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Abstract

A high order finite difference method is used to numerically investigate the three-dimensional
structure of vortices appearing in rotating Bose-Einstein condensates confined in a harmonic
trap. Single vortex configurations recently observed in experiments [6] are described in detail.
Multiple vortex configurations are also considered.

1 Introduction

Several experimental groups have produced vortices in Bose Einstein condensates (BEC) by a
rotation of the trapping potential [1, 5, 3, 2, 4, 6]. The number and shape of vortices depend
on the rotational frequency and the geometry of the trap. For an elongated trap with a single
vortex, experimental [2, 3, 6] and theoretical [7, 8] evidence was provided to prove that the
vortex line is not straight along the axis of rotation, but bending. The vortex displays therefore
a U shape. Recently, more complicated configurations (S) were observed in experiments [6].
Bending (or U) vortex is a topic that has been receiving a great deal of attention from people
conducting numerical simulations. Most of the numerical studies use minimization algorithms
[9, 10] to compute local minima of the Gross Pitaevskii energy. While the U vortex was described
in detail, multiple vortex configurations were briefly addressed in these studies, providing either
a short description of the three-dimensional topology [9], or the evolution of the energy and
angular momentum [10].
In this paper, motivated by the recent experiments at the ENS [6], a high order finite dif-
ference method is proposed to numerically investigate the three-dimensional shape of vortex
configurations in a prolate rotating condensate. Our aim is to understand the various vortex
configurations observed ion experiments: U vortices but also S. Solutions with up to 4 vortices
are also considered.

2 Mathematical model

We consider a pure BEC of N atoms confined in a harmonic trapping potential rotating along
the z axis at angular velocity Ω. The equilibrium of the system corresponds to local minima of
the Gross-Pitaevskii energy in the rotating frame

E3D(φ) =
∫
D

~2

2m
|∇φ|2 + ~Ω · (iφ,∇φ× x) +

m

2

∑
α=x,y,z

ω2
αr2

α|φ|2 +
N

2
g3D|φ|4, (1)

where g3D = 4π~2a/m and the wave function φ is normalized to unity
∫
D |φ|

2 = 1. Here, for
any complex quantities u and v and their complex conjugates ū and v̄, (u, v) = (uv̄ + ūv)/2.
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For numerical applications, it is more convenient to use the dimensionless energy introduced in
[7]

E3D(u) =
∫
D

1
2
|∇u|2 + Ω̃ · (iu,∇u× r)− 1

2ε2

(
ρ0 − (x2 + α2y2 + β2z2)

)
|u|2 +

1
4ε2

|u|4 , (2)

where the variables are scaled as following :

d =
(

~
mωx

)1/2

, ε =
(

d

8πNa

)2/5

, R =
d√
ε
,

r = x/R, u(r) = R3/2φ(x),

Ω̃ = Ω/(εωx), α = ωy/ωx, β = ωz/ωx.

The constant ρ0 does not affect minimizers of (2), since it multiplies |u|2 and
∫
D |u|

2 = 1. For
small ε, considering the Thomas-Fermi approximation ρTF(r) = ρ0− (x2 +α2y2 +β2z2) for |u|2,
we obtain a straightforward definition of ρ0 and the domain D:

ρ
5/2
0 = 15αβ/8, D = {ρTF(r) ≥ 0} .

Let us finally remind that the GP energy (2) can be written as

E3D(u) = H(u)− Ω̃Lz(u), (3)

with the angular momentum defined as

Lz(u) = i

∫
D

ū

(
y
∂u

∂x
− x

∂u

∂y

)
. (4)

3 Numerical method

In the present study we compute critical points of E3D(u) by solving the norm-preserving imag-
inary time propagation of the corresponding equation:

∂u

∂t
− 1

2
∆u + i(Ω̃× r).∇u =

1
2ε2

u(ρTF − |u|2) + µεu, (5)

with u = 0 on ∂D and µε the Lagrange multiplier for the norm constraint
∫
D |u|

2 = 1:

µε =
∫
D

{
1
2
|∇u|2 − 1

2ε2
(ρTF − |u|2)|u|2

}
− Ω̃Lz. (6)

A hybrid 3 steps Runge-Kutta-Crank-Nicolson scheme [12] is used to advance the equation in
time:

ul+1 − ul

∆t
= alHl + blHl−1 + cl∆

(
ul+1 + ul

2

)
, (7)

where H contains the remaining non-linear terms. The corresponding constants for every step
(l = 1, 2, 3) are :

a1 = 8/15, a2 = 5/12, a3 = 3/4,
b1 = 0, b2 = −17/60, b3 = −5/12,
c1 = 8/15, c2 = 2/15, c3 = 1/3.
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The resulting semi-implicit scheme is second order time accurate and allows reasonably large
time steps, making it appropriate for long time integration. The large sparse matrix linear
systems resulting from the implicit terms are solved by an alternating direction implicit (ADI)
factorization technique.
For the spatial discretization we use finite differences on a Cartesian uniform mesh with periodic
boundary conditions in all directions. To accurately resolve sharp gradients of the variable
in presence of vortices, low numerical dissipation and very accurate schemes are required for
the spatial derivatives. A sixth-order compact finite difference scheme [13] with spectral-like
resolution was chosen to this end. The first and second derivatives at the grid point i are
written as :

1
3
u

′
i−1 + u

′
i +

1
3
u

′
i+1 =

14
9

ui+1 − ui−1

2h
+

1
9

ui+2 − ui−2

4h
,

2
11

u
′′
i−1 + u

′′
i +

2
11

u
′′
i+1 =

12
11

ui+1 − 2ui + ui−1

h2
+

3
11

ui+2 − 2ui + ui−2

4h2
,

where h is the step of the space discretization. The values of the derivatives at all the grid
points are computed by solving a tridiagonal matrix linear system, which provides spectral-like
behavior of the finite difference scheme.

4 Physical and numerical parameters

The values of constants in (5) are set to ε = 0.02, α = 1.06, β = 0.067, corresponding to
the experiments of the ENS group [10, 3]. The rotation frequency Ω will be varied from 0 to
the maximum value of 0.9ωx, for which no deformation of the condensate has to be taken into
account.
Equation (5) is propagated in imaginary time until the evolution of the energy (2) displays a long
time lasting plateau corresponding to a gradient smaller than 10−6. For the considered range
of Ω, the numerical domain is fixed to an elongated box (x, y, z) ∈ [−0.6, 0.6] × [−0.6, 0.6] ×
[−8.5, 8.5]. A refined grid using 72 × 72 × 510 nodes was employed, which was sufficient to
achieve grid-independence for all considered numerical experiments.
Different initial conditions were used in order to trigger single or multiple vortex configurations
and follow the corresponding branches by continuity. The simplest initial condition assumes a
steady-state solution u(x, y, z) =

√
ρTF(x, y, z) and is useful to study vortex-free configurations

and their degeneracy into multiple vortex configurations when increasing the value of Ω. Initial
conditions with vortices are obtained by superimposing to the steady-state a simplified model
for the vortex.

Figure 1: Density profile along a line crossing a centered vortex.
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For example, an initial condition with a centered straight vortex of radius ε is obtained by
imposing

u(x, y, z) =
√

ρTF · uε · exp(iϕ), (8)

uε =

√
0.5

{
1 + tanh

[
4
ε

(r − ε)
]}

,

where (r, ϕ) are the polar coordinates in the (x, y) plane and the density profile uε is shown on
figure 1.
The 3D shape of the vortex can be easily modified by shifting the center r0 of the vortex in
successive (x, y) planes - for instant, to obtain a planar S shape vortex, the following function
can be used:

r0(z) =


−1 + tanh

[
αv

(
1 + z

βv

)] /
tanh(αv), z < 0

1 + tanh
[
αv

(
−1 + z

βv

)] /
tanh(αv), z ≥ 0

The constants αv, βv control, respectively, the curvature and the height of the vortex.

5 Numerical results

The U vortex was numerically obtained by starting the simulation from an initial condition
containing a straight vortex away from the z axis. For a relatively large value of the rotation
frequency (Ω = 0.58ωx) the final steady state (i.e. the local minimum of the GP energy)
displays a planar U shape with a straight central part on the z axis and and an outer part
reaching the condensate boundary perpendicularly. We then increased or decreased Ω by small
steps (δΩ = 0.04ωx) and continuously followed this solution branch (for a given Ω, the run starts
from the initial condition provided by the steady state obtained for Ω± δΩ).

Figure 2: Single U vortex configurations for Ω/ωx = 0.42 (a), 0.58 (b), 0.78 (c).

The U vortex exists for the range Ω/ωx ∈ [0.42, 0.86]. At the lower bound, the U vortex
disappears and a vortex-free configuration is obtained, while at the higher bound the U vortex
degenerate in a three-vortex configuration (described later). When Ω increases, the central
straight part gets longer (fig. 2), but the vortex always displays a small bent region at its
ends. In the attempt to get a completely straight vortex, we considered an initial condition
with a straight vortex, centered on the z axis. It turned out that the vortex becomes bent for
Ω < 0.8ωx, recovering the previous configurations. The straight vortex (figure 3) stays stable for
Ω > 0.8ωx, which is in agreement with the result of [8] where the local stability of the straight
vortex for Ω large was proved.
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Figure 3: Stable configurations obtained from an initial condition with a straight vortex config-
urations for Ω/ωx = 0.6(a), 0.8 (b).

Motivated by the experiments of [6], we compute new critical points of the energy, which are
S configurations (see figure 4). S vortices were numerically obtained from initial conditions
generated as described in §4. Several numerical experiments were performed. First of all, we
checked that the final steady state for a given Ω is always the same (different initial planar
S shapes evolved to the same final configuration). We could also check that non planar S
configurations with an angle between the branches different from 90 degrees, do not exist.

Figure 4: Single S vortex configuration for Ω/ωx = 0.38 (a), 0.44 (b), 0.48 (c).

Multiple vortex configurations are obtained based upon different numerical strategies. The first
one is to start the computation from a vortex-free steady state obtained for low and to abruptly
increase Ω to a very hight value - multiple vortices are thus obtained. The second strategy is to
generate an initial condition with vortices artificially planted (the advantage being the control
of the shape and initial arrangement of the vortices).
Both techniques were used to follow solution branches with two, three or four vortices in the
condensate. Further details about these configurations can be found in [14].

6 Conclusion

We have studied the numerical solutions of the Gross Pitaevskii equations in the framework of
the ENS experiment. We have observed S and U vortices and multiple vortex configurations.
Spectral-like finite difference scheme proved to be very effective in accurately capture the three-
dimensional structure of vortices.
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