatial discreti-
velocity profiles were used as inflow boundary condition: azation implemented in the NEKTON code is particularly ef-
top-hat velocity profile [V,o(r)=1r<R, and V,,(r) ficient for this purposgnote that a similar ratio would re-
=0,Ro<r] and the largely us€8?' hyperbolic tangent quire a prohibitively large mesh if a homogeneous finite
(tanh profile (profile 1 from Ref. 35, difference discretization was to be uged

Vao(r)=0.51+1anf0.5Ro/@o(1—-r/Ro) 1}, @D g Numerical accuracy and mesh optimization.

where® o= [5V,(F) (1= V() dr is the initial momentum Physical meaning of the unforced jet simulation

thickness. We considered that a jet paramety/@,) Preliminary computatiorid3*indicated that, of the three
larger than 20 is necessary for this study. Indeed, for such Bormulations available in NEKTON, the “split'(fractional
ratio, the linear stability theory shows that, though the maxi-step methof formulation provides accuracy equal to other
mum inviscid amplification rates are similar for the first he-formulations with a substantial reduction in CPU tinsee

lical mode fn=1) and the varicose moden=0), the Rey- also Ref. 32 The overall time accuracy of this semi-implicit
nolds number is the parameter selecting the most amplifietbrmulation is of?(At) only. However, the local refinement
unstable mode, when it varies between 100 and 1000. Thexisting in the nozzle and a rather high Reynolds number
ratio of Ry/®y=~20 is already obtained with 7 collocation result in a very restrictive CFL criterion, because the implicit
points. To resolve the initial shear layer the spatial discretitreatment is based on the inversion of the Laplacian operator
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TABLE I. (a) Influence of the discretization accuracy on the primary insta-

bility characteristics: the critical Reynolds number and the critical Strouhal
number. For the reference simulati@rid 1, L,= 20, top-hatinflow veloc-
ity profile, Norder=7) Re,, =220, St,,=0.169.(b) Influence of the Norder
parameter on thereferred Strouhal number foRe=500.
@
Variation Variation
of Re, of St, ]
Type of test (%) (%) ::
Influence of the domain length < E
L,=20-L,=15 1.75 0.59 > E
Influence of the inflow velocity profile 2
top—hat—tanh(R/® ,=23.6) 3.20 0 -
Influence of the azimuthal resolution - ;-
grid 1—grid 2 1.52 0.29 °E
Influence of the jet mixing layer resolution 3 .
arid 1grid 3 E | e RO,
(*tanh velocity profile 4.41 1.77 3
Influence of the Norder parameter E T
Norder=7—Norder=9 30.90 23.10 0.0 0.5 1.0 15

(b)

id 1, Norder=7 id 1, Norder9 id 1, Norder11 . . —
o order o order on order FIG. 2. Unperturbed base velocity profiles fRe=500 (solid lineg. The

Nodes 22 295 47 385 86 515 symbols represent the theoretical tanh-velocity proéig. (2)].
Sty 0.405 0.310 0.387

Re=200, 300 and 500, with 7, 8 and 9 collocation points per
spatial direction starting from a steady axisymmetvigthin

in the Navier—Stokes equations. For exampleRat=500 the numerical accuracy discussed aboflew at Re=200.
and with 9 collocation points, 250 time steps correspond td'he most unfavorable case with the strongest transients and
the shortest time scale in the simulation, which makes highegarliest instability onset corresponds Re=500. At t=20
order time-stepping pointless. the instability(here of the Kelvin—Helmholtz type - see Sec-

Our three-dimensional calculations are performed intion V) only leaves the linear regime and the mean flow can
Cartesian coordinates in a cylindrical computational domainbe considered as a reasonable approximation of the unper-
The azimuthal breakup of the domain into spectral elementirbed(base flow. The velocity profiles have thus been ob-
makes that the space discretization is not strictly axisymmettained as mean values in the non dimensional time interval
ric. The effect of this inaccuracy has been tested by increast<t<<15 (the numerical transients decay at aboet6).
ing the number of elements in the azimuthal direction by alhese profiles have, indeed the expected charguittted in
factor of two(8 instead of 4 The test consisted in monitor- Fig. 2 atRe=500 for 9 collocation poinjswhich is very
ing the changes of the parameters of the instability observewell reproduced by the formulgrofile 2 from Ref. 3%
at Re=225. No a}ppreciable differences were statsde V,(N(V,) = 0.51+tant0.25R/0 (R/r—r/R) ]}, (2)
Table la and Section V

The parameters characterizing the domain discretizatiowhere R and (V)¢ are, respectively, the local half-width
are its decomposition into spectral elements and the choic@d the centerline stream-wise velocity, and the local mo-
of the number of collocation points per spatial direction in-mentum thicknes® is defined in the usual way:
side an elemeniNorder parameter As far as the size of the @
elements and their distribution is concerned, our previous ®=j V,(1)(Vy) (L =V, (r)/(Vy)e)dr. 3
experience with two- and three-dimensional discretizations 0
of this type®3°34showed that a good strategy consists in  As can be seen from Fig. 2 the shear layer is very rapidly
selecting relatively large elements, respecting the requiredissipated at this Reynolds number. For high Reynolds hum-
ment that the resolved structures should not be smaller thapers, the variation of the local jet parameR/i® is usually
the size of the element inside which they are situated. Theimply expressed afkefs. 35, 14 ®/R=0.06(z/D) + 0.04.
presence of the jet and its shear layer led to the choice refFhe coefficients of this equation may depend on initial con-
resented in Fig. 1. The relatively large size of the elementslitions at the nozzlésuch a®d,) but are independent of the
yields some (limited in three-dimensionsoverhead for jet exit Reynolds number. In our simulations, with a fixed
choosing a high enough spectral resolution inside the el@nitial velocity profile (the samed,), we observed that for a
ments. We tested whether the number of collocation points isarying exit Reynolds number, different downstream evolu-
adequate to resolve such a shear layer by computing thiions of the local jet parameters are obtair{€dy. 3). Note
steady velocity profiles of the unperturbed unstable flow givthat for z/D>0.5 this variation is within the range<5R/©
ing rise to the unsteadiness. This is quite easy because only<al2 reported by linear stability analy$i¢o be “sensitive”
short simulation is necessary for eliminating the numericafor the selection of the most amplified unstable moBéH
transients. We ran simulations at Reynolds numbers=5: m=1 is the most amplifiedR/®~12: m=1 andm
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35 - 0.30

sof

25

20 "
RI® 0.15
NORDER =9 FIG. 4. Radial and azimuthal distribution of spectral elements at the inflow
— ﬁ/@ gej:gz ] ob section for the tested grids. From left to riglgtid 1, grid 2, grid 3

—*—— © Re=300 -0.10
—2—— R/© Re=300 1
—®— 0o Re=200
—O0—— R/® Re=200

refinement results in appreciable variations of the flow field
o 1 2 3 4 5 6 7 &8 8 10 only very close ¢<1.5 D) to the nozzle. If this zone is
2D excluded the mean square variation of the velocity field in
FIG. 3. Stream-wise variation of local jet parameters: local momentumthe whole CompUtational domain was found to be less than
thickness @) and ratio between the local half-width and the local momen- 1% when the resolution was improved from 7 to 11 colloca-
tum thickness R/®) for different Reynolds numbers and the same numeri- tion points. We concluded that the instability in our simula-
cal discretization(Norder=9). tion is triggered by numerical noise in this zone close to the
nozzle. This numerical noise does not result from rounding
errors and does not introduce any artificial randomness. The
=0 are equally amplified In addition, the local Reynolds instability is forced by the discontinuities of derivatives at
number Rg = (V,)(2R)/v slightly varies along the axis, Spectral element interfaces, which have been recogiiizéd
compared to the inflow Reynolds numkeraximum 15% of  to tend to force numerically simulated hydrodynamic insta-
variation). Consequently, we expect, from the predictions ofbilities in wakes.(In the present case they introduce an arti-
the viscous stability analyst$,that in the considered range, ficial recirculation in a very confined neighborhood of the
the exit Reynolds number is an important parameter in thénflow.) This situation is much the same as in experiments,
selection of the most unstable mode. where the onset of instationarity depends on the level of
We also checked how for a given Reynolds number theexperimental noise. Indeed, it has been recogfitteat cold
profiles vary with increasing discretization accuracy. Al-jets are convectively unstable and act essentially as noise
though, at the inflow boundary with tap-hatvelocity pro-  amplifiers. The critical Reynolds number has thus not much
file, the obtainedR,/®, ratio varied quite considerably sense if we do not focus on the problem of how the instabil-
(from 20 with 7 collocation points to 26.5 with 9 points and ity is triggered.
40 with 11 pointg, as close ag=0.5D downstream of the The mechanisms of instability generation in experimen-
nozzle, the R/®)(z) curves become superimposed. AsM.5 tal devices are of various origihand generate a large scatter
corresponds to less than one wavelengthout 0.® — see  (>50%) in the measured parameters such aspteferred
Fig. 8 of the Kelvin Helmholtz instability evidenced &e  Strouhal number. The fact that, in our simulations, the Nor-
=500, the instability is only weakly sensitive to this ex- der parameter yields a varying numerical excitation has been
tremely local differencésee Ref. 18 Indeed, when théop-  verified for the simulation aRe=500. The same scenario of
hat profile was replaced by a hyperbolic tangent feg.(1)]  the flow evolution(see Section 1Yis found for Norder7, 9
with Ry/®¢=23.6, no appreciable difference in the dynam-and 11. Thepreferred Strouhal number varies by, at most,
ics of the simulated flow resulted. This explains why a quali-22%, and remains within the experimentally reported range
tatively very similar behavior to that described in Section IV of variation (see Table Ih Note that this variation is not
(9 collocation points usedcould be obtained with only 7 monotonic as a function of the Norder parameter, suggesting
collocation points. that it results from local numerical perturbations rather than
The ultimate test of the discretization accuracy is thefrom the increase of the overall accuracy.
sensitivity of the instationarity threshold and of the critical Purely hydrodynamic origins might be investigated nu-
frequency to the mesh improvements. All mentioned dis-merically, but the fact that the zone of the instability genera-
cretization parameters have been tested on this basis. Thien is confined in the shear layer close to the nozzle shows
results for different test cases are presented in Table la. Thibat resolving such details represents a further qualitative
corresponding radial and azimuthal distribution of spectraktep going beyond the scope of this paper. As a result, the
elements is presented in Fig. 4. simulations presented in this paper have to be considered as
As far as the sensitivity of the flow to the mesh refine-representing with about 1-3% accuracy the space—time evo-
ment in the close neighborhood of the nozzle is concerned, lution of a jet in a domain extending roughly from 1.5 D to
appears that its influence on the critical frequency is moder20 D downstream of the inflow. The instability is generated
ate. In contrast, the threshold of the instability onset in-by a numerical noise of a controlled levédy the Norder
creases quite considerably if the resolution is increased. Tparametérwhich allows the investigation of a single param-
understand that, we investigated how the flow field varies ifeter influence — the Reynolds number — on the unstable
the spatial resolution is improved. We found that the meshmode selection.
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C. Boundary conditions and tests In the early stages of the jet evolutigrolling and pair-

On the circumference of the domain and at its outflowmg)’ coherent structures with obvious regularity in time and
section, the normal pseudo-traction and the tangential vigzPace appear,Sand the vorticity magmtqdjel][ is sufficient
cous stress are set to zero-f+L/Re?,V, =0, 4V, to detept thenit _On the other h_and, dgtaﬂs of the next stages
+4,V,=0, whereL and| denote the normal and tangential of the jet evolution(secondary instability and furthecan be

directions to the boundary surfacét is assumed that under obtgined only if the gylindrical compongntg of the vorticity
proper usage, the termRé&J, V, =0 is negligible at the (qmmgthaélwg, radial w, and longitudinal ;) are
boundary and therefore the pressure is set to the ambie?ﬂsuahzed' . : .
(zerg pressure at the boundaries. These conditions allow a In the following sections, coherent structures are visual-

volume exchange with the outside of the domain. This ap_lzed by means of iso-surfaces of different components of the

peared to be very useful not only to simulate properly thevorticity. A useful indicator of the choice of the component

outflow of the domain but also to respect the stream—wiséo be visualized is provided by the time evolution of the root

momentum conservatiofand thus the mass non conserva-1€an SquareRMS) of the instantaneous velocity and vortic-

tion). Tests have shown that, unless a prohibitively IargeIty components, defined by the operator

domain diameter is used, the confinement effect of the usu- 1

ally used slip-wall lateral boundary conditions is non negli-(E¢)(t)= \/Z—f f f d%(r,0,z)rdrdodz.  (4)
7TRm meax

gible. With these computational domain dimensions and a

boundary conditions, the flow was found practically insensi-it was seen that all velocity and vorticity components are

tive to a further lateral and downstream increase of the simuequa”y important in the flow analysis. We have to take into

lation domain. _ _ ~account that the size and the number of identified vortices
The absence of spurious reflections at the boundariegiepend on the selected threshold of the identifier; we consid-

which can affect the solution and even trigger globalgred an intermediate low levéB5% of the maximum abso-
instabilities® was verified. The first numerical test verified |yte valug in most of the following visualizations.

that the vortex structures leave the computational domain  The pressure minimum criterion, successfully used by
without reflections. Figure 5 shows the establishment of thesrinsteinet al?? to identify vortex rings in the transitional

flow field for a Reynolds number of 200. The calculation region of an axisymmetric jet, was also tested. The pressure
starts from uniform initial conditions. The leading vortex drops below ambient pressure in the core of the ring and
ring travels and expands within the computational domairyises above ambient pressure between the rings.
and finally leaves it properly, without reflections. Without
additional forcing, a steady state is obtained at this Reynold
number. In the second numerical test, the computational doR—/' HIGH SUPERCRITICAL REYNOLDS NUMBER
main was shortened by the last layer of spectral elements, For a Reynolds number of 500, the unforced jet flow
yielding a domain ol ,=15. The highest Reynolds number simulations use as initial conditions the axisymmetric and
considered in these simulations was chosen to put to the testeady flow field obtained foRe=200. The simulation pa-
the influence of the stream—wise length of the computationalameters arel ,=20, 65 spectral elements, 9 collocation
domain. The vorticity fieldgFig. 6) are shown to be identi- points and aop-hatinflow velocity profile.
cal for the two calculations for a long simulation time. For  After a rapid relaxation of the numerical transients, the
t=15 andt=53.6 identical structure of the flow can be ob- initially axisymmetric flow is spontaneously destabilized by
served in the two domain$=74.3 corresponds to the onset the “numerical noise” and it undergoes a Kelvin—Helmholtz
of chaotic regime in both domains; for=-94.5, fairly devel-  primary instability. The subsequent evolution of the simu-
oped large eddies have comparable behavior in both ddated jet flow provides a qualitative assessment of the forma-
mains. In conclusion, the vorticity fields are identical for thetion and dynamics of large scale vortical structures described
two calculations for a time period equal to 2.5 times thein the widely accepted scenario for high Reynolds numbers.
residence time of the vortex structures within the domairThe most important stages of the flow evolution from a lin-
considered (=~ 75), corresponding to the onset of an overallearly unstable mode to the chaotic stage are detailed and
vortex break up. compared with previous findings of “temporal” simulations
in the following subsections.

A. Vortex roll-up
lll. FLOW VISUALIZATIONS _ _ o
At this Reynolds number, the steadyasig flow is lin-

Two intuitive indicators of vortices are easily at hand early unstable, the linear mode being axisymmetric of the
after a numerical simulation: the pressure minimum and th&elvin—Helmholtz type. The local basic velocity profiles in
vorticity surfaces. Jeong and Husssiproved that these cri- the near field can be well approximatéfig. 2) by a tanh-
teria are often necessary, but not sufficient to detect a vortexelocity profile. The initially slight linear growth of the en-
core, especially in wall-bounded or turbulent flows. How- ergy content of the radial velocitiv, (Fig. 7, upper plot
ever, the instantaneous vorticity field provides an effectiveand the very small level of the stream-wise vorticiyo,
means of free shear flow visualization and coherent structuré~ig. 7, lower plo} correspond to the roll-up of coherent
identification, comparable with more complicated methodsvortex rings, characteristic of the saturation of the Kelvin—
when we focus on the transitional region. Helmholtz instability. Frames of the early stages of the flow
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Re=500 t=74.3

Re=500 t=53.6

Re=500 1=94.3

FIG. 6. Test of the influence of the stream-wise size of the computational domarefe500. The calculation used as an initial condition the steady flow
field obtained forRe=200.

(Fig. 8 show that rings emerge at an essentially fixed diswhich is in good agreement with the experimental values for
tance from the nozzle edge,, ~1.8. The sequence of the the Strouhal number of the most amplified frequency in the
flow evolution, from which the frames in Fig. 8 are ex- jet shear layer, with values scattering from 0.01 to 0.023.
tracted, permits us to determine the convection velocity offhe theoretical value for the inviscid shear layer of finite

the vortex rings and their frequency of emergence. The conthickness, characterized by a hyperbolic tangent velocity
vection velocity is estimated af,~0.48, very close to the profile, is 0.017°

theoretical value of 0.5A new vortex ring is generated with The Kelvin—Helmholtz instability reaches a level at
a regular period of approximately 1.7, which gives a rollinghich non linear effects set on at around 20 (Fig. 7).

frequency of 0.59. Spectra of the axial velocity signals taken,ortices with obvious regularity in time and space can be
at two different spatial locations on the axis and for the simu-yserved in the frames of Fig. 8. At this stage of the flow
lation time range 5:t<110(Fig. 93 show a peak very close g\ q\ution, the vorticity, essentially constituted by its azi-

to this value, atf,=0.62. Figure 10 shows that the vortex n,;ihal component, concentrates into ring vortices while the

pairing begins upstream of the points at which the spectra 0rgraid regions become depleted. The flow field is still axisym-

Fig. 9a are taken, therefore these spectra are already dOnHietric; Evy, which evaluates the departure from axisym-
nated by the peak corresponding to the half-frequerfigi2} metry (Fig. 7), stays two orders of magnitude beldiw, . It

(see the next subsectiofo make a comparison with known should also be noticed from Fig. 7 tHab , andEw, start to

theoretical predictions, let us assume that the momentum . . .
thickness obtained D =0.5 is pertinentFig. 3. In view grow beforet=20, meaning that the secondary instability

of the fact that the simulation has been found only WeaklysFa.‘rtS to develop before the saturation of the primary insta-
sensitive to the discretization, we consider the station wherB'“ty' . . .

the effect of the discretization was already found as negli- . In _Sec_. Il we _mentloned that using a less z_;\ccurate spa_tlal
gible. This yields a®~0.029 value. The Strouhal number discretization defined by only 7 collocation points per spatial

based on this momentum thickness and the jet exit velocity i§iréction of spectral elements allowed us to have a qualita-
tively correct picture of the flow behavior. The lower reso-

lution tends to over predict the frequencies. Spectra mea-
S%=f0® =0.018 sured in the same points as in Fig. 9a indicated a higher
Vo ’ Kelvin—Helmholtz frequencyf,=0.806. The corresponding
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FIG. 7. Re=500. Temporal evolution of the energy contents in the velocity and vorticity components. The of€jdtogiven by eq.(4).

Strouhal number, based on the momentum thicknegsélat quent flow visualizations, as shown in Fig. 10, allow us to

=0.5, is then 0.023. identify the location of the vortex pairing, defined as the
place where the two interacting vortices are vertically
B. Vortex merging aligned. In Fig. 10, we can consider that the pairing process

Flow visualization experimertS have demonstrated 'S achieved in framee) and, consequently, the merging lo-
that a single vortex—pairing process occurs in the Reynold§ation isz~3.6.
number range $10°<Re<10". Our simulation forRe Frames(a) and (f) are nearly identical, suggesting that
=500 also shows a single vortex-pairing process. Subsdghe merging occurs with a regular period of approximately
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10 (a)t=12.53 location (=1), the feedback formula gives, =2V,./f;
X =2-0.48/0.3%3.1, a value reasonably close to that found in

2 our visualizationsz; ~3.6.
Z

C. Secondary stream-wise structures

0.5

0.0

0 At the relatively high Reynolds number considered in

1.0 = = = this section, the linear axisymmetric mode is completely de-
o N 0 stroyed by non linear effects. The subsequent frames of the
flow evolution (Fig. 11) show that pairs of counter-rotating
stream-wise vorticity ¢,) filaments form in the braid region
between two consecutive vortex rings. Recent experimental
studies! and “temporal” direct numerical simulatioAs?*
offer a complete picture of the generation and evolution of
such structures in constant-density jets.
Our simulations are in very good qualitative agreement
S S with these previous studies. The vortex rings become more
distorted as they travel downstream and are subjected to azi-
10 (c)t=24.17 muthal perturbations. These perturbations are amplified in
the vortex sheet connecting two vortex rings and lead to the
onset of stream-wise vortex filamertsThe space—time
56 ) growth of the stream-wise filaments can be observed in Fig.
‘ 11. The stream-wise vorticity is stronger downstream of the
e vortex ring[Fig. 11, framg@)], as the inviscid simulations of
Martin and Meiburd® showed. The vortex rings remain com-
pact and the filament growth is inhibited by vortex pairing
[Fig. 11, frames(b) and (c)], a process also observed in
FIG. 8. Re=500. Roll-up of th_e_ coheren_t vortex ring phase. Instantaneousmixing Iayers‘.‘o This stage corresponds to a linear growth of
surfaces of the constant vorticity magnitude at a threshold of 35% of the . . .
maximum value [|/|],,a=0.35). the energy content in the azimuthal velocityu(;) and the
stream-wise vorticity Ew,) (Fig. 7,t>60). Betweert=60
andt=84, the values oftv ), (Ew,),(Ew,) are nearly con-
3.02, giving a frequency of 0.33. This frequency is near thestant, marking the saturation of the secondary instability. It
highest peak observed in the spectra of Fig. 9a, located &hould be also noted that the peak of stream-wise vorticity is
f1="10/2=0.31, suggesting that the low frequency peak ob-about 20% of the peak of azimuthal vorticity and in Fig. 11
served in the spectra corresponds to the frequency of paithe iso-surface levels were chosen accordingly. In plane mix-
ings. This finding is in very good agreement with the theo-ing layers, the measured ratio between the peaks of the
retical and experimental results, showing that vortex pairingstream-wise and span-wise vorticity varies betweerf'7%
is associated with the saturation of the first sub-harmonignd 30942
fo/2 of the most amplified frequency in the jet shear ldyer.  The spatial distribution of the stream—wise vorticity is
In terms of the Strouhal number based on the jet diameteshown in Fig. 12 fot=66.81[corresponding to framé) in
Stp=f,D/V,, the low frequency modulation giveSt,  Fig. 11]. The longitudinal cut passes through the jet axis and
=0.31. This is in the range 0.245%,<0.5 in which the the core of a negative filament and the cross-stream cuts are
preferred jet modés known to lie>™’ chosen in the region of the maximum growth of the stream-
We can observe simultaneously the vortical structuresyise filaments. The filaments originate from the upflew
before and after merging. The downstream vortex ring growspeed periphery of the upstream rir{gut 8, extend through
by viscous diffusion and entrains the smaller upstream ringhe braid region(cut b) and bend towards the lowehigh
by vortex induction(Fig. 10. The space—time regularity of speed periphery of the downstream ringut ¢. New fila-
pairings is not a result of numerical periodicity like in “tem- ments start from troughs of the downstream distorted ring,
poral” simulations. It can be explained by a feedback pro-which loses its coherence and breaks into laleesd). In the
cess, generated by pairings themselves, responsible for th@re of vortex rings we can also observe the presence of
re-initiation of new vortex roll-ug®® The feedback stream-wise vorticity of opposite sign to the stream-wise
formula®®” describes how the pressure perturbation generyorticity on the exterior of the rings. The stream-wise struc-
ated by vortex merging will propagate upstream and forceures in the ring core region are more circular than those in
new vortex pairings. In a low speed jet, this formulathe braid region which are elongated in the radial direction.
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0.5

-1.0

) S ) S S =)
o — o ™ < wn

become$ These features agree with direct simulations of round
D jets evolving in tim&®? Temporal simulations show that the
\}—zi=2 ; (5) number of pairs of stream-wise filaments is determined by
y4o

_ the imposed initial azimuthal perturbation. There is, so far,
f,=1,/2' andz are the frequency and the location of i no evidence of a “preferred” azimuthal mode. This is con-
pairing, V, is the convection velocity. For the first merging firmed by Cohen and Wygnanékiwho show that resonant
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interactions of different azimuthal modes may generate/ indicating that the build up of the secondary stream-wise

modes with new azimuthal wave-number. Liepmann andstructures has finished. The dominance of the stream-wise
Gharil! reported that the number of stream-wise structurestructures downstream of 4 diameters is obvious in Fig. 11,
increases with the Reynolds number; for a Reynolds numbefame (c). The stream-wise filaments are stretched by the

of 3000 a mode 6 was observed. In our unforced simulationshigh field strain and are pulled outward from the jet axis by

we observed a coherent azimuthal mode 4, which is probablyhe moving primary structures. Downstream of the potential

triggered by the azimuthal distribution of the spectral ele-ggre they become strong enough to dominate the flow field
ments. Further numerical tests using a refined computation@ame (d)]. A viscous diffusion process, identical to that

domain in the azimuthal directioitgrid 2 from Fig. 4 4¢ting on the vortex rings, is responsible for the growth of
showed the same distribution of the pairs of stream-wise filaz,o stream-wise structures as they are convected down-

ments, but their azimuthal symmetry was more rapidly bro'stream. The azimuthal symmetry of the stream-wise fila-

ken. We can conclude that the nume_rlcal perturb_at|on Intro; ents distribution, observed in the previous frames, is lost.
duced at the spectral elements interfaces is a sm . . )
he vortex rings, continuously generated at the inflow

amplitude, broadband excitation and, consequently, it ca oundary, become distorted at locations closer and closer to
trigger only a “natural” mode** In this latter simulation, the the nozz)(é

number of pairs of filaments does not correspond to the num- he fi idlv b | I q
ber of spectral elements in the azimuthal direction and the _ 1he flow rapidly becomes too complex to allow a de-
observed mode 4 is thus one of the possible unstabltiled description of the development of all its features. The
moded?3 broadband character of the spectrum of the simulated veloc-

ity signal in Fig. 9b indicates that the flow is already chaotic.
Nevertheless, a last stage, involving large coherent struc-
tures, could be observed before the transition to chaos: it is
After t=80 a new growth of the energy content in the the vortex reconnection between tilted rings, shown in Fig.
azimuthal and radial vorticity components is observed in Fig13 in terms of iso-surface of vorticity magnitude and selected

D. Vortex rings reconnection and vortex breakup
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1.0 _ vortex lines were circular in the vortex rings cores and pre-
Ay t=30.03 sented loop deformati i d th d-
05| M g — , . p defc ions wrapping around the correspon
' ing undulating ringsa similar picture is presented in Ref.
oof | ] & 28, Fig. 7.
‘ 2 ; Based upon successive visualizations of the nonstation-
o5 b - ary field, we can speculate that the reconnection mechanism
Y5 5 v 6 w & @ & % is initiated by the entrapment of the stream-wise filaments
°c ° - - & e 0§ ¥ v w during the pairing process. Figure 14 shows the evolution of
10 (b)t=31.28 the fusion stage of the pairing process. Before the saturation
05 M —TT of the 3D secondary instability, when the filaments are weak,
‘, q the vortex ring fusion is axisymmetric and the filaments are
&e ] ] . : destroyed by pairingt=77.16. At later times, the stream-
05 ~ w Q wise filaments structures are strong enough to persist after
0 ‘ the pairing(t=99.5. The breaking of the azimuthal symme-
9 8 o w g w9 v 2 9 2 2 try of the filaments distribution induces an obvious tilting of
9.0 the rings before pairingt=120.48. Once the tilting is pro-
(c)t=31.77 duced, the induction mechanism presented by Broze and
ol a n ﬁ, Hussaift® (see their Figure J3explains its amplification and
0.0 ' { \ the entanglement of the vortex rings. A cut-and-connected
\ procesgsee Figure 15 from Ref. 44during which two ad-
0.5/ i u » joining vortex structures are cross-linked, will lead to the
A reconnection between the partially paired rings and a newly
S 8 = - d d & ® ¥ ¥ v 9 generated and incompletely formed ring near the nozzle. The
10 resulting spatial configuration of the vorticity fieldresented
’ (d)t=32.24 in Fig. 13 has the aspect of a large helical-like structure, and
o.5; [—. o could explain the “non deterministic” switch from the two
i fundamental modes{=0 andm=1) observed in some ex-
' periments at a fixed high Reynolds numBgr.
-0.5) L4 Vortex rings, tilting and entanglement were already ob-
- ;ervc_ed in “temporal” simulqtions of_low speed compressible
2 2 2 v 2 »w 2 & 2 2 3 2 jets (in Ref. 47, p. 11pand in experiment® The source of
16 the initial tilting near the nozzle is not clearly explained in
(e) t=32.61 either reference. Broze and Hus$aisupposed that the feed-
05 M ~% ~ back introduced in the jet flow after the pairing will favor the
0.0 { 5 upstream propagation of the azimuthal perturbations which
, - can compete with the axisymmetrically forced disturbances.
-0.5 ~ ~F In our simulations, the entanglement and the reconnection
A occur between strongly deformed rings at the points of the
S o - - ad a © o ¥ ¥ 86 © connection with the filaments. Huss&irobserved in plane
1.0 (f) t= 33.05 mixing layers that, as the rikisquivalt_ant to filameqts in our
05| I g — case are wrapped around the rolls(rings), vortex lines are
R - turned and aligned with the flow, causing large local coher-
0.0 i | ) ent helicity. The local helicity could be responsible for the
05 dy <o initial tilting of the rings. In the same time, the points of
interaction between rolls and ribs are evidenced in plane
s e e g w9 w9 w» mixing layers as the sites of strongest mixing and three-
o o i ~ o o [s2] (3] < < 0 w

dimensional turbulenc&*®The small scales transition is be-

FIG. 10. Re=500. Vortex pairing. Instantaneous surfaces of the constantyonq the scope of the present paper and needs further inves-
vorticity magnitude at a threshold of 35% of the maximum value. tigations.

V. HELICAL MODES AT LOW REYNOLDS NUMBERS
vortex lines. It should be remarked that the corresponden

of the formerly observed structurdsings and filamenijs
with concentrations of different components of the vorticity Keeping the same resolution as in the previous section it
field (wy and w,) is no longer valid. Vortex lines starting was possible to observe the unstable jet at Reynolds numbers
near the “debris” of vortex rings have largspira) incur-  exceeding only slightly the value of 300. At this Reynolds
sions in the stream-wise direction, indicating that the topolthumber the helical modes dominate the instability. The basic
ogy of the vorticity field has changed as a result of recon<difficulty in investigating the instability development for
nection. Before reconnectiotfigure not showjy the same only slightly supercritical Reynolds numbers is the necessity

c . : .
K. Primary instability onset
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FIG. 11. Re=500. Stream—wise vortex filaments. Instantaneous surfaces of constant azimuthal \grigjtystream-wise vorticityfwhite for positive and
black for negativg at a threshold corresponding to 35% of the respective maxima and minima.

to simulate very long transients. For this reason the spatiadulting from the stability requirements by a factor of 2 as
discretization accuracy was decreased to 7 collocation pointsompared to the simulation in Section (gee also the nu-
per spatial direction for most simulations. This more thanmerical tests in Section Il B Moreover, the increased nu-
halves the number of nodes and increases the time step rmerical noise allowed to lower the Reynolds number to 225.
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FIG. 13. Re=500,t=131.4. Vortex rings reconnection in helical structures.
An instantaneous surface of constant vorticity magnitude at a threshold of

FIG. 12. Re=500,t=66.81. Spatial distribution of the stream-wise vorticity 35% of the maximum value and selected vortex lines.

(black for negative and white for positileA longitudinal cut through the jet

axis and the core of a negative filameft=(15°). Transverse cuts at=2.8

(a), z=3.5(b), z=3.93(c) andz=4.5(d). The lines in(a) and(d) represent  discretization accuracy. The oscillating character of the in-
contours of the azimuthal vorticity at 35% of the maximum and mark thestability shows that it is of the Hopf type.

vortex rings.

B. Primary instability development and structure

As far as the capture of the smallest structures of the flow is  The obtained instability was allowed to develop to see
concerned, the decrease of the used resolution is compatibilee nature of the attractor that is reached. In spite of a rather
with the increase of the size of the small structures due to thdetailed investigation of very nearly critical Reynolds num-
decrease of the Reynolds number from 500 to 225. bers, a limit cycle could not be observed. Instead, a limit
The instability threshold was determined by studying thetorus dynamics has been evidended). 15 even very close
instability dampening or amplification of an already unsteadyto the instability threshold. Note the perfect Hopf-like insta-
flow. For this purpose, a slightly perturbed unsteady flowbility onset in the early stages of the instability development
was obtained by setting a rather significantly sub-criticalwhich is ending, however, in a quasiperiodic final state. Note
Reynolds number and letting the instability fluctuations ob-also the level of oscillation amplitude of only 0.04 of the
tained at a significantly supercritical Reynolds number settlénflow velocity which is obtained due to the proximity of the
to a level of less than 1C of the inflow velocity value. Then instability threshold atRe— Re.;i; )/Re.i; =2%.
the Reynolds number was progressively increased until am- To better understand the reasons of such a behavior, we
plification became perceptible. This allowed us to obtainanalyzed the flow by extracting the Fourier components of
rather rapidly an acceptable approximation of a slightly perthe instability(see Refs. 30, 4%y the method described in
turbed basic flow at nearly critical Reynolds numbers suit-Ref. 50. The Fourier analysis was carried out over the time
able for the investigation of the instability onset and devel-corresponding to one oscillation. The angular frequency of
opment. the linear unstable mode is strictly the same throughout the
A perturbation of such a low level can very well be flow. Close to the instability threshold, the amplification rate
considered linear. At Reynolds numbers slightly exceedinds so small that, in the linear regime, the amplification over
Re=200 the instability was found to be characterized byone oscillation period can be neglected and a standard Fou-
oscillations with a non-dimensional frequency of 0.169, i.e.rier integration over one period can be used. In the saturation
roughly half thepreferredfrequency found aRe=500. The regime, more than 40 oscillations per beating have been
amplification rate was found to be very weak and the lowfound (Fig. 15, which allows us, once again, to consider the
level could be maintained for sufficiently many instability modulation negligible during one single oscillation.
oscillations to determine the instability threshold without dif- The flow field decomposition has been added to the
ficulty. The latter was found to bRe.,;;~ 220 for the chosen original code and yields the Fourier components of all veloc-
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+ o

Ca(F,6,2)= 2 Com(r,2)e”'™, ®)
m=—w
with the coefficient,, , calculated as
1 2m imo
Gunl1.2)= 5= | en(r, 0,206 a0 ©
The final decomposition of the flow field can be ex-
pressed as
v(r,0,zt)= >, cym(r,2)eMt=mo, (10)
n,m=+c

The moden=0,m=0 contains the basic axisymmetric
flow field and, close to the instability threshold, only a small
non linear correction. The most relevant information about
the instability is provided by the fundamenta+ 1, that can
be assumed to be practically identical to the linear mode so
close to the instability threshold.

The fundamental component of the signedgtermined
by letting n=1) accurately describes the linear unstable
mode and its analysis shows that it can be identified as a
superposition of two counter-rotating helical modes=(1
and m=—1) quantified by the coefficients, ; andc, _;.
t=120.48 \ The “raw” fundamental fluctuating flow field, representing

}—z practically the total fluctuation field, and the individual
modesc, ; andcy _; are shown in Fig. 16 in terms of iso-
surfaces of stream-wise vorticity. The growth of a vortex
helix corresponds to the region of negative stream-wise vor-
ticity in Fig 16. Owing to the helical symmetry, the stream-
wise vorticity in the braidthis time, the region between two
loops of the helix has an opposite sign and appears to spiral
around the concentrated negative region of stream-wise vor-
ticity. Note that the two modes have different magnitudes.
The helical structures are similar to those found by Martin
FIG. 14. Re=500. Fusion stage of the vortex ring pairing for different and Meiburél in their “temporal” vortex filaments simula-
times. Instantaneous surface of constant vorticity magnitude at a thresholdons. They also reported that for a ratio Rf® =22.6 the
of 35% of the maximum value. The visualized domain extent is<z.5 (forced single helix is stable and avoids azimuthal instabil-

<35. ity. This is also the case in our unforced simulatiofd®
~20): no concentrated stream-wise braid vortices were ob-
served.

ity components and of the pressure at each node of the dis- The individual modes; ; andc; —; can be identified as
cretization. Considering that at each node of the computathe helical modes predicted by the linear stability
tional domain the signals have a periodicttyin timet, the  theory!®1®“If we neglect the stream-wise dependence of the
velocity and pressure fields (,v4,v,,p) can be expressed mode envelope and wavelength due to the non parallel char-

as a Fourier series: acter of the basic flow, it is possible to write, approximately,
g . = —ikz
v(r,0.zt)= 2 cy(r,0,2eM, (6) Gun(F,2)= Com(r)e (v
n o

= where k=2m/\, is the stream-wise wavenumber, and the

wherew=2/T and the Coefﬁcientsn have been Computed decomposition of the fluctuating flow field can be expressed
as as

1/(7T ' ~ St g
cn(r,e,z)=ffo v(r,6,z,t)dt. ) V(Ir,(%z,t)=m=2il Cim(r)e'@t=m=kdpcc. (12)

Due to the original axisymmetry of the flow, axisymmetry The coefficients'Elym(r) have been fitted to the calculated
breaking can be expected to occur via an onset of harmoniadiscrete coefficients at a fixed point chosen¥.8own-

in the azimuthal directiord. The Fourier modes obtained stream of the nozzle. The resulting “parallel” fluctuating
above have therefore been further decomposed along the afield is represented in Fig. 17. It offers a qualitatively good
muthal direction: description of the “real” fluctuating flow field in Fig. 16. If
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FIG. 15. Re=225. The azimuthal velocityu(;) signal at a location in the mixing layéx=0.507,y=0, z=2). Signal in the linear regimébovg and in the
asymptotic statébelow). The initial condition is the stationary flow field calculated f®e=220.

bothm=1 andm=—1 modes were of similar strength, the regime thus result from the initial conditions. This is easily
pattern would be an alternating series of oppositely shadedonfirmed by studying the fluctuating field structure for vary-
surfaces, disposed in sinusoids or axisymmetric shapes dag initial conditions using the flow field decompositi¢i0).
pending on the angle of visualizatiofrig. 18. This last In our first simulation both modes were represented since the
structure has been reported by Yodaal® in the self- very beginning. We then created a new initial condition con-
similar region of a round jet. taining only the first helical mode by keeping only the terms
The linear theory shows that both modes are eigensolwe, 5, representing approximately the basic flow, and,,

tions of the linear eigenvalue problem associated to the samepresenting only the counter-rotating helical initial perturba-
unstable eigenvalue. The phase difference and the relativton, in the sum(10). The obtained velocity oscillation signal
magnitude of the two counter-rotating modes in the lineaiin the linear regime and in the asymptotic state appeared to

be identical to that in Fig. 15. The presence of modgs;

was monitored by computing, for each analyzed pefiod

Helical mode m=1 Helical mode m=-1 Fluctuating field

Helical mode m=1 Helical mode m=-1 Helical modes (m=1)+(m=-1)
120

11.0

0
10 A 0

FIG. 16. Re=225. Decomposition of the fluctuating field in helical modes.

From left to right: modem=1, modem=—1 and the fluctuating field. ~FIG. 17. Analytical “parallel” model of the helical modes= =1 and the
Surfaces of constant stream-wise vortidityhite for positive and black for  resulting flow pattern from their superposition. Surfaces of constant stream-
negative at a threshold corresponding to 35% of the respective maxima andvise vorticity (grey for positive and black for negatiyehe same threshold
minima. is used in the three frames.
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FIG. 20. Re=225. Surface of the constant pressure fluctuation. The same
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11 threshold is used in the three frames and it correspongs=td/3p,,,;, cal-
neaséen vy mewnanon  x culated fort=2172. The initial condition containing only the first helical
Y S modem= 1. Different times corresponding to those shown in Fig. 19.
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FIG. 18. Flow pattern obtained by superposition of the two theoretical he-

lical modesm= *1 of the same strength. Surfaces of constant stream-wise

vorticity (grey for positive and black for negatie helical counterpartn=—1. The growth of the latter passes
also through a maximumnt £ 1000). Finally the modes settle

L to a constant level which is not the same for=1 andm
the three components of the mean kinetic energy of the he- —1. These two observed modes correspond to the same

lical modes, which can be evaluated in the spectral space %?genvalue, i.e., they have the same oscillation frequency in

5 the linear regime. The same final levels have been obtained

Km(v)= fQ|C1,m| dQ, 13 in this simulation and in the first one where both modes were
present in the initial condition. Iso-surfaces of low pressure

where () is the computational domainn==1, andVv  calculated in the fluctuating field at the three mentioned in-
=(vr,v4,07). Applying this analysis for different periods stants are represented in Fig. 20. We can conclude that the
considered at different times of the simulation, we can drawsbserved beatings are explained by a slight frequency differ-

the time evolution of the kinetic energy of the two helical ence between the modes=1 andm=—1 resu|ting from
modes. The two calculation cases display similar evolutionsaon-linear effects in the saturated state.

as shown in Fig. 19.
The initial helical moden=1 grows linearly and reaches
a local maximum levelt=850). The subsequent decay of its VI. FINAL DISCUSSION AND CONCLUSIONS

energy is related to the emergence of the counter-rotative . . .
9y g Much of the literature concerning the near-field dynam-

ics of round jet flows mostly emphasizes the growth and
evolution of axisymmetric disturbances. The linear inviscid
analysis of Batchelor and Gifl and Mattingly and Chantj}
however, pointed out that the first helical mode has amplifi-
cation characteristics identical to those of the axisymmetric
mode. The viscous linear theory of Morfisfurther sug-
gested that the selection of the axisymmetric or the helical
mode is very sensitive to initial perturbations like the local
unsteady pressure field at the lip of the jet. These specula-
tions were confirmed by the experiments of Coreal*®

who indicated that the observed switching between these two
fundamental modes is the result of the response of the jet to
randomly arriving axisymmetric or non-axisymmetric distur-
bances at the jet lip. They also showed that the axisymmetric
and the helical modes do not exist neither at the same time
nor in the same place. Most of analytical and experimental
studies suggest that the ratio of the nozzle diaméderto

102

10* E

10° L

L L 2 L | ) ) L L | L
0 500 1000 1500 e - ) i
time the initial momentum thickness9(y) is the parameter indi-

cating which of the axisymmetric or the helical mode is the
most amplified in the near field of the round jet. As the shear

lation starting from an initial condition containing only the first helical mode layer grows.(i.e., D/0, dimin.ishes, th_e helical mode be-
m=1. comes dominant over the axisymmetric mdde.

. . 1
2000

10kl .
2500

FIG. 19. Re=225. Time evolution of the components of the kinetic energy
evaluated in the spectral space. The operd9iis given by eq(13). Simu-
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In the present study, for a “top-hat” inflow velocity Champagnereporting the shift of the jet shape from a helix
profile, we showed that the ReynoldR¢=V,,D/v) number to a train of axisymmetric waves, when the Reynolds number
is the parameter selecting the most amplified unstable modés increased from 100 to 1000. A Fourier mode analysis of
when it varies between 200 and 500. Helical modes are sdahe fluctuating field allowed us to clearly identify these heli-
lected at lower Reynolds numbers and the axisymmetrical modes as responsible for the observed flow pattern. The
mode at higher Reynolds numbers, as expected from the preelative strength of these two modes is determined through-
dictions of the viscous linear stability theory analy8and  out the whole linear regime by initial conditions. In the
from experimental observationghe quantitative agreement asymptotic state both modes have well defined levels largely
with the local parallel theory obtained for mean velocity pro-independent of the initial conditions. Non linear effects then
files close to the nozzle confirm that the zone extending aletermine the frequency shifts with respect to the linear fre-
few diameters downstream of the nozzle is most importanguency. This results in beatings appearing in the velocity
for the onset of the instability. A global effect of this zone signals. This feature might be characteristic for all axisym-
results in a definite mode and frequency selection. metric flows and is to be related to the degeneracy of the

Direct numerical simulations of unforced, spatially spectrum of the linear Navier—Stokes operator giving rise to
evolving round jets offered an ideal framework for this two different unstable modes. Axisymmetry breaking thus
study; random initial perturbations occurring in experimentsleads directly to a limit torus dynamics right at the primary
are avoided and information concerning the global effect ofifurcation. An interval of Reynolds numbers was found to
the downstream structures on the instability onset is availbe characterized by such dynamics but, according to our re-
able, in contrast to frequently used “temporal” simulations. sults, the chaotic stage then appears to set in quite early.
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exit velocity yields a different initial momentum thickness, ACKNOWLEDGMENTS
in our numerical simulations the parameRi® of the in- ) . .
This work was funded by [IlInstitut National de

flow velocity profile is fixed by the finite discretization and , ! .
Environnement Industriel et des RisquédN.E.R.I.S). We

the influence of the Reynolds number, as a single parametel,r, ful for thei Nek . . d trad
can be studied. are grateful for their support. Nekton is a registered trade-

The investigation allowed us to identify the large struc- Mark of Nektronics, Inc. and the Massachusetts Institute of

tures dominating the unstable jet. For a Reynolds number O‘]f'e_chnology. ©1991 by creare.x, Inc., Hanover, New Hamp-

500 the spontaneous destabilization of an axisymmetric floﬁh're'
was investigated, providing results similar to those already
published for larger Reynolds numbers. In accordance with*H. A. Becker and T. A. Massaro, “Vortex evolution in a round jet,” J.
theoretical predictions, the onset of instability was found tozF'“'q M‘?Fh'3l* 435(1968. - .
L . . . A. Viilu, “An experimental determination of the minimum Reynolds num-
be governed by the inviscid, axisymmetric Kelvin— per for instabilty in a free jet,” J. Appl. Mect29, 506 (1962
Helmholtz mechanism. The vorticity concentrates into ring 3A. J. Reynolds,“Observation of a liquid-into-liquid jet,” J. Fluid Mech.
vortices while the braid regions become depleted. The shea‘[i4yc55,\i(ﬁ963- o B Gebhart, “A ' and | tud
: : : - : . C. Mollendorf and B. Gebhart, “An experimental and numerical study
layer :qrows_ by viscous diffusion and vortex fing merging. of the viscous stability of a round laminar vertical jet with and without
Our simulation allowed, however, to follow all the subse- pyoyancy for symmetric and asymmetric disturbance,” J. Fluid Mégh.
guent stages of transition to a chaotic state. After completion5367 (1973. o
of the vortex pairing, formation of secondary pairs of ?I- ‘_3& I\Cﬂg‘r']fzngd EAI;(.lcg%mpagne, “Orderly structure in jet turbulence,” J.
. . X . : . ui .48, .
Counter'mtatm_g Stream'WISe f”am_e_nFS in the bl’gld r€gI0Nep Hyerre and P. A. Monkewitz, “Absolute and convective instabilities in
could be obtained without any artificial perturbations. The free shear flows,” J. Fluid MecH.59, 151 (1985.
obtained quantitative characteristics of this stage of jet de-7_G- Gutmark and C. M. Ho, “Preferred modes and the spreading rates of
velopmen h h rouhal number of the vortex ringJets:” Phys. Fluids26, 2932(1983. _
elop . ent, suc‘:‘ as the ?t ouhal number of the vorte gBC. M. Ho and P. Huerre, “Perturbed free shear layers,” Annu. Rev. Fluid
sheddlng_, the “preferred Strouhal numb_er and the down- iech. 16, 365 (1984).
stream distance of vortex merging, are in good agreementA. J. Yule, “Large structures in the mixing layer of a round jet,” J. Fluid
with previous experimental and analytical results. The formlo'\é'eCh-ng 41d3(19s73- subh e and o
of the stream-wise structures agrees with that found in direct, a'yg/'r'sk,',ojaglu'ia v e';'ﬁﬂ% A 43 (13530”'% and vortex merging in mixing
simulations of round jets evolving in time. In the last stage ofiip_ Lie'pmann and M. Gharib, “The role of streamwise vorticity in the
simulation, the spatial evolution of these structures could b(leznear-field entrainment of round jets,”J. Fluid Mec5,643(1992.
visualized and the role of the stream-wise filaments in vortex %S'f; ?a,‘;ﬁ“%"’{,liﬂﬁ ﬁ E5.2(SI(“]’.9 é*ana'ys's of the stability of axisymmetric
. . . . jets,” J. Flui 14, .
ring rg-connecnons leading to the final vortex breakup couldsg "¢ Mattingly and C. C. Chang, “Unstable waves on an axisymmetric
be evidenced. jet column,” J. Fluid Mech 65, 541 (1974
The coherent structures we identified in the flow field are'*P. Plaschko, “Helical instabilities of slowly divergent jets,” J. Fluid
different for low supercritical Reynolds numbers in the im- ,/Mech- 92 209 (1979. o . ) )
mediate neighborhgod of the inztability threshold. The pri 15A. Michalke and G. Hermann, “On the inviscid instability of a circular jet
" A ) : P17 with external flow,” J. Fluid Mech21, 159 (1984.
mary instability is then characterized by symmetry breaking®p. J. Morris “The spatial viscous instability of axisymmetric jets,” J.
resulting from the presence of two equally amplified counter- Fluid Mech.77, 511(1976. - . _ o .
rotating helical modes=1 andm= — 1. This change in the J. C(_)h(_an and . Wygnanskl, The evolutlc_)n of instabilities in the aX|syT-
. . metric jet. Part 1. The linear growth of disturbances near the nozzle,” J.
selection of the most unstable mode with the Reynolds num- gy,ig Mech. 176, 191 (1987).

ber can explain the experimental observations of Crow anéJ. Dusk, Ph. Fraurieand P. Le Gal, “Local analysis on the onset of

Phys. Fluids, Vol. 9, No. 11, November 1997 Danaila, Dusek, and Anselmet 3341



instability in shear flows,” Phys. Fluids, 172(1994). 35A. Michalke, “Survey on jet instability theory,” Prog. Aerosp. Sd1,
193, E. Martin and E. Meiburg, “Numerical investigation of the three- 159 (1984).

dimensionally evolving jets subject to axisymmetric and azimuthal pertur-36J. C. Buell and P. Huerre, “Inflow/outflow boundary conditions and global

bations,” J. Fluid Mech230, 271 (1991). dynamics of spatial mixing layers,” Summer Program Report No. CTR—
20M. Abid and M. Brachet, “Numerical characterization of the dynamics of S88, 1988, p. 19.
vortex filaments in round jets,” Phys. Fluids 3 2582 (1993. %73, Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid

21p, Brancher, J. M. Chomaz, and P. Huerre, “Direct numerical simulations Mech. 285, 69 (1995.
of round jets: Vortex induction and side jets,” Phys. Fluils 1768 38R s Miller, C. K. Madnia, and P. Givi, “Numerical simulation of non-

(1994. o . _ B . circular jets,” Comput. Fluid4, 1 (1995.
#R. Verzicco and P. Orlandi, “Direct simulations of the transitional regime 39; | aufer and P. A. Monkewitz, “On turbulent jet flows: A new perspec-
of a circular jet,” Phys. Fluids$, 751(1994). tive,” AIAA Paper No. 80—0962, 1980.

%%). B. Freund, S. K. Lele, and P. Moin, “Direct simulation of a supersonic 405 \w Metcalfe. S. A. Orszag, M. E. Brachet, S. Menon, and J. J. Riley

24round turbulent shear layer,” AIAA Paper 97-0760, 1997. _ “Secondary instability of a temporally growing mixing layer,” J. Fluid
M. Gaster, “A note on the relation between temporally-increasing and Mech. 184, 207 (1987).

spatially-increasing disturbances in hydrodynamic stability,” J. Fluid 4g Tuna. S and J. Kleis. “Initial streamwise vorticity formation in a
Mech. 14, 222 (1962. . g, o . , y

- . Lo two-stream mixing layer,” J. Fluid Mect819, 251 (1996.

25 “

R. W. Davis and E. F. Moore, “A numerical study of vortex merging in 42, _ ) “ } S -
mixing layers,” Phys. Fluid®8, 1626(1985. L. -S. Huang and C. -M. Ho, “Small-scale transition in a plane mixing

28F_ F. Grinstein, E. S. Oran, and J. P. Boris, “Direct numerical simulations43|ayer’ J. Fluid Mech.119 4?‘5(1999' . . e .
. N J. Cohen and |. Wygnanski, “The evolution of instabilities in the axisym-
of axisymmetric jets,” AIAA J.25, 92 (1987). metric jet. Part 2. The flow resulting from the interaction between two
27E. F. Grinstein, E. S. Oran, and A. K. M. F. Hussain, “Simulation of the Jet. ' Y

o . . . T . waves,” J. Fluid Mech176, 221 (1987.
transition region of axisymmetric free jets,” iPfroceedings of the T. S. F. 4p K M. E. Hussain “Cﬁohere(nt st7r)uctures and turbulence.” J. Eluid
6, Toulouse, 1987, p. 10-6-1. o ' o

2F. F. Grinstein, E. J. Gutmark, T. P. Parr, D. M. Hanson-Parr, and U.45ge;:3h'173 323':(19H86' in. “Transiti haos in a forced iet: 1 .
Obeysekare, “Stream-wise and spanwise vortex interaction in an axisym- roze and F. Hussain, "Transition to chaos in a forced jet: Intermit-

metric jet. A computational and experimental study,” Phys. FI@ids515 46tTe”éy'é§?E§n't: bgl:]r;ztti)or;sn an h’\il’sﬁgegsiibs":‘"\]/l'o'j:iie'\feégg’nir%grgezbnam
(1996. S o ! o A .

29M. Olsson and L. Fuchs, “Large eddy simulation of the proximal region ?f;;; locking in unstable axisymmetric jets,” J. Fluid Me2@3 253
of a spatially developing circular jet,” Phys. Fluid 2125(1996. 3 . L

33 pugk, P. Le Gal, and Ph. Fraupi®A numerical and theoretical study 4"M. Lesieur,La TurbulencePresses Universitaires de Grenoble, Grenoble,
of the first Hopf bifurcation in a cylinder wake, " J. Fluid Mech64, 59 48|:\L/|99|\‘2. Rogers and R. D. Moser, “The three-dimensional evolution of a
(1994. CT TR g oo - .

31y pagneux and A. Maurel,“Etude numque d'instabilifss en ‘€oule- plane mixing layer: The Kelvin—Helmholtz rollup,” J. Fluid MecB43
ments ouverts confisg’ C. R. Acad. Sci. Paris. 319, 617 (1994. 183(1992.

326. P. Neitze|’ C. S. Kirkconne”, and L. J. Litﬂe’ “Transient’ nonaxisym_ 49G. Carte, J. D\(ﬁ(, and Ph. Frauhjé‘A spectral time discretization for
metric modes in the instability of unsteady circular Couette flow. Labora- flows with dominant periodicity,” J. Comput. Phy20, 171(1995.
tory and numerical experiments.” Phys. Fluids324 (1995. 503, Duk, “Spatial structure of the Baard—von Kaman instability,” Eur.
33). Dugk and Ph. Fraunje‘Validation and error estimate of a spectral _ J. Mech. B Fluidsl5, 619 (1996.
element discretization of a cylinder wake,” iNumerical Methods in  °J. E. Martin and E. Meiburg, “Numerical investigation of three-

Laminar and Turbulent Flows '93edited by C. Taylor(Pineridge, dimensionally evolving jets under helical perturbations,” J. Fluid Mech.
Swansea, UK, 1993Vol. VIII, Part 1. 243 457 (1992.

34Ch. Dauchy, J. Diek, and Ph. Frauhjé'Primary and secondary instabil- %M. Yoda, L. Hesselink, and G. Mungal, “Instantaneous three-dimensional
ity in the wake of a cylinder with free ends,” J. Fluid MecB32 295 concentration measurements in the self-similar region of a round high-
(1997. Schmidt-number jet,” J. Fluid Mect279, 313(1994).

3342 Phys. Fluids, Vol. 9, No. 11, November 1997 Danaila, Dusek, and Anselmet



