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Nonlinear dynamics at a Hopf bifurcation with axisymmetry breaking in a jet
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A complex dynamics with several bifurcations within a 4% variation of the Reynolds number has been
found to accompany the transition from a steady to a chaotic flow in a homogeneous round fluid jet. The results
of direct numerical simulations are explained using a fifth order weakly nonlinear theory describing the
interaction of two counter-rotating helical modes, arising as a consequence of degeneracy of the linearized
Navier-Stokes operator spectrum. Two secondary bifurcations and three different asymptotic states are shown
to be correctly accounted for by the theory. The validity of the fifth order theory ceases shortly before the onset
of chaos[S1063-651X98)50404-7

PACS numbes): 05.45+b, 47.20.Ft, 47.27.Wg, 47.27.Cn

During the transition to turbulence the existing symme-chaotic regime close to its ondeé]. We focused mainly on
tries are broken, which leads not only to more and morecoherent structures appearing at the onset chaos and persist-
complicated spatial patter4] but also to an increasingly ing in turbulent jets. We noticed that Hopf-type oscillations
complex dynamicg$2]. Many laminar flows, such as round and the well known helical modes= *=1 characterize the
jets and wakes of symmetric objects, are axisymmetric witHinear regime in a rather wide interval of Reynolds numbers
respect to the flow direction. In wakes of a sphere and of @nd that, for small Reynolds number variations, the final at-
disc axisymmetry breaking has been shown to occur befortractor varies considerably.
the onset of instationarity3,4]. In jets, the linear theory To explain this extreme sensitivity of the attractor to the
allowed to predict very early the pertinence of symmetryReynolds number, we investigated the instability onset. The
breaking helical modes for the primary instabilitg]. At  common feature of experimental jets and of our simulation is
small Reynolds numbers the helical modes with azimuthathat the dynamics is controlled by a single parameter: the
wave numbem=+1 are the most amplified, at higher Rey- flow-rate, quantified by the Reynolds numl§Be), based on
nolds numbers the symmetry is conserved and the “varithe maximum inflow velocity ) and the nozzle diameter
cose” m=0 mode is the most unstab[6,7]. The theory (D). The absolute value of the critical Reynolds number has
predicts, and all experimental and numerical investigation®o universal meaning by itself because cold jets can be con-
of round jets confirm, that the primary instability is accom- sidered rather as noise amplifid@ due to the convective
panied by an onset of oscillations at a well defined fre-nature of their instability10]. In experiments, the noise gen-
guency, i.e., the primary bifurcation is always of Hopf type eration in the nozzle is poorly controlled and varies from one
in jets. experimental setup to anothid]. In numerical simulations,

The theoretical work concerning the axisymmetry break-the instability onset depends on the numerical discretization
ing in jets and wakes is mostly limited to the linear theory.close to the inflow. The critical Reynolds number lies be-
However, nonlinear effects are of basic importance in detertween 220 and 320, depending on the numerical discretiza-
mining the final stat€attractoy of the instability. Recently, tion and the numerical inflow velocity profile in our simula-
we undertook direct numerical simulations of a round jet in ation. For the mentioned reasons we shall rather refer to the
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instability parametee= (Re—Re.,;;)/Re,i;, With Re,;; the  frequency shift. These effects can be separated from the pe-

critical Reynolds number. riodic time-behavior by introducing a separate time variable
Let us assume a steady axisymmetric basic flow. In cylinS, representing the perturbationf =v—V as v'(r,6,z;t)

drical coordinates with#,r,#) denoting the streamwise, ra- :V’(r,e,z;t,s)ls:t. The perturbation can now be assumed

dial, and azimuthal directions, it is characterized by the vestrictly periodic with period Z/w as a function oft and

locity V=(V,,V,,V,=0) and pressur® fields independent expanded into a double Fourier series,

of 6. The linear eigenvalue problem

[

AP+ L[V]®+VII=0; Vd=0 (1) vV'(r,6,z;t,8)= /Z Cr (1, z;9)eMte™ 70 (3)
n

is obtained by inserting a perturbed flow-fielek V + e*'d
X X wherec, ,(.,s)=c_, _(r,z;s) are complex vectorial func-

+eM®, p=P+eMI+eMI into nondimensionalized in- 3 Lmil ) h | tfici
compressible Navier-Stokes equations. Assuming the bifurlons: similar — expansion, with sca ar coe |C|er'1ts

) ) — = d, /(r,z;s), can be written for the pressure field perturbation
cation to be of Hopf type) is complex and X, ®) is also ’

solution of the eigenvalue problefd). The linear operator 5] (r.0,2t,5). Thﬁ: NaV|<_er-S|toIt<_es eéqua'qons yleltél;rleen, n
L[V] commutes with the derivative/d6, which explains € Same way as for a simple ime Fourier expan . a

why common eigenfunctions of[V] and d/96 can be coupled system of equations
sought. Let us write an element of the eigen-subspace of

dl 90 associated with the eigeinvglueim (m arbitrary inte- a(;_’/e—i/@_‘_(inw+L[V])Cn/e—i/é)_{_V(dnv/e—i/e)
gen as:®(r,0,2)= ¢ (r,z)e" M S

It is easily seen thaf[ V] restricted to such an eigenspace _ * ) )
has eigenvalues independent of the sigmofsee alsd5]). +e % > ¢y, €17 V(g e 1) =0,

Otherwise stated, each eigenspace 0 is degenerate with kj==e

two linearly independent eigenvectods,, and ®_,,. Let oy
M>0 be the value ofm characterizing the most unstable V-c, e ""=0.
eigensubspace Reglz<<Realp2 and write \y2= yy2
+iwy2 with wy2 chosen positive. Then an arbitrary element
of the eigensubspace associated wiffe can be written as - ! A
an arbitrary complex linear combination df,, and®_,,. | nherefore, strictly speaking, only the projections @f.,
The asymptotic plane wave ford. ~e~ kZ=M) gives the onto d.. can be written asAt_(t) ¢+ . Let us define t_he fol-
helical appearance of the unstable mo@s[Due to the fact lowing scalar complex function®.. standing for projection
that the pressure field can be eliminated and plays an auxiPto ¢=) by

iary role in Navier-Stokes equations and in Ef) we can

4

As the instability grows, the nonlinear effects deviate the
fundamental of oscillations from the unstable eigenspace.

characterize the eigenspace only by the perturbation of the P(C1+1)e" T =B.(5,t,0) ¢, 6)
velocity vector componentsin what follows, we assume
M =1, and drop théVl or M? subscripts. 0.06f

When the unstable eigenvalue is non-degenerate, it has 0.04

been showr[11] that the Landau model results as a third
order weakly non-linear approximation of the full Navier- 0.02
Stokes equations. The analysis of results of simulation of a S° 0
nearly critical jet showed, however, that very eatt €

~0.02) nonlinear effects of order higher than 3 are important -0.02

for the instability saturation. The most straightforward way -0.04

to introduce higher order weakly nonlinear theory is to fol- -0.06 | | |
-0 1000 time 2000 3000

low the idea of Herberf12] and assume the perturbation to
be expandable into a power series of the projection of the
fundamental onto the linear eigenmode.

The perturbatiore'® of the velocity field can be written
as

eMD=[A (1)}, e +A_(t)p_ele'!, )

the exponential growth factoe”* being included intoA. .

As the linear mode grows, it generates higher order nonlinear
terms and higher order harmonikl]. The onset of higher
order harmonics results in a Fourier seriegjrwith a fun- -0.065 7000 ,.___ 2000 3000

damental period of 2. As far as the time dependence is ' ' tlmg '

concerned, the oscillations are not strictly periodic in thetheF'Sc-’zlz-leAZg’:é‘ha;t"eg’gg’ a(‘);‘ p:’r']gt S#g\?vteda;tsmofdomls”?mv f“;;“
linear and transient regime due to the instability amp“flca'(R& Re.it)/Re. it =2%. The period of oscillations is about six time units.

tion and they dC_) not _h_ave exaCt_Iy the linear angU|a_r fré-Simulated signaltop) and modeled signalbottom with the fifth order
guencyw at the instability saturation, due to the nonlinearweakly nonlinear model.
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FIG. 3. Nonlinear angular velocity shifts of helical modes 1, /=

FIG. 2. Amplitudes of helical modes=1, /=*1 and their fits as +1 and their fits as functions of time

functions of time(the ~ sign inA. is omitted.

By symmetry, the same equation with, —A_ holds for
n=1 and/=—1. Equation(8) can be interpreted as a gen-
eralized Landau model in various ways. It can either be pro-
rJ_ected onto ¢, (Note that, by definition ofA., P.«a
=P.B=0.) or used to describe the evolution of the ampli-
tude of oscillations of the fundamental at some given point in
spacdq 11]. The second point of view is easier to illustrate by
_ _ numerical simulations or experimentally. In that case, we
V'(r,0,z;t,5)= >, ﬁj,kyp,qBLB'iBﬁ BY, (6) introduce, at a given pointy,z, and for a given velocity
component, say 6. :&+(s)zclylﬁ(r0,zo;s)~A+(<;56,+
with j,k,p,q=0 andj+k+p-+qg=1. A general term of the +a0|A+|2+,80|A_|2)|rO,ZO. For A, —A_ we similarly de-
power serie$6) contributes to a well defined harmonic of the ;. _ * . .
Fourier expansiori3). Consequently, only terms of E¢p) fmeA,(s). A'Lssummg%,_i(ro,zo)io and _e>_<tract|ng\i_ as
for which j + k—p—g=n andj—k— p+q=/ contribute to functions _ofAt to the third order of precision we arrive at
¢y . This implies tham+/ must be an even number and the following system of two coupled equations:
that

whereB.=A_ (s)e"“* % In the linear regime, the pertur-
bation is identical to the sum of projectioBs. ¢».- and their
complex conjugates, with independent amplitud@s .
When nonlinear effects set in, the perturbation can be co
sidered[12] as an analytic function oB, and B_ with
B. ¢. as leading terms:

- | L 0. = y—(CR.[*+ DR,
Cn’/:A+\n+/|/2A7|n—/\/2 E a(kr'1j,/)|A+|2k|A7|21’ 7) A, ds
e ~ (alR.[4+ B[R, 2R [+ Ao, (9
with a"")(r,2) s-independent complex vector functions of
space variables. In particular, by E&), a&gﬁ”zdyi . The whereC,D,a,b, andc are, by symmetry, the same complex,
power expansioné?) and Eqgs(4) allow to write finite trun-  ro andz, depending, coefficients in both equations.
cated systems of arbitrary order of precisionin . Let us In a simulation of a low Reynolds number jet (R225,
remark that the leading order of terms in the equationnfor Re&;=220, €=0.023 we set an initial condition with a
=1,/=1 is three in the same way as in the ordinary Landaupractically pure perturbation proportional to the eigen-mode
model. For this reason, it is sufficient to account only for ¢.. . It was obtained by adding the pure helical marg ,
third order terms in the expansion of ;: c;~A (¢ +c.c. extracted from a previous simulation of the instability
+a|AL|?+BIA_|?), WhereaEa(llc‘)l) and’BE aglil)_ Using in the phase of development to the unperturbed steady axi-
Eq. (1) and dropping terms of higher order than 5, we arriveSymmetric flow at=0. The reduction factoa is chosen to
at the following equation: yield a perturbation amplitude of only 18 of the inflow
velocity, so as to capture the linear regime. The behavior of
d ) ) the simulated signal of the azimuthal velocity at an arbi-
K d_S[A+(¢++0‘|A+| +BIA-]%)] trarily chosen point off the flow axis is represented in Fig. 1
B 2 5 (top). It can easily be explained by the simplified mo¢@l.
=vés (A - |A]9) Indeed, by fitting separately the real and imaginary parts of
— (e A7y C|APA P+ |AL]Y.  (8)  the coefficients in Eqg9), using the calculated values of the

TABLE I. Values of the amplification rate and of the linear Strouhal frequency and of the constants of the
fifth order nonlinear model fitted to the signal in Fig. 1.

yt+iow C D a b c

Real 4.43%10°3 8.2 54.6 1.1%10° 3.55x10* —1.69x10°
Im 1.068 56.8 -84.5 —2.75x10* 2.25x10° —-8.03x 10
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x10™ diagram in Fig. 4. Due to the global character of the insta-

bility, the prediction of the asymptotic states, as well as the
....... values of their thresholds, are independent of the point cho-
S sen for the analysis. This has been verified at six different
: points throughout the flow and, in what follows, average
T j values and standard deviations are given.

>/ Below ¢=0.0119+0.0004 two branchefA , .|>0 (limit
Ll B2 - cycle) and|A, ..|=0 exist. In this regimél), predictable by a

ol third order theory, only one of the modegs=+1 is nonzero
i ; and is selected by initial conditions. The limit torus dynam-
-16 00T 005 003 004 ics analyzed above appears between the secondary bifurca-
(Re-Re_)/Re tions ate~0.012 ande=0.0309+0.0001(regime Il). At the
ol e latter value the amplitudes of both modes merge in an in-

FIG. 4. Bifurcation diagram of asymptotic values P&.|* vs (Re  yerse pitchfork bifurcation. The frequencies then become

t;flzfé:t)ic/)ﬁgm. Note the transcritical, inverse pitchfork and saddle node equal and a new limit cycléregime I1l) results. As the dia-
gram shows, the applicability of the fifth order model is lim-

) ) ) ited at the saddle node bifurcation&t0.040+0.003 unless
azimuthal components of the modes, () at this point,  higher order effects bring about a different bifurcation ear-
we obtain the modeled signal of Fig.(lhottom). The time |ier.
evolution of the modullﬂil is represented in Fig. 2, that of The diagram illustrates well the way the jet behavior
the nonlinear frequency shiftsw.=d arg(A.)/ds is plot- ~ €volves between the threshale=0) and the value of in
ted in Fig. 3. The linear amplification rate and Strouhal fre-the simulation. A simulation a¢=0.0045 evidences well the
quency together with the local values of constadtp,a,b, predicted regime |. Due to higher order effects the extrapo-
andc are assembled in Table |. lations to €>0.023 might be inaccurate and the predicted

The linear regime, with modes=1, /=+1 amplified State lll might not exist. A simulation at 0.036 still yields the
exponentially with the same amplification rate, extends untifégime Il allowing to situate the actual threshold of regime
approximatelyt~350D/U time units. (See Fig. 2. At t Il at e=0.0377. Ate=0.045 a monoperiodic state with two
~350 the third order weakly nonlinear regime sets in. ThePerfectly balanced modes is reached after about 900 time
amplification of the weaker modeA( ) slows down and units (cqmpare to F|g.)lgonf|rm|ng the existence O.f regime
without higher order effects this mode would, ultimately, ll. At this, already too high, value of, t_he state i |s(yery

: weakly) unstable due to a new Hopf bifurcatig¢h.56 times
completely decay. At~650 the fifth order effects become | . - X
. . higher frequencygiving way, eventually, to a chaotic state
perceptible. Betweent~650 and t~1100 the mode/ : ) :
a : . . . via the type Il intermittency13]. In the presented case, the
=—1 is strongly amplified via the last term on the right-

hand side of the second E), with ¢ having a large nega- fifth order model loses thus its validity before the saddle
tive real part(see Table ). The amplification of mode” node bifurcation is reached, otherwise, a type | intermittency

— 1 results in a dampening of modé—1 via the third would have been expected. The four regimes occur within an
- . extremely narrow interval of the stability parameter4%).
order term contam.lng thS constabt Ultimately, at about They might be difficult to evidence experimentally and
t~1900 both amplitude$A .| become steady and a satura- might have escaped detecting by simply incrementing the
tion (asymptotic stateis reached. The asymptotic angular jnstability parameter. The analysis of the fifth order weakly
velocity shifts obtained from Eq9) are then differentsee  nponlinear model allowed to find instability parameters repre-
Fig. 3) causing the limit torus dynamics visible in Fig. 1. sentative of all the predicted regimes without losses of CPU
The possible asymptotic states can easily be predicted agme.

suming that very close to the threshold, say és¥0.05, all The presented theory has been inspired by and validated
parameters of the fifth order model, exceptare indepen-  on the numerical simulation of an axisymmetric cold jet. The
dent ofe. As 10y, it can be assumed directly proportional to theoretical framework based on the competition of two un-
€. The asymptotic statg\.. .| (d|A. ..|/ds=0) are then stable modes arising as a result of a degenerate linear prob-
functions ofe. A simple calculation results in the bifurcation lem spectrum might, however, be of a more general interest.
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