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Three-dimensional vortex configurations in a rotating Bose-Einstein condensate
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We consider a rotating Bose-Einstein condensate in a harmonic trap and investigate numerically the behavior
of the wave function which solves the Gross-Pitaevskii equation. Following recent experfeRtsenbuch,
V. Bretin, and J. Dalibard, Phys. Rev. Le®, 200403(2002], we study in detail the line of a single quantized
vortex, which has aJ or S shape. We find that a single vortex can lie only in #e or y-z plane.Stype
vortices exist for all values of the angular velociy while U vortices exist forQ) sufficiently large. We
compute the energy of the various configurations with several vortices and study the three-dimensional struc-
ture of vortices.
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I. INTRODUCTION #2
5(¢)=f = VBP+1Q- (1, V pxx)
. . . p 2m

Several experimental groups have produced vortices in
Bose-Einstein condensatéBECS [1-6]. One type of ex- M o s s 4
periments consists in imposing a laser beam on the magnetic + 5o (X atyt+ Bz ) ¢[°+Ngsp| &%, (D)
trap holding the atoms to create a harmonic anisotropic ro-
tating potential. For a prolate trap, it has been Observeq\/hereggD:4wh2a/m and the wave functior is normal-
[2,3,6] that when a single vortex exists, the vortex line is Notj; a4 to unity f p| ¢|2=1.
straight along the axis of rotation, but bending. Theoretical rqr numerical purposes, it is convenient to rescale the
works [7,8] establish a simpler expression of the Gross-ariables as follows: =x/R u(r)=R¥2¢(x), where R
Pitaevskii energy that only depends on the vortex lines. In_ d/ e and ’ ’
Ref.[8], it is proved that bending occurs for prolate conden-
sates, but not for oblate ones. 5o\12 d \25

mwx) ' 8:(877Na
fh this scaling, the Thomas-Fermi limit ofis

. 0=0/(zwy). (2

Minimization algorithms[9,10] have been used to com- d=
pute local minima of the Gross-Pitaevskii energy and provide
an evidence of the bending in the same setting as in th
experiments. Bendingor U) vortices are described in detall
and multiple-vortex configurations are addressed in these
studies.

_Recen'tly, aut.hors of Re[f6] have further studied configu- Then, we use the dimensionless energy introduced in[REf.
rations with a single-vortex line. They have observed planar
bent vorticesU but also different configurationS. They
study the length of the line, its deviation from the center, and
its angular momentum. with

In this paper, motivated by the recent experiments by
Rosenbuctet al. [6], we compute local minimizers of the 1 1 1
Gross-Pitaevskii energy and want to understand the various H(u):f =|Vu|?= s prelul?+ = |u|*, (5)
vortex configurations observed in the experimental settihg: D2 2e de
vortices but alsé vortices. We look for solutions with up to
four vortices and describe their three-dimensiqBal) struc- ] au du
ture. Different solution branches are followed and the evolu- L (u)=i jpdyﬂ_xw)
tion of the corresponding energy and angular momentum are
shown. The framework of this study is the case of a prolatg.fined in the domaifd={pe(r)=0}.
condensate where bending is an important phenomenon.

We consider a pure BEC dfl atoms confined in a har-
monic trapping potential rotating along theaxis at angular
velocity (). The equilibrium of the system corresponds to  We compute critical points dE(u) by solving the norm-
local minima of the Gross-Pitaevskii energy in the rotatingpreserving imaginary time propagation of the corresponding
frame equation:

pre(r) = po— P+ a?y?+ B?7%). (©)

E(u)=H(u)— 0L (), 4

(6)

A. Numerical method
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with u=0 on ¢D and w, the Lagrange multiplier for the
constraint [ plu|?=1. A hybrid three steps Runge-Kutta-
Crank-Nicolson schemfg 1] is used to march in timeAt is
the time stejn

U+t U

T) ®

whereH contains the terms with explicit time discretization:

U+1— 4

T=a|H|+b|H|_1+ C|V2(

1 L
H(u)= ﬁU(PTF_|U|2)+M8U_|(9~Xf)'vu-

9

The corresponding constants for every step 1,2,3) are

a1:8/15, a2:5/12, a3:3/4,
b1=0, b2:_17/60, b3:_5/12,
c,=8/15, c,=2/15, cz=1/3. (10)
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(b)

FIG. 1. Single-vortex configurations in BEQ®) U vortex, (b)
planarS vortex, (c) nonplanarS vortex. Isosurfaces of lowest den-
sity within the condensate.

u(Xiy!Z): pTFusi (11)

u,= \/O.E{lﬂanr{g(r—s)

]exp(iso),

The resulting semi-implicit scheme is second-order time acwhere ,¢) are the polar coordinates in the,§) plane. The
curate and allows reasonably large time steps, making it afBD shape of the vortex can be easily modified by shifting the
propriate for long-time integration. The large sparse matrixcenterr, of the vortex in successivex(y) planes; for in-
linear systems resulting from the implicit terms are solved bystance, to obtain a plan&rshape vortex, the following func-

an alternating direction implicit factorization technique.

tion can be used:

For the spatial discretization, we use finite differences on

a Cartesian uniform mesh with periodic boundary conditions

in all directions. To accurately resolve sharp gradients of the
variable in the presence of vortices, low numerical dissipa- ro(z)=
tion and very accurate schemes are required for the spatial
derivatives. A sixth-order compact finite difference scheme

[12] with spectral-like resolution is chosen to this end.

B. Physical and numerical parameters

The values of the constants in E(7) are set toe
=0.02, a«=1.06, B=0.067, corresponding to the experi-
ments of Refs. [3,10] (m=1.445<10 kg, a=5.8
x10 *'m, N=1.4x10°, andw,=1094 s'1). The angular
frequencyQ) will be varied from 0 to the maximum value of

1+ z
By

1+ z
By

—1+tan}‘{av(

1+tan)'{ a,

}/tanr(av), z<0
}/tam{av), z=0.

(12)

The constants, , 3, control, respectively, the curvature and
the height of the vortex.

We first focus on single-vortex configurations and de-
scribe later multivortex configurations.

Il. SINGLE-VORTEX LINES

0.9w,, for which no deformation of the condensate has to be \we have observed three different types of single-vortex

taken into account.
Equation(7) is propagated in imaginary time until the
evolution of energy(4) has a gradient in time smaller than

10 8. The numerical domain is fixed to an elongated box

(x,y,2) e[ —0.6,0.§ X[ —0.6,0.§X[—8.5,8.5. A refined
grid with 72x72xX510 nodes is used, which is sufficient to
achieve grid independence.

Different initial conditions are used in order to trigger
single- or multiple-vortex configurations and follow the
corresponding branches & is varied. The simplest initial
condition assumes a steady-state solutiar(x,y,2z)

=+p71e(X,Y,2). It is useful to study vortex-free configura-

configurations as shown in Fig. 1: plarawortices, planat
vortices, and nonplang® vortices. TheU vortices are the
bent vortices computed in Ref®,10] and theoretically stud-
ied in Refs.[7,8]. They are global minimizers of the energy.
The S configurations were observed experimentally very re-
cently[6] and are only local minimizers of the energy.

A. U vortex

The U vortex is a planar vortex formed of two parts: the
central part is a line which stays on thexis and the outer
part reaches the boundary of the condensate perpendicularly.

tions and their degeneracy into multiple-vortex configura-When() increases, the central straight part gets lon§ég.

tions when increasing the value 9f. Initial conditions with

2) and the angular momentulry, increases to 1Fig. 3.

vortices are obtained by superimposing to the steady state a The U vortex is obtained by starting with an initial con-
simple ansatz for the vortex. For example, an initial condi-dition containing a straight vortex away from tkeaxis. In

tion with a centered straight vortex of radigigs obtained by
imposing

fact, theU vortex lies either in the-z or y-z plane. Starting

with an initial condition that is not in one of these planes
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[8]: from Eq. (13), we can infer that a vortex line with a
lower energy than the vortex-free solution is obtained when

the quantitypre— CQp2. is negative, i.e CQpe>1. LetQ

be such thaCQpy=1; it corresponds to the 2D critical ve-
locity for the existence of a vortex in the plape0. ForQ

close to(2, the inner region wher€Qpr>1 is concen-
. trated near the center of the condensate. In this region, the
b E__V vortex line has to be straiglisee Ref[8]). This straight part
is getting longer ad) increases since the region where
CQp1>1 is getting bigger. This region correspondsQo
FIG. 2. SingleU vortex configurations fof)/w,=0.42(a), 0.58  >(,;(z), whereQ,p(2) is the critical velocity for the ex-
(b), 0.78(c). istence of a vortex in the two-dimensional section wheise
constant. In the outer region, the vortex reaches the boundary
yields a final state in thg-z plane, which is the plane closest using the shortest path.
to thez axis. Figure 3 shows the energy and angular-momentum varia-
The shape of the the vortex and its preferred location in  tion with Q for the single-vortex configurations. Thé vor-
they-z plane can be analyzed using the approximate energyices exist only forQ bigger than a critical valueQ,
derived in Refs[7,8]: setting the vortex-free solution to zero =0.42w,. It is interesting to note that &, the energy of
energy, then the energy of a vortex linecan be approxi- the U vortex is bigger than the energy of the vortex-free
mated by solution (we have set to zero the energy of the vortex-free
solution. A zoom in this region shows thél is very close
57:J pTFdI_CQJ p%,:dz, (13y 1o the angular yelo_cityﬂ1 for which the energy of the
y y vortex-free solution is equal to the energy of tbevortex.
Figure 3 also shows that the angular momentunof the
where the first term is the limit of the enerdy and the y vortex for Q= does not go to 0. This suggests that in
second term is- QL. Here,C is a constant which depends fact there could be anothér solution forQ >, . Using an
on the experimental parameters gng is given by Eq.(3).  ansatz, another type df solution is obtained in Ref.10]
If v is not in thex-z or y-z plane, then one can construct which is a saddle point of the energy: it is away from the axis
small perturbations ofy that preserveprs and lower the  and has a lower angular momentum. In H&l, it is proved
energy. This implies thay cannot be a critical point of the rigorously that for small), there is noU as a critical point
energy because the gradient is not zero. Of course, if thef the energy.
ellipticity of the cross section is small, the gradient is small,  For an initial condition with a straight vortex centered on
which may allow to observe these configurations. the z axis, if 1<0.8w,, the straight vortex is unstable and
In order to understand the existence of the straight centrahe final configuration is &, but if Q>0.8w,, the straight
part of theU vortex, one can also refer to the analysis of Ref.yortex is stable. This is in agreement with the result of Ref.
[8] where the local stability of the straight vortex for larger
0.05 Q is proved.

(a) (b)

0F .
0.05 E For smallQ), the U vortex disappears and a vortex-free
0.1 ¢ ‘ configuration is obtained, while for larg€l, the U vortex
g-f}g_g 1 0.02l—&A-4 NEIN degenerates into a three-vortex configuratiatescribed
£ o925 K 0 Iatelj.
" o3 g - N
-0.35 f{ -0.02 u\A Em
0042 1 I 04, 045 H H e B. S vortex
0 01 02 03 04 05 06 07 08 09 ) .
Qlm Motivated by the experiments of Ref6], we compute
X - A . . .
’ i new critical points of the energy, which aBconfigurations
(see Fig. 1 Several numerical experiments were performed,
0.8 starting from different initial conditions containing an ansatz
06 | for the S vortex (see Sec. | B
o~ The planarS can be regarded aslg with the half part in
0.4 f ———— 1Uvortex the planez< 0 rotated with respect to theaxis by 180°(see
02 | —&— I Svortex Fig. 4. The nonplanaB are such that the projections of the
' J branches on thg-y plane are orthogonal, i.e., the rotation of
003N 02 03 04 05 08 07 08 09 the branches is of 90°. We could check that nonplaBar
Q/m configurations with an angle between the branches different

X from 90° do not exist.

FIG. 3. Energy(in units of w,) and angular momentum per  As already mentioned for th& vortex, stable planag
particle (in units of#) for the single-vortex configurations. configurations lie either in the-z or y-z plane. As for theJ,
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FIG. 4. Comparison between the single-vortex configurations
obtained for the same angular velocfty w,=0.44. Superposition FIG. 6. H vs L, for single-vortex configuration.
of theU andSvortex(a) and the planar and nonplan@wortex (b).
minimizesE, and this implies thaH’=h. Moreover,(} is
this can be explained using the limiting energy obtained inthe slope of the curvel(L,) at the point b,1) and the prop-
Ref.[8] and considering separately the upper or lower part okrty of minimizing E, that is, for allh’, 1”,
the S. As soon as the cross section is not a disc, if the upper

or lower branch of thé configuration does not lie in thez h'—Ql'=h—-Ql, (14
or y-z plane, then the gradient of the vortex line enetg® . . ) ) i
can never be zero whenis varied. implies that the curveH(L,) lies above its tangent at this

The Svortices exist for all values o2 while theU exist ~ POINt. . .
only for >0, . WhenQ decreases, the extension of he e have plottedt as a function ofl_, (Fig. 6. We can
along thez axis goes downwards as shown in Fig. 5, thecheck that the curve is convex, and above its tangent, which
angular momentum decreases to zéfg. 3) and the vortex is consistent with the fact that we have computed minimizers
tends to the horizontal axis. Note that a vortex along thef the energy. , , _
horizontal axis hak =0, but a positive energy. On the other W& know that theU solution exists fo)=(). and has
side, when() increases, th& gets straighter and it tends to -z~ 0-4. ForL,<0.4, we expect that the process of minimiz-
the vertical axis. ing H with fixed L, would producel vortices and the curve

The global minimum of the energy is never &nBut the  H(L2) should be concave in this region. In RES], we have
difference in energyand angular momentumbetweenU proved that forL, close to 0,H=CLZ”, which is a first
and S vortices is very small, as illustrated in Fig. 3 becauseindication to the concavity of the curve.
an S vortex is almost like aJ with a half part rotated by

180°. IIl. MULTIPLE VORTICES

Multiple-vortex configurations are obtained based upon
different numerical strategies. The first one is to start the

As pointed out in Ref[6], the minimization problem that computation from a vortex-free steady state and to abruptly
is related to the experiments, is rather to minintizEsee Eq.  increase() to a very high value; multiple vortices are thus
(5) while fixing L,, rather than minimizinge=H-QL,. obtained. The second strategy is to generate an initial condi-
This has been studied in the two-dimensional setting in Reftion with vortices as described in Sec. |{he advantage
[13]. One can notice that if a given configuration with  being the control of the shape and initial arrangement of the
=h andL,=| minimizesE=H—-QL, for some(), thenh  vortices.
minimizesH under the constraint that,=1: indeed ifH’ Both techniques are used to follow solution branches with
=H(u) with L,(u)=1, thenH’'—Ql=h—-Ql, since f,l) ,

0 A

C. Minimizer with fixed L

(a) (b) (c) i} *
-0.2;
& 03F -
2 -04f Sy
c 4F T
w _0.5:. —»—— no vortex K
[ | —8—— 1U vortex \‘
{ -0.6F| —@—— 2 vortices 4
z z 3 z \ : [ | —&—— 3 vortices
%/x %/x %/ . -0.7F1 —@— 4 vortices \
E 1 1 1 ‘
Y y Y 085364 65 06 07 08 09

Qlw
FIG. 5. SingleS vortex configuration foK)/w,=0.38 (a), 0.44 *

(b), 0.48(c). FIG. 7. Energy(in units of 4 w,) for all studied configurations.
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25 [| — 85— 1Uvortex
“Li| —— 2 vortices
[ | ——&—— 3 vortices /
2F| —@— 4voriices A
- V' > oo
_IN ] = — V‘*W -

|- e

R R Y- TR YR Y
Qlw,

FIG. 8. Angular momentunt, (in units of #) for all studied
configurations.

two, three, or four vortices in the condensate. Figures 7 and
8 display energy and angular momentum{¥g$or all studied
configurations.

. FIG. 10. Three-vortex configuration obtained for the same
A. Three vortices Q/w,=0.72, from different initial conditions: three identidalvor-

When Q is increased, the singl&) vortex solution tices at 120°(a) and three straight vortices in a row on tkexis

switches to a three-vortex configuratio) € 0.9,). As (b). Lower pictures show isocontours ff| in the centraz=0 cut
shown in Fig. 9a), the configuration is invariant under rota- plane.

tion in a central plane nea=0 but not near the edges. For
large (), three-dimensional views shdwigs. 9a) and 9b)]
that there are two vortices of similar size and a longer on
which is bending near the boundary. Fo=0.8w,, all vor- ) . T )
tices display contorted shapéig. 9(c)], very similar to switches to a two vortex displaying irregular shapgegy.
those reported in Ref9]. Let us point out that the angular 12).

momentum of all these three-vortex configurations is lower .

than 3(see Fig. 8 B. Two vortices

When we put as an initial condition a Configuration with The two-vortex branch presented in this section is ob-
three identicalJ vortices at 120°, in the final state, one of tained by starting from a vortex-free solution and suddenly
them gets a little longdiFig. 10@)] and the symmetry is lost. increasing) to a value of 0.8, . The configuration is planar
This configuration has almost the same energy and angulaihd symmetric, such as twice a sindlevortex, but away
momentum as the configuration displayed in Fi)9Con-  from the axis(there is a repulsion between the lihes
versely, for the initial condition with three Straight vortices When Q increases, the lines are almost Straight and get
closer to each other. This is in agreement with the fact that
(a) when() gets large, the straight vortex is a local minimizer of
the energy. Hence, the bending is no longer the important
phenomenoriFig. 12.

We recall that decreasing® from a configuration with
three vortices, we obtain two vortices that are not symmetric,

on thex axis, the symmetry is preservg¢Big. 10b)], but it
@as a higher energy than the previous one.
When Q further decreases, the three-vortex branch

FIG. 9. Three-vortex configuration f&/w,=0.9 (a), 0.72(b),
0.68 (c). Lower pictures show isocontours | in the centralz FIG. 11. Two vortices obtained from the three-vortex configu-
=0 cut plane. ration when the value d)/ w, is decreased to 0.64) and 0.6(b).
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(a) (b)

z

x

X

X

FIG. 12. Configuration with two symmetric vortices fo¥/ w,
=0.48(a), 0.6, (b) 0.8 (0).

one being longer than the oth@¥ig. 11). This configuration
has a slightly higher energy than the two symmetric vortices.

C. Four vortices

Starting from an initial condition without vortices and in-
creasing() to 0.86w,, we have obtained stable configura- g, 13, Four-vortex  configurations  for (a)
tions with four curved vorticegFig. 13a]. WhenQ de-  (/w,=0.86—obtained from an initial condition without vortices

creases, this configuration rapidly degenerates into a threend (b) Q/w,=0.72—obtained from an initial condition with four

vortex state. For lower(), we could obtain stable symmetrical vortices.

configurations with four symmetric vorticékig. 13b)], but .

with higher energy. The location of the vortices in the planetn® number of atoms forces the vortex lines to be almost

2=0 is the same. straight in their central part, while for larger, the central
We have to point out that for the initial condition of four Straight part is not so obvious as in some figures of FBf.

identical vortices, the symmetry is preserved as displayed in Ve have found that thBvortices are only local minimiz-
Fig. 13b), which is not the case for three vortices. ers of the energy and exist for all values of the angular ve-
locity ), while U vortices are global minimizers existing for

Q=Q.. A planar S vortex can be regarded aslavortex
with a half part rotated by 180°. Moreovdd, or planarS
We have studied different vortex configurations in a pro-vortices lie only in thex-z or y-z plane while nonplanas
late Bose-Einstein condensate by solving the Grossvortices exists only for an angle of 90° between the two
Pitaevskii equation. We have computedand S vortices,  branches.
motivated by the recent experiments of Rf]. Our com- We have followed the branches of solutions when varying
putations involve a parameter, which is small when the  and found configurations with two, three, and four
number of atom#$ is large. Decreasing, that is, increasing vortices.

IV. CONCLUDING REMARKS
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