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Three-dimensional vortex configurations in a rotating Bose-Einstein condensate

Amandine Aftalion* and Ionut Danaila†

Laboratoire Jacques-Louis Lions, Universite´ Paris 6, 175 rue du Chevaleret, 75013 Paris, France
~Received 17 March 2003; published 11 August 2003!

We consider a rotating Bose-Einstein condensate in a harmonic trap and investigate numerically the behavior
of the wave function which solves the Gross-Pitaevskii equation. Following recent experiments@P. Rosenbuch,
V. Bretin, and J. Dalibard, Phys. Rev. Lett.89, 200403~2002!#, we study in detail the line of a single quantized
vortex, which has aU or S shape. We find that a single vortex can lie only in thex-z or y-z plane.S-type
vortices exist for all values of the angular velocityV while U vortices exist forV sufficiently large. We
compute the energy of the various configurations with several vortices and study the three-dimensional struc-
ture of vortices.
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I. INTRODUCTION

Several experimental groups have produced vortices
Bose-Einstein condensates~BECs! @1–6#. One type of ex-
periments consists in imposing a laser beam on the magn
trap holding the atoms to create a harmonic anisotropic
tating potential. For a prolate trap, it has been obser
@2,3,6# that when a single vortex exists, the vortex line is n
straight along the axis of rotation, but bending. Theoreti
works @7,8# establish a simpler expression of the Gro
Pitaevskii energy that only depends on the vortex lines
Ref. @8#, it is proved that bending occurs for prolate conde
sates, but not for oblate ones.

Minimization algorithms@9,10# have been used to com
pute local minima of the Gross-Pitaevskii energy and prov
an evidence of the bending in the same setting as in
experiments. Bending~or U) vortices are described in deta
and multiple-vortex configurations are addressed in th
studies.

Recently, authors of Ref.@6# have further studied configu
rations with a single-vortex line. They have observed pla
bent vorticesU but also different configurationsS. They
study the length of the line, its deviation from the center, a
its angular momentum.

In this paper, motivated by the recent experiments
Rosenbuchet al. @6#, we compute local minimizers of th
Gross-Pitaevskii energy and want to understand the var
vortex configurations observed in the experimental settingU
vortices but alsoSvortices. We look for solutions with up to
four vortices and describe their three-dimensional~3D! struc-
ture. Different solution branches are followed and the evo
tion of the corresponding energy and angular momentum
shown. The framework of this study is the case of a prol
condensate where bending is an important phenomenon

We consider a pure BEC ofN atoms confined in a har
monic trapping potential rotating along thez axis at angular
velocity V. The equilibrium of the system corresponds
local minima of the Gross-Pitaevskii energy in the rotati
frame
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\2

2m
u“fu21\V•~ if,“f3x!

1
m

2
vx

2~x21a2y21b2z2!ufu21Ng3Dufu4, ~1!

whereg3D54p\2a/m and the wave functionf is normal-
ized to unity*Dufu251.

For numerical purposes, it is convenient to rescale
variables as follows:r5x/R, u(r )5R3/2f(x), where R
5d/A« and

d5S \

mvx
D 1/2

, «5S d

8pNaD 2/5

, Ṽ5V/~«vx!. ~2!

In this scaling, the Thomas-Fermi limit ofu is

rTF~r !5r02~x21a2y21b2z2!. ~3!

Then, we use the dimensionless energy introduced in Ref@7#

E~u!5H~u!2ṼLz~u!, ~4!

with

H~u!5E
D

1

2
u“uu22

1

2«2 rTFuuu21
1

4«2 uuu4, ~5!

Lz~u!5 i E
D

ūS y
]u

]x
2x

]u

]yD , ~6!

defined in the domainD5$rTF(r )>0%.

A. Numerical method

We compute critical points ofE(u) by solving the norm-
preserving imaginary time propagation of the correspond
equation:

]u

]t
2

1

2
¹2u1 i ~Ṽ3r !•“u5

1

2«2 u~rTF2uuu2!1m«u,

~7!
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A. AFTALION AND I. DANAILA PHYSICAL REVIEW A 68, 023603 ~2003!
with u50 on ]D and m« the Lagrange multiplier for the
constraint *Duuu251. A hybrid three steps Runge-Kutta
Crank-Nicolson scheme@11# is used to march in time (Dt is
the time step!:

ul 112ul

Dt
5alHl1blHl 211cl¹

2S ul 111ul

2 D , ~8!

whereH contains the terms with explicit time discretizatio

H~u!5
1

2«2 u~rTF2uuu2!1m«u2 i ~Ṽ3r !•“u. ~9!

The corresponding constants for every step (l 51,2,3) are

a158/15, a255/12, a353/4,

b150, b25217/60, b3525/12,

c158/15, c252/15, c351/3. ~10!

The resulting semi-implicit scheme is second-order time
curate and allows reasonably large time steps, making it
propriate for long-time integration. The large sparse ma
linear systems resulting from the implicit terms are solved
an alternating direction implicit factorization technique.

For the spatial discretization, we use finite differences
a Cartesian uniform mesh with periodic boundary conditio
in all directions. To accurately resolve sharp gradients of
variable in the presence of vortices, low numerical dissi
tion and very accurate schemes are required for the sp
derivatives. A sixth-order compact finite difference sche
@12# with spectral-like resolution is chosen to this end.

B. Physical and numerical parameters

The values of the constants in Eq.~7! are set to«
50.02, a51.06, b50.067, corresponding to the exper
ments of Refs. @3,10# (m51.445310226 kg, a55.8
310211 m, N51.43105, andvx51094 s21). The angular
frequencyV will be varied from 0 to the maximum value o
0.9vx , for which no deformation of the condensate has to
taken into account.

Equation ~7! is propagated in imaginary time until th
evolution of energy~4! has a gradient in time smaller tha
1026. The numerical domain is fixed to an elongated b
(x,y,z)P@20.6,0.6#3@20.6,0.6#3@28.5,8.5#. A refined
grid with 723723510 nodes is used, which is sufficient
achieve grid independence.

Different initial conditions are used in order to trigg
single- or multiple-vortex configurations and follow th
corresponding branches asV is varied. The simplest initia
condition assumes a steady-state solutionu(x,y,z)
5ArTF(x,y,z). It is useful to study vortex-free configura
tions and their degeneracy into multiple-vortex configu
tions when increasing the value ofV. Initial conditions with
vortices are obtained by superimposing to the steady sta
simple ansatz for the vortex. For example, an initial con
tion with a centered straight vortex of radius« is obtained by
imposing
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u~x,y,z!5ArTF u« , ~11!

u«5A0.5H 11tanhF4

«
~r 2«!G J exp~ iw!,

where (r ,w) are the polar coordinates in the (x,y) plane. The
3D shape of the vortex can be easily modified by shifting
centerr 0 of the vortex in successive (x,y) planes; for in-
stance, to obtain a planarSshape vortex, the following func
tion can be used:

r 0~z!5H 211tanhFavS 11
z

bv
D G Y tanh~av!, z,0

11tanhFavS 211
z

bv
D G Y tanh~av!, z>0.

~12!

The constantsav ,bv control, respectively, the curvature an
the height of the vortex.

We first focus on single-vortex configurations and d
scribe later multivortex configurations.

II. SINGLE-VORTEX LINES

We have observed three different types of single-vor
configurations as shown in Fig. 1: planarU vortices, planarS
vortices, and nonplanarS vortices. TheU vortices are the
bent vortices computed in Refs.@9,10# and theoretically stud-
ied in Refs.@7,8#. They are global minimizers of the energ
The S configurations were observed experimentally very
cently @6# and are only local minimizers of the energy.

A. U vortex

The U vortex is a planar vortex formed of two parts: th
central part is a line which stays on thez axis and the outer
part reaches the boundary of the condensate perpendicu
WhenV increases, the central straight part gets longer~Fig.
2! and the angular momentumLz increases to 1~Fig. 3!.

The U vortex is obtained by starting with an initial con
dition containing a straight vortex away from thez axis. In
fact, theU vortex lies either in thex-z or y-z plane. Starting
with an initial condition that is not in one of these plan

FIG. 1. Single-vortex configurations in BECs:~a! U vortex, ~b!
planarS vortex, ~c! nonplanarS vortex. Isosurfaces of lowest den
sity within the condensate.
3-2
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THREE-DIMENSIONAL VORTEX CONFIGURATIONS IN . . . PHYSICAL REVIEW A68, 023603 ~2003!
yields a final state in they-z plane, which is the plane close
to thez axis.

The shape of the theU vortex and its preferred location i
the y-z plane can be analyzed using the approximate ene
derived in Refs.@7,8#: setting the vortex-free solution to zer
energy, then the energy of a vortex lineg can be approxi-
mated by

Eg5E
g
rTF dl2CVE

g
rTF

2 dz, ~13!

where the first term is the limit of the energyH and the
second term is2VLz . Here,C is a constant which depend
on the experimental parameters andrTF is given by Eq.~3!.
If g is not in thex-z or y-z plane, then one can constru
small perturbations ofg that preserverTF and lower the
energy. This implies thatg cannot be a critical point of the
energy because the gradient is not zero. Of course, if
ellipticity of the cross section is small, the gradient is sm
which may allow to observe these configurations.

In order to understand the existence of the straight cen
part of theU vortex, one can also refer to the analysis of R

FIG. 2. SingleU vortex configurations forV/vx50.42~a!, 0.58
~b!, 0.78 ~c!.

FIG. 3. Energy~in units of \vx) and angular momentum pe
particle ~in units of \) for the single-vortex configurations.
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@8#: from Eq. ~13!, we can infer that a vortex line with a
lower energy than the vortex-free solution is obtained wh
the quantityrTF2CVrTF

2 is negative, i.e.,CVrTF.1. LetV̄

be such thatCV̄r051; it corresponds to the 2D critical ve
locity for the existence of a vortex in the planez50. ForV

close toV̄, the inner region whereCVrTF.1 is concen-
trated near the center of the condensate. In this region,
vortex line has to be straight~see Ref.@8#!. This straight part
is getting longer asV increases since the region whe
CVrTF.1 is getting bigger. This region corresponds toV
.V2D(z), whereV2D(z) is the critical velocity for the ex-
istence of a vortex in the two-dimensional section wherez is
constant. In the outer region, the vortex reaches the boun
using the shortest path.

Figure 3 shows the energy and angular-momentum va
tion with V for the single-vortex configurations. TheU vor-
tices exist only for V bigger than a critical valueVc
50.42vx . It is interesting to note that atVc , the energy of
the U vortex is bigger than the energy of the vortex-fr
solution ~we have set to zero the energy of the vortex-fr
solution!. A zoom in this region shows thatVc is very close
to the angular velocityV1 for which the energy of the
vortex-free solution is equal to the energy of theU vortex.

Figure 3 also shows that the angular momentumLz of the
U vortex for V5Vc does not go to 0. This suggests that
fact there could be anotherU solution forV.Vc . Using an
ansatz, another type ofU solution is obtained in Ref.@10#
which is a saddle point of the energy: it is away from the a
and has a lower angular momentum. In Ref.@8#, it is proved
rigorously that for smallV, there is noU as a critical point
of the energy.

For an initial condition with a straight vortex centered o
the z axis, if V,0.8vx , the straight vortex is unstable an
the final configuration is aU, but if V.0.8vx , the straight
vortex is stable. This is in agreement with the result of R
@8# where the local stability of the straight vortex for larg
V is proved.

For smallV, the U vortex disappears and a vortex-fre
configuration is obtained, while for largerV, the U vortex
degenerates into a three-vortex configuration~described
later!.

B. S vortex

Motivated by the experiments of Ref.@6#, we compute
new critical points of the energy, which areS configurations
~see Fig. 1!. Several numerical experiments were perform
starting from different initial conditions containing an ansa
for the S vortex ~see Sec. I B!.

The planarScan be regarded as aU, with the half part in
the planez,0 rotated with respect to thez axis by 180°~see
Fig. 4!. The nonplanarS are such that the projections of th
branches on thex-y plane are orthogonal, i.e., the rotation
the branches is of 90°. We could check that nonplanaS
configurations with an angle between the branches diffe
from 90° do not exist.

As already mentioned for theU vortex, stable planarS
configurations lie either in thex-z or y-z plane. As for theU,
3-3
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A. AFTALION AND I. DANAILA PHYSICAL REVIEW A 68, 023603 ~2003!
this can be explained using the limiting energy obtained
Ref. @8# and considering separately the upper or lower par
the S. As soon as the cross section is not a disc, if the up
or lower branch of theSconfiguration does not lie in thex-z
or y-z plane, then the gradient of the vortex line energy~13!
can never be zero wheng is varied.

The S vortices exist for all values ofV while theU exist
only for V.Vc . WhenV decreases, the extension of theS
along thez axis goes downwards as shown in Fig. 5, t
angular momentum decreases to zero~Fig. 3! and the vortex
tends to the horizontal axis. Note that a vortex along
horizontal axis hasLz50, but a positive energy. On the oth
side, whenV increases, theS gets straighter and it tends t
the vertical axis.

The global minimum of the energy is never anS. But the
difference in energy~and angular momentum! betweenU
andS vortices is very small, as illustrated in Fig. 3 becau
an S vortex is almost like aU with a half part rotated by
180°.

C. Minimizer with fixed L

As pointed out in Ref.@6#, the minimization problem tha
is related to the experiments, is rather to minimizeH @see Eq.
~5! while fixing Lz , rather than minimizingE5H2VLz .
This has been studied in the two-dimensional setting in R
@13#. One can notice that if a given configuration withH
5h and Lz5 l minimizesE5H2VLz for someV, thenh
minimizesH under the constraint thatLz5 l : indeed if H8
5H(u) with Lz(u)5 l , then H82V l>h2V l , since (h,l )

FIG. 4. Comparison between the single-vortex configurati
obtained for the same angular velocityV/vx50.44. Superposition
of theU andSvortex ~a! and the planar and nonplanarSvortex ~b!.

FIG. 5. SingleS vortex configuration forV/vx50.38 ~a!, 0.44
~b!, 0.48 ~c!.
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n
f

er

e

e

f.

minimizesE, and this implies thatH8>h. Moreover,V is
the slope of the curveH(Lz) at the point (h,l ) and the prop-
erty of minimizingE, that is, for allh8, l 8,

h82V l 8>h2V l , ~14!

implies that the curveH(Lz) lies above its tangent at thi
point.

We have plottedH as a function ofLz ~Fig. 6!. We can
check that the curve is convex, and above its tangent, wh
is consistent with the fact that we have computed minimiz
of the energy.

We know that theU solution exists forV>Vc and has
Lz.0.4. ForLz,0.4, we expect that the process of minimi
ing H with fixed Lz would produceU vortices and the curve
H(Lz) should be concave in this region. In Ref.@8#, we have
proved that forLz close to 0,H>CLz

2/3, which is a first
indication to the concavity of the curve.

III. MULTIPLE VORTICES

Multiple-vortex configurations are obtained based up
different numerical strategies. The first one is to start
computation from a vortex-free steady state and to abru
increaseV to a very high value; multiple vortices are thu
obtained. The second strategy is to generate an initial co
tion with vortices as described in Sec. I B~the advantage
being the control of the shape and initial arrangement of
vortices!.

Both techniques are used to follow solution branches w

FIG. 7. Energy~in units of \vx) for all studied configurations.

s

FIG. 6. H vs Lz for single-vortex configuration.
3-4
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THREE-DIMENSIONAL VORTEX CONFIGURATIONS IN . . . PHYSICAL REVIEW A68, 023603 ~2003!
two, three, or four vortices in the condensate. Figures 7
8 display energy and angular momentum vsV for all studied
configurations.

A. Three vortices

When V is increased, the singleU vortex solution
switches to a three-vortex configuration (V50.9vx). As
shown in Fig. 9~a!, the configuration is invariant under rota
tion in a central plane nearz50 but not near the edges. Fo
largeV, three-dimensional views show@Figs. 9~a! and 9~b!#
that there are two vortices of similar size and a longer o
which is bending near the boundary. ForV50.8vx , all vor-
tices display contorted shapes@Fig. 9~c!#, very similar to
those reported in Ref.@9#. Let us point out that the angula
momentum of all these three-vortex configurations is low
than 3~see Fig. 8!.

When we put as an initial condition a configuration wi
three identicalU vortices at 120°, in the final state, one
them gets a little longer@Fig. 10~a!# and the symmetry is lost
This configuration has almost the same energy and ang
momentum as the configuration displayed in Fig. 9~b!. Con-
versely, for the initial condition with three straight vortice

FIG. 8. Angular momentumLz ~in units of \) for all studied
configurations.

FIG. 9. Three-vortex configuration forV/vx50.9 ~a!, 0.72~b!,
0.68 ~c!. Lower pictures show isocontours ofuuu in the centralz
50 cut plane.
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on thex axis, the symmetry is preserved@Fig. 10~b!#, but it
has a higher energy than the previous one.

When V further decreases, the three-vortex bran
switches to a two vortex displaying irregular shapes~Fig.
11!.

B. Two vortices

The two-vortex branch presented in this section is o
tained by starting from a vortex-free solution and sudde
increasingV to a value of 0.8vx . The configuration is plana
and symmetric, such as twice a singleU vortex, but away
from the axis~there is a repulsion between the lines!.

When V increases, the lines are almost straight and
closer to each other. This is in agreement with the fact t
whenV gets large, the straight vortex is a local minimizer
the energy. Hence, the bending is no longer the impor
phenomenon~Fig. 12!.

We recall that decreasingV from a configuration with
three vortices, we obtain two vortices that are not symmet

FIG. 10. Three-vortex configuration obtained for the sa
V/vx50.72, from different initial conditions: three identicalU vor-
tices at 120°~a! and three straight vortices in a row on thex axis
~b!. Lower pictures show isocontours ofuuu in the centralz50 cut
plane.

FIG. 11. Two vortices obtained from the three-vortex config
ration when the value ofV/vx is decreased to 0.64~a! and 0.6~b!.
3-5
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A. AFTALION AND I. DANAILA PHYSICAL REVIEW A 68, 023603 ~2003!
one being longer than the other~Fig. 11!. This configuration
has a slightly higher energy than the two symmetric vortic

C. Four vortices

Starting from an initial condition without vortices and in
creasingV to 0.86vx , we have obtained stable configur
tions with four curved vortices@Fig. 13~a!#. When V de-
creases, this configuration rapidly degenerates into a th
vortex state. For lowerV, we could obtain stable
configurations with four symmetric vortices@Fig. 13~b!#, but
with higher energy. The location of the vortices in the pla
z50 is the same.

We have to point out that for the initial condition of fou
identical vortices, the symmetry is preserved as displaye
Fig. 13~b!, which is not the case for three vortices.

IV. CONCLUDING REMARKS

We have studied different vortex configurations in a p
late Bose-Einstein condensate by solving the Gro
Pitaevskii equation. We have computedU and S vortices,
motivated by the recent experiments of Ref.@6#. Our com-
putations involve a parameter«, which is small when the
number of atomsN is large. Decreasing«, that is, increasing

FIG. 12. Configuration with two symmetric vortices forV/vx

50.48 ~a!, 0.6, ~b! 0.8 ~c!.
ys
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et

Sc
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the number of atoms forces the vortex lines to be alm
straight in their central part, while for larger«, the central
straight part is not so obvious as in some figures of Ref.@9#.

We have found that theSvortices are only local minimiz-
ers of the energy and exist for all values of the angular
locity V, while U vortices are global minimizers existing fo
V>Vc . A planar S vortex can be regarded as aU vortex
with a half part rotated by 180°. Moreover,U or planarS
vortices lie only in thex-z or y-z plane while nonplanarS
vortices exists only for an angle of 90° between the t
branches.

We have followed the branches of solutions when vary
V and found configurations with two, three, and fo
vortices.

FIG. 13. Four-vortex configurations for ~a!
V/vx50.86—obtained from an initial condition without vortice
and ~b! V/vx50.72—obtained from an initial condition with fou
symmetrical vortices.
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