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We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form
of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we
show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We
discuss the stability properties of excited states containing several parallel vortex rings hosted by the conden-
sate, including their dynamical and structural stability.
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Vortices have been a source of fascination for scientists
for centuries. Many interesting problems related to vortices
and vortex lines are yet open in the many application fields
of these objects, such as classical fluids, high-Tc supercon-
ductors, classical superfluids, light propagation, dilute Bose-
Einstein condensates(BECs) made of alkali-metal gases,
cosmology, biosciences, or solid-state physics[1–6]. Specifi-
cally, the analysis of vortices in a dilute-gas BEC has been a
very hot topic in recent years, especially after their experi-
mental generation with different setups[7]. The reason is
that this is a highly controllable system whose theoretical
description is simple and which allows us to gain more in-
sight into superfluidity and other properties associated to vor-
tices in a macroscopic system with quantum properties.

In addition to the simpler two-dimensional(2D) point
vortices, two types of individual topological defects in three-
dimensional BECs have focused attention of the scientific
community in recent years: vortex lines(straight[5,8–10] or
bent [11–14]) and vortex rings[8,15–18]. The vortex rings
have been observed during the decay of an unstable dark
soliton [15]. Other generation methods based on the drag on
an object moving through the condensates have also been
proposed[8,16]. The new phase-engineering capabilities, re-
cently developed by the MIT group[19], open many possi-
bilities for the generation of topological defects, making
even more interesting the question of finding theoretical
methods for the design of new types of topological defects.

In this paper, we start constructing a variety of three-
dimensional structures of globally linked topological defects
hosted in trapped noninteracting wave fields, in the form of
vortex stars, parallel vortex lines, parallel vortex rings, and
perpendicular vortex rings. We then focus on the case of
states featuring several parallel vortex rings, and analyze
their existence as excited collective states of nonrotating
Bose-Einstein condensates. We study the properties of such
states and find them to be dynamically and structurally
stable. As expected, in the presence of dissipative perturba-
tions they finally decay to the ground state, but could persist
for a long time, as already observed in the case of vortex
lattices[20].

THE MODEL

We consider a dilute gaseous BEC in the zero-temperature
limit. This system is described by the Gross-Pitaevskii mean
field equation(GPE)
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whereU=4pNaS/a0. A system in whichUø1 corresponds
to a weakly interacting condensate, as opposed to astrongly
interacting condensatein which U@1 [21].

THE LINEAR CASE

WhenU=0, the general solution of Eq.(2) is
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where j stands for the tripletj =s j1, j2, j3d, Ej =l1j1+l2j2
+l3j3+sl1+l2+l3d /2, andHjk

sxd are the Hermite polyno-
mials. Let us define the linear differential operatorL=
−1
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2 and denote byssLd its spectrum. For a

given real numberEPssLd, we define the index space
Jl1,l2,l3

sEd as the set of indicesj PN3N3N for which Ej

=E, i.e., which give us the values of the energy for which a
degeneracy exists. In a generic case(i.e., for l j incommen-
surable), Jl1,l2,l3

sEd consists of a single element(point).
However, if two or more of thel j are commensurable, as it
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happens in traps with any type of symmetry, the index space
has an infinite number of elements(points) and thus it is
possible to generate nontrivial stationary structures as super-
positions of these functions.

To simplify subsequent equations, we denote hereafterx
=x1, y=x2, z=x3, and factorize the wave functions as

csx,y,zd=fsx,y,zde−ok=x,y,z lkxk
2/2, with f a polynomial con-

taining all the information about the structure.

SYMMETRIC TRAPS: LINEAR LIMIT

Let us first consider symmetric traps withlx=ly=lz=1.
The simplest idea to generate new three-dimensional con-
figurations is to extend the 2D vortex cluster solutions pre-
sented in Ref.[22] to three dimensions(see Fig. 1). For
instance, the configuration

fsx,y,zd = H2sxdH0sydH0szd + iH0sxdH2sydH0szd

= s4x2 − 2d + is4y2 − 2d s4d

corresponds to a stationary solution with four parallel
straight vortex lines(since we are considering the case with
no rotation, this is an “excited state”). Note that the vortex
lines are antiparallel, the phase-field around two of them
having right-hand circulation whereas around the other two it

is a left-hand one. This is only an example of many other
possibilities to generate vortex structures.

Following the same methodology, we find other solutions
such as the vortex “stars”[Fig. 1(a)] given explicitly by

fstar= H2sxdH0sydH0szd − H0sxdH2sydH0szd

+ ifH2sxdH0sydH0szd − H0sxdH0sydH2szdg

= 4fsx2 − y2d + isx2 − z2dg. s5d

Other stationary solutions in spherically symmetric traps are
those including vortex rings. For instance,

fi = H2sxdH0sydH0szd + H0sxdH2sydH0szd + H0sxdH0sydH2szd

+ iH0sxdH0sydH2szd

= fs4x2 + 4y2 + 4z2 − 6d + is4z2 − 2dg, s6ad

f' = H2sxdH0sydH0szd + H0sxdH2sydH0szd

+ H0sxdH0sydH2szd + iH1sxdH1sydH0szd

= fs4x2 + 4y2 + 4z2 − 6d + 4ixyg s6bd

correspond to pairs of parallel[Eq. (6a), Fig. 1(b)] or per-
pendicular[Eq. (6b), Fig. 1(c)] vortex rings.

ASYMMETRIC TRAPS: LINEAR LIMIT

Asymmetric traps are richer in the sense that many other
configurations are possible. A straightforward generalization
of the vortex dipoles studied in Ref.[23], for the case of
pancake-type condensates, is the antiparallel vortex lines that
can be found forlx=lz=1 andly=2 [see Fig. 1(d)],

fsx,y,zd = H2sxdH0sÎ2yd + iH0sxdH1sÎ2yd

= 4x2 − 2 + 2iÎ2y. s7d

Taking lx=ly=1 andlz=2/n, the lifted degeneracy in thez
direction provides one additional degree of freedom, making
possible, for instance, the construction of stationaryn-vortex
rings [see Fig. 1(e) for n=1] that is not possible in a sym-
metric trap,

fsx,y,zd = H0sÎ2/nzdfH2sxdH0syd + H0sxdH2sydg

+ iH0sxdH0sydHnsÎ2/nzd

= 4sx2 + y2 − 1d + iHnsÎ2/nzd. s8d

Note that the surfaces Resfd=0 and Imsfd=0 given implic-
itly by the equations 4sx2+y2−1d=0 and HnsÎ2/n zd=0
correspond to a cylinder andn parallel planes given byz
=zn, with HnsÎ2/n znd=0.

PARALLEL VORTEX RINGS IN THE STRONG
INTERACTION REGIME

Up to now, we have considered three-dimensional topo-
logical defects in the noninteracting regime. However, our
primary interest lies in the applications of the concept to
interacting Bose-Einstein condensates. This is a challenging
problem for which no general results are available. There-

FIG. 1. (Color online) Isosurface plots of the vortex “cores” of
some examples of three-dimensional topological defects in the non-
interacting limitUN=0. (a) Vortex star given by Eq.(5), (b) parallel
vortex rings[Eq. (6a)], (c) perpendicular vortex rings[Eq. (6b)], (d)
two antiparallel vortex lines in an asymmetric trap[Eq. (7)], and(e)
a vortex ring in an asymmetric trap[Eq. (8)]. In the latter two cases,
we plot also the shape of the atomic cloud to stress the asymmetry
[for (d) lx=lz=1, ly=2, and for(e) lx=ly=1, lz=2].
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fore, in this paper from now on we concentrate solely in the
potential existence of structures featuring several parallel
vortex rings which might be hosted as excited, three-
dimensional collective states of the condensates. As already
mentioned, we address the case of nonrotating condensates.

We tackled this problem numerically using a continuation
method. Starting from the linear solution as an initial guess,
we generate solutions in the nonlinear situation for largeUN
values. Here we will restrict ourselves to nonlinear states
with axial symmetry. The numerical method proceeds using
an iterative Newton method to solve the two-dimensional
differential nonlinear eigenvalue problem obtained from Eq.
(2) under the symmetry assumptions mentioned above. Other
methods such as functional minimization of the energy func-
tional,

Escd =
1

2
E drFu¹cu2 + o

j=1

3

l j
2xj

2ucu2 + Uucu4G , s9d

with Sobolev preconditioning could be effective as well[22].
We have numerically checked that localized stationary states
with two, three, and four parallel vortex rings(PVRs) do
exist for a broad range of interactions, from the noninteract-
ing limit UN=0 to the strongly interacting casesUN
<10 000d. Moreover, by using a norm-preserving imaginary
time propagation technique[13], we have observed that the
PVR solutions behave as metastable excited states that fea-
ture a very slow decay to the ground state, thus having a
quite large lifetime.

In Fig. 2, we show the stationary states with three and
four PVRs in both the noninteracting and the strongly inter-
acting regimes. We have considered the same ratio of the trap
frequencies in the linear and in the corresponding nonlinear
case. We have observed that, in the interacting regime, sta-
tionary solutions with three vortex rings could form in al-
most symmetric condensates with aspect ratiosr =lz

2/lx,y
2 up

to r <0.71.
A very important question to be answered is the stability

of these stationary states that are, as expected, highly excited
collective states. Concerning the dynamical stability, we
have performed series of numerical experiments by consid-
ering the stationary solution perturbed with random noise
and following its subsequent evolution. The PVR states with
two, three, and four vortex rings are extremely robust on
evolution in the strongly interacting limit, cleaning up the
added noise during their evolution. We have considered

cperturb=cs1+«d, where « is a uniformly distributed noise
with amplitudes up to 0.2. The random perturbation param-
eter « increases the system energy and can be physically
related to temperature fluctuations. Notice that the dynamics
of BECs at finite temperatures, in the so-calledclassical field
approximation, has been analyzed in detail recently[24].
However, the parallel vortex rings existing for moderate in-
teractions, UNø1000, display dynamical instabilities on
evolution. In Figs. 3(a) and 3(b), we show the initial and
final isosurfaces of the condensate hosting two PVRs under a
strong noise level with«=0.2. For comparison, we show in
Figs. 3(c) and 3(d) the decay of the PVR solution forUN
<1000. Thus, for moderate interactions, the stationary PVRs
are very fragile against random perturbations with ampli-
tudes of only 0.1. Similar results were obtained for stationary
vortex flows with three and four parallel rings. As a general
rule, the unstable vortex rings will touch, during the evolu-
tion, the border of the condensate and finally will escape
from it. Similar instability scenarios were reported for the
case of vortex lines in a finite-temperature condensate[25].
In Fig. 4, we show the stability, in the strongly interacting
regime, of a stationary state with three parallel vortex rings
when the condensate is penetrated by a “needle”-type pertur-
bation, that is, when atoms lying on thez axis and in its
vicinity are removed[panels(a) and(b)], and in the presence
of a uniformly distributed noise[panels(c) and (d)]. Note
that the stationary PVRs are stable against these perturba-
tions, the “needle” being practically repopulated with atoms
and the noise being removed during evolution.

Not only is the stability against noise important from an
experimental point of view, but also the structural stability.
To test it, we have let the PVRs evolve in traps with frequen-
cies that differ from those of the original trap in which the
solutions are stationary. We have performed deformations of
the trap in both the horizontal plane(that is, one parallel to
the plane of the vortex rings) and along the vertical coordi-

FIG. 2. (Color online) Three and four parallel vortex ring states
in the noninteractingUN=0 [(a),(b)] and the strongly interacting
limit UN<10 000[(c),(d)]. Features as in Figs. 1(d) and 1(e).

FIG. 3. (Color online) (a),(b) Dynamical stability of the two
PVR state in the strongly interacting limit,UN<10 000, under a
noise level of 20%.(c), (d) Dynamical instability of the PRV in the
moderate interacting limit,UN<1000, under a noise level of 10%.

FIG. 4. (a),(b) Stability of the three PVR state against “needle”-
like perturbation along thez axis. In(a) t=0 and in(b) t=60. (c),(d)
Stability against noise of the three PVR state. In(c) t=0 and in(d)
t=60. HereUN<10 000.
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nate(perpendicular to the plane of the vortex rings). Figure 5
shows the relevant result that the two PVRs in the strongly
interacting limit UN<10 000 are stable to strong structural
instabilities (up to 10%) perpendicular to the vortex rings
plane and to moderate, up to 2%, structural instabilities in
the vortex rings plane. We actually show three representative
snapshots of the condensates taken in the initial, middle, and
final stage of the pulsation. The periodic persistent pulsations
of the atomic cloud in the direction of the perturbations due
to the change in the background field are observed for sev-
eral hundreds of time units. However, when the condensate
lays into the moderate interacting limit,UN<1000, or even
when it lays into the strongly interacting regime but the
structural perturbation in the vortex rings plane is quite
strong, the PVRs cannot survive the perturbation and even-
tually they decay into the condensate ground state that real-

izes the energetic minimum. To generate parallel vortex ring
structures in real experiments, one has to first generate single
vortex ring states in multicomponent BECs(which, as shown
before, can be stationary in oblate traps) and then to make
both a shifted physical superposition of these states hosting
single vortex rings in a fully symmetric trap and a full trans-
fer of all atoms to one of these states.

CONCLUSIONS

We have found that three-dimensional structures consist-
ing of several parallel vortex rings exist as stationary and
robust excited states in Bose-Einstein condensates. Starting
from the linear limit and using a numerical continuation
method, we have obtained stationary solutions with embed-
ded vorticities in the strongly interacting regime. We have
also constructed globally linked three-dimensional structures
of topological defects hosted in trapped wave fields, in the
form of vortex stars, vortex cages, or parallel vortex lines,
which might also exist as excited states of interacting Bose-
Einstein condensates, a challenging question that we leave
open for future research.
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