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A complex dynamics with several bifurcations within a 4% variation of the Reynolds number has been
found to accompany the transition from a steady to a chaotic flow in a homogeneous round fluid jet. The results
of direct numerical simulations are explained using a fifth order weakly nonlinear theory describing the
interaction of two counter-rotating helical modes, arising as a consequence of degeneracy of the linearized
Navier-Stokes operator spectrum. Two secondary bifurcations and three different asymptotic states are shown
to be correctly accounted for by the theory. The validity of the fifth order theory ceases shortly before the onset
of chaos.@S1063-651X~98!50404-7#
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During the transition to turbulence the existing symm
tries are broken, which leads not only to more and m
complicated spatial patterns@1# but also to an increasingly
complex dynamics@2#. Many laminar flows, such as roun
jets and wakes of symmetric objects, are axisymmetric w
respect to the flow direction. In wakes of a sphere and o
disc axisymmetry breaking has been shown to occur be
the onset of instationarity@3,4#. In jets, the linear theory
allowed to predict very early the pertinence of symme
breaking helical modes for the primary instability@5#. At
small Reynolds numbers the helical modes with azimut
wave numberm561 are the most amplified, at higher Re
nolds numbers the symmetry is conserved and the ‘‘v
cose’’ m50 mode is the most unstable@6,7#. The theory
predicts, and all experimental and numerical investigati
of round jets confirm, that the primary instability is accom
panied by an onset of oscillations at a well defined f
quency, i.e., the primary bifurcation is always of Hopf ty
in jets.

The theoretical work concerning the axisymmetry bre
ing in jets and wakes is mostly limited to the linear theo
However, nonlinear effects are of basic importance in de
mining the final state~attractor! of the instability. Recently,
we undertook direct numerical simulations of a round jet i
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chaotic regime close to its onset@8#. We focused mainly on
coherent structures appearing at the onset chaos and pe
ing in turbulent jets. We noticed that Hopf-type oscillatio
and the well known helical modesm561 characterize the
linear regime in a rather wide interval of Reynolds numb
and that, for small Reynolds number variations, the final
tractor varies considerably.

To explain this extreme sensitivity of the attractor to t
Reynolds number, we investigated the instability onset. T
common feature of experimental jets and of our simulation
that the dynamics is controlled by a single parameter:
flow-rate, quantified by the Reynolds number~Re!, based on
the maximum inflow velocity (U) and the nozzle diamete
(D). The absolute value of the critical Reynolds number h
no universal meaning by itself because cold jets can be c
sidered rather as noise amplifiers@9# due to the convective
nature of their instability@10#. In experiments, the noise gen
eration in the nozzle is poorly controlled and varies from o
experimental setup to another@9#. In numerical simulations,
the instability onset depends on the numerical discretiza
close to the inflow. The critical Reynolds number lies b
tween 220 and 320, depending on the numerical discret
tion and the numerical inflow velocity profile in our simula
tion. For the mentioned reasons we shall rather refer to
R3695 © 1998 The American Physical Society
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instability parametere5(Re2Recrit)/Recrit , with Recrit the
critical Reynolds number.

Let us assume a steady axisymmetric basic flow. In cy
drical coordinates with (z,r ,u) denoting the streamwise, ra
dial, and azimuthal directions, it is characterized by the
locity V5(Vz ,Vr ,Vu50) and pressureP fields independen
of u. The linear eigenvalue problem

lF1L@V#F1¹P50; ¹F50 ~1!

is obtained by inserting a perturbed flow-fieldv5V1eltF

1el̄tF̄, p5P1eltP1el̄tP̄ into nondimensionalized in
compressible Navier-Stokes equations. Assuming the bi

cation to be of Hopf type,l is complex and (l̄, F̄) is also
solution of the eigenvalue problem~1!. The linear operator
L@V# commutes with the derivative]/]u, which explains
why common eigenfunctions ofL@V# and ]/]u can be
sought. Let us write an element of the eigen-subspace
]/]u associated with the eigenvalue2 im (m arbitrary inte-
ger! as:Fm(r ,u,z)[fm(r ,z)e2 imu.

It is easily seen thatL@V# restricted to such an eigenspa
has eigenvalues independent of the sign ofm ~see also@5#!.
Otherwise stated, each eigenspacemÞ0 is degenerate with
two linearly independent eigenvectorsFm and F2m . Let
M.0 be the value ofm characterizing the most unstab
eigensubspace Reallm2<ReallM2 and write lM25gM2

1 ivM2 with vM2 chosen positive. Then an arbitrary eleme
of the eigensubspace associated withlM2 can be written as
an arbitrary complex linear combination ofFM and F2M .
The asymptotic plane wave formF6;e2 i (kz6Mu) gives the
helical appearance of the unstable modes@8#. @Due to the fact
that the pressure field can be eliminated and plays an a
iary role in Navier-Stokes equations and in Eq.~1! we can
characterize the eigenspace only by the perturbation of
velocity vector components#. In what follows, we assume
M51, and drop theM or M2 subscripts.

When the unstable eigenvalue is non-degenerate, it
been shown@11# that the Landau model results as a th
order weakly non-linear approximation of the full Navie
Stokes equations. The analysis of results of simulation o
nearly critical jet showed, however, that very early~at e
;0.02) nonlinear effects of order higher than 3 are import
for the instability saturation. The most straightforward w
to introduce higher order weakly nonlinear theory is to f
low the idea of Herbert@12# and assume the perturbation
be expandable into a power series of the projection of
fundamental onto the linear eigenmode.

The perturbationeltF of the velocity field can be written
as

eltF5@A1~ t !f1e2 iu1A2~ t !f2eiu#eivt , ~2!

the exponential growth factoregt being included intoA6 .
As the linear mode grows, it generates higher order nonlin
terms and higher order harmonics@11#. The onset of higher
order harmonics results in a Fourier series inu, with a fun-
damental period of 2p. As far as the time dependence
concerned, the oscillations are not strictly periodic in t
linear and transient regime due to the instability amplific
tion and they do not have exactly the linear angular f
quencyv at the instability saturation, due to the nonline
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frequency shift. These effects can be separated from the
riodic time-behavior by introducing a separate time varia
s, representing the perturbationv85v2V as v8(r ,u,z;t)
5 ṽ8(r ,u,z;t,s)us5t . The perturbation can now be assum
strictly periodic with period 2p/v as a function oft and
expanded into a double Fourier series,

ṽ8~r ,u,z;t,s!5 (
n,l 52`

`

cn,l ~r ,z;s!einvte2 i l u , ~3!

wherecn,l (.,s)5c2n,2l (r ,z;s) are complex vectorial func-
tions. A similar expansion, with scalar coefficien
dn,l (r ,z;s), can be written for the pressure field perturbati
p̃8(r ,u,z;t,s). The Navier-Stokes equations yield then,
the same way as for a simple time Fourier expansion@11#, a
coupled system of equations

]cn,l

]s
e2 i l u1~ inv1L@V# !cn,l e2 i l u1¹~dn,l e2 i l u!

1e2 i l u (
k, j 52`

`

cn2k,l 2 je
i j u

•¹~ck, je
2 i j u!50 ,

~4!

“•cn,l e2 i l u50 .

As the instability grows, the nonlinear effects deviate t
fundamental of oscillations from the unstable eigenspa
Therefore, strictly speaking, only the projections ofc1,61
onto F6 can be written asA6(t)f6 . Let us define the fol-
lowing scalar complex function (P6 standing for projection
onto f6) by

P6~c1,61!einvt7 iu5B6~s,t,u!f6 , ~5!

FIG. 1. Azimuthal velocity at a point situated at 2D downstream fro
the nozzle and at 0.5D off the flow axis of the flow a
(Re2Recrit)/Recrit52%. The period of oscillations is about six time unit
Simulated signal~top! and modeled signal~bottom! with the fifth order
weakly nonlinear model.
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whereB6[A6(s)einvt7 iu. In the linear regime, the pertur
bation is identical to the sum of projectionsB6f6 and their
complex conjugates, with independent amplitudesB6 .
When nonlinear effects set in, the perturbation can be c
sidered @12# as an analytic function ofB1 and B2 with
B6f6 as leading terms:

ṽ8~r ,u,z;t,s!5( b j ,k,p,qB1
j B2

k B1
p B2

q , ~6!

with j ,k,p,q>0 and j 1k1p1q>1. A general term of the
power series~6! contributes to a well defined harmonic of th
Fourier expansion~3!. Consequently, only terms of Eq.~6!
for which j 1k2p2q5n and j 2k2p1q5l contribute to
cn,l . This implies thatn1l must be an even number an
that

cn,l 5A1
un1l u/2A2

un2l u/2 (
j ,k50

`

ak, j
~n,l !uA1u2kuA2u2 j , ~7!

with ak, j
(n,l )(r ,z) s-independent complex vector functions

space variables. In particular, by Eq.~5!, a0,0
(1,61)[f6 . The

power expansions~7! and Eqs.~4! allow to write finite trun-
cated systems of arbitrary order of precision inA6 . Let us
remark that the leading order of terms in the equation fon
51, l 51 is three in the same way as in the ordinary Land
model. For this reason, it is sufficient to account only
third order terms in the expansion ofc1,1: c1,1'A1(f1

1auA1u21buA2u2), wherea[a1,0
(1,1) andb[a0,1

(1,1) . Using
Eq. ~1! and dropping terms of higher order than 5, we arr
at the following equation:

1

A1

d

ds
@A1~f11auA1u21buA2u2!#

5gf12~h1uA1u21h2uA2u2!

2~h1,1uA1u41h1,2uA1u2uA2u21h2,2uA2u4!. ~8!

FIG. 2. Amplitudes of helical modesn51, l 561 and their fits as

functions of time~the˜ sign in Ã6 is omitted!.
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By symmetry, the same equation withA1→A2 holds for
n51 andl 521. Equation~8! can be interpreted as a gen
eralized Landau model in various ways. It can either be p
jected onto f1 ~Note that, by definition ofA6 , P6a
5P6b50.! or used to describe the evolution of the amp
tude of oscillations of the fundamental at some given poin
space@11#. The second point of view is easier to illustrate b
numerical simulations or experimentally. In that case,
introduce, at a given pointr 0 ,z0 and for a given velocity
component, say u: Ã1(s)[c1,1,u(r 0 ,z0 ;s)'A1(fu,1
1auuA1u21buuA2u2)ur 0 ,z0

. For A1→A2 we similarly de-

fine Ã2(s). Assumingfu,6(r 0 ,z0)Þ0 and extractingA6 as
functions ofÃ6 to the third order of precision we arrive a
the following system of two coupled equations:

1

Ã6

d

ds
Ã65g2~CuÃ6u21DuÃ7u2

2~auÃ6u41buÃ6u2uÃ7u21cuÃ7u4! , ~9!

whereC,D,a,b, andc are, by symmetry, the same comple
r 0 andz0 depending, coefficients in both equations.

In a simulation of a low Reynolds number jet (Re5225,
Recrit5220, e50.023! we set an initial condition with a
practically pure perturbation proportional to the eigen-mo
f1 . It was obtained by adding the pure helical modeac1,1
1c.c. extracted from a previous simulation of the instabil
in the phase of development to the unperturbed steady
symmetric flow att50. The reduction factora is chosen to
yield a perturbation amplitude of only 1023 of the inflow
velocity, so as to capture the linear regime. The behavio
the simulated signal of the azimuthal velocityvu at an arbi-
trarily chosen point off the flow axis is represented in Fig
~top!. It can easily be explained by the simplified model~9!.
Indeed, by fitting separately the real and imaginary parts
the coefficients in Eqs.~9!, using the calculated values of th

FIG. 3. Nonlinear angular velocity shifts of helical modesn51, l 5
61 and their fits as functions of time.
of the
TABLE I. Values of the amplification rate and of the linear Strouhal frequency and of the constants
fifth order nonlinear model fitted to the signal in Fig. 1.

g1 iv C D a b c

Real 4.4331023 8.2 54.6 1.153103 3.553104 21.693105

Im 1.068 56.8 284.5 22.753104 2.253105 28.033104
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azimuthal components of the modes (c1,61,u) at this point,
we obtain the modeled signal of Fig. 1~bottom!. The time
evolution of the moduliuÃ6u is represented in Fig. 2, that o
the nonlinear frequency shiftsDv6[d arg(Ã6)/ds is plot-
ted in Fig. 3. The linear amplification rate and Strouhal f
quency together with the local values of constantsC,D,a,b,
andc are assembled in Table I.

The linear regime, with modesn51, l 561 amplified
exponentially with the same amplification rate, extends u
approximatelyt'350D/U time units. ~See Fig. 2.! At t
'350 the third order weakly nonlinear regime sets in. T
amplification of the weaker mode (Ã2) slows down and
without higher order effects this mode would, ultimate
completely decay. Att'650 the fifth order effects becom
perceptible. Betweent'650 and t'1100 the model
521 is strongly amplified via the last term on the righ
hand side of the second Eq.~9!, with c having a large nega
tive real part~see Table I!. The amplification of model
521 results in a dampening of model 51 via the third
order term containing the constantD. Ultimately, at about
t'1900 both amplitudesuÃ6u become steady and a satur
tion ~asymptotic state! is reached. The asymptotic angul
velocity shifts obtained from Eq.~9! are then different~see
Fig. 3! causing the limit torus dynamics visible in Fig. 1.

The possible asymptotic states can easily be predicted
suming that very close to the threshold, say fore<0.05, all
parameters of the fifth order model, exceptg, are indepen-
dent ofe. As to g, it can be assumed directly proportional
e. The asymptotic statesuÃ6,`u (duÃ6,`u/ds50) are then
functions ofe. A simple calculation results in the bifurcatio

FIG. 4. Bifurcation diagram of asymptotic values ofuÃ1u2 vs (Re
2Recrit)/Recrit . Note the transcritical, inverse pitchfork and saddle no
bifurcations.
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diagram in Fig. 4. Due to the global character of the ins
bility, the prediction of the asymptotic states, as well as
values of their thresholds, are independent of the point c
sen for the analysis. This has been verified at six differ
points throughout the flow and, in what follows, avera
values and standard deviations are given.

Below e50.011960.0004 two branchesuÃ1,`u.0 ~limit

cycle! anduÃ1,`u50 exist. In this regime~I!, predictable by a
third order theory, only one of the modesl 561 is nonzero
and is selected by initial conditions. The limit torus dynam
ics analyzed above appears between the secondary bifu
tions ate'0.012 ande50.030960.0001~regime II!. At the
latter value the amplitudes of both modes merge in an
verse pitchfork bifurcation. The frequencies then beco
equal and a new limit cycle~regime III! results. As the dia-
gram shows, the applicability of the fifth order model is lim
ited at the saddle node bifurcation ate50.04060.003 unless
higher order effects bring about a different bifurcation e
lier.

The diagram illustrates well the way the jet behav
evolves between the threshold~e50! and the value ofe in
the simulation. A simulation ate50.0045 evidences well the
predicted regime I. Due to higher order effects the extra
lations to e.0.023 might be inaccurate and the predict
state III might not exist. A simulation at 0.036 still yields th
regime II allowing to situate the actual threshold of regim
III at e50.0377. Ate50.045 a monoperiodic state with tw
perfectly balanced modes is reached after about 900 t
units ~compare to Fig. 1! confirming the existence of regim
III. At this, already too high, value ofe, the state III is~very
weakly! unstable due to a new Hopf bifurcation~1.56 times
higher frequency! giving way, eventually, to a chaotic stat
via the type II intermittency@13#. In the presented case, th
fifth order model loses thus its validity before the sadd
node bifurcation is reached, otherwise, a type I intermitten
would have been expected. The four regimes occur within
extremely narrow interval of the stability parameter~;4%!.
They might be difficult to evidence experimentally an
might have escaped detecting by simply incrementing
instability parameter. The analysis of the fifth order weak
nonlinear model allowed to find instability parameters rep
sentative of all the predicted regimes without losses of C
time.

The presented theory has been inspired by and valid
on the numerical simulation of an axisymmetric cold jet. T
theoretical framework based on the competition of two u
stable modes arising as a result of a degenerate linear p
lem spectrum might, however, be of a more general inter
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