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We consider a rotating Bose-Einstein condensate confined in combined harmonic and quartic traps, follow-
ing recent experiments[V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Phys. Rev. Lett.92, 050403(2004)].
We investigate numerically the behavior of the wave function which solves the three-dimensional Gross
Pitaevskii equation and analyze in detail the structure of vortices. For a quartic-plus-harmonic potential, as the
angular velocity increases, the vortex lattice evolves into a vortex array with hole. The merging of vortices into
the hole is highly three dimensional, starting from the top and bottom of the condensate to reach the center. We
also investigate the case of a quartic-minus-harmonic potential, not covered by experiments or previous nu-
merical works. For intermediate repulsive potentials, we show that the transition to a vortex array with hole
takes place for lower angular velocities, when the lattice is made up of a small number of vortices. For the
strong repulsive case, a transition from a giant vortex to a hole with a circle of vortices around is observed.
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I. INTRODUCTION

The existence and formation of quantized vortices have
recently been widely studied in Bose-Einstein condensates
[1–7]. One type of experiments consists in rotating the mag-
netic trap confining the atoms. For a harmonic trapping po-
tential, and a rotating frequencyV close to 0.7v', which is
the transverse trapping frequency, vortices start to appear and
arrange themselves into a lattice[5]. As V is increased, the
number of vortices increases as well and the lattice gets
denser. AsV reachesv', the confinement vanishes since the
centrifugal force compensates the trapping force. This re-
gime is the focus of a lot of attention since new physical
phenomena are expected for these fast rotating gases.

Using stiffer trapping potentials than the harmonic one,
allows to explore the regimeV.v'. Theoretical and nu-
merical studies have considered trapping potentials behaving
like rn or r2+r4 [8–12]. A rich variety of vortex states is
predicted: lattice of singly quantized vortices, array of vorti-
ces with a hole in the center, and giant(multiple quantized)
vortices. This type of trapping, which eliminates the singular
behavior atV=v', has recently been achieved experimen-
tally by superimposing a blue detuned laser beam to the
magnetic trap holding the atoms[13,14]. The resulting po-
tential is

Vtrapsr,zd = Vhsr,zd + Usrd, s1d

with
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2
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For r /w sufficiently small, the resulting potential can be ap-
proximated by
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In experiments, the amplitudeU0 of the superimposed laser
is small, so that the coefficient of ther2 term is positive.

In this paper, we investigate the three-dimensional struc-
ture of stable states(vortex lattice, vortex array with hole,
giant vortices) of the condensate in the framework of the
Gross Pitaveskii energy. First, we study the three-
dimensional vortices for thequartic-plus-harmonictrapping
potential (3) corresponding to the experiments[14]. This
contributes not only to complete the simplified two-
dimensional(2D) picture given by previous studies but also
to remove some of the questions concerning the 3D effects
(such as vortex bending) in the experimental observations of
Refs. [13,14]. Second, if the amplitudeU0 of the laser is
increased to change the sign of the harmonic part of the
potential(3), i.e.,

1

2
mv'

2 ,
2U0

w2 , s4d

we show that such aquartic-minus-harmonictrapping poten-
tial allows to obtain vortex arrays with hole and giant vorti-
ces for lowerV than obtained previously. The difference in
lowering the frequencyV of nucleation of the giant vortex is
that this vortex structure does not appear as a consequence of
a very dense lattice but due to a small number of vortices
merging together. The three-dimensional structure of the
merging is analyzed. This leads to new open problems in
terms of theoretical studies.

Finally, we study the case of a strong repulsive potential
which acts like a pinning potential at low velocity. Neverthe-
less, whenV is increased, the giant vortex turns into a giant
vortex with a circle of singly quantized vortices around.

II. NUMERICAL APPROACH

We consider a pure BEC ofN atoms confined in a trap-
ping potentialVtrap, rotating along thez axis at angular ve-
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locity V. The equilibrium of the system corresponds to local
minima of the Gross-Pitaevskii energy in the rotating frame

Esfd =E
D

"2

2m
u=fu2 + "V · sif, = f 3 xd + Vtrapufu2

+
N

2
g3Dufu4, s5d

whereg3D=4p"2a/m and the wave functionf is normalized
to unity eD ufu2=1.

For numerical purposes, it is convenient to rescale the
variables as follows:r =x /R, usr d=R3/2fsxd, where R
=d/Î« and

d = S "

mv'

D1/2

, « = S d

8pNa
D2/5

, Ṽ = V/s«v'd. s6d

In this scaling, the trapping potentials3d becomes

Vsr d = s1 − adr2 +
1

4
kr4 + b2z2, s7d

where
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Note that we takev' swhich is the frequency of the original
harmonic potentialVhd as a scaling frequency forV, and not
the effective harmonic trapping frequencyv

'

sed=v'
Îu1−au,

as in Ref.f13g. For numerical applications, we choose«
=0.02, b=vz/v'=1/7, k/a=0.25, which fit the experi-
mental valuesf13g. In Ref. f13g, a=0.25, but we willtake
bigger values since our aim is to understand the influence
of a when it gets bigger than 1 and changes the sign of the
harmonic part.

Then, we use the dimensionless energy introduced in Ref.
[15],

Esud = Hsud − ṼLzsud, s9d

whereH is the Hamiltonian,

Hsud =E 1

2
u¹uu2 +

1

2«2Vsr duuu2 +
1

4«2uuu4, s10d

andLz the angular momentum axis

Lzsud = i E ūSy
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Using a hybrid Runge-Kutta-Crank-Nicolson scheme de-
scribed in Ref.[15], we compute critical points ofEsud by
solving the norm-preserving imaginary time propagation of
the corresponding equation

] u

] t
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¹2u + isṼ 3 r d · = u = −
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2«2usV + uuu2d + m«u,

s12d

where m« is the Lagrange multiplier for the constraint
eD uuu2=1 and with u=0 on ]D. Here, D is a rectangular

domain containing the condensate. A typical simulation uses
a domainsx,y,zdP f−2,2g3 f−2,2g3 f−2.8,2.8g with a re-
fined grid of 20032003140 nodes, which is sufficient to
achieve grid independence for all considered numerical
experiments.

We first compute the steady-state corresponding to a non-
rotating sV=0d condensate, using as initial conditionu
=ÎrTF, the Thomas-Fermi profile

rTFsr d = r0 − Vsr d = r0 + sa − 1dr2 −
1

4
kr4 − b2z2. s13d

Depending on the choice ofa, the Thomas-Fermi density
profile can display three different shapes, as shown in Fig. 1.
The corresponding steady solutions obtained forV=0
swhich will be used as initial conditions for the subsequent
runs withV.0d are displayed in Fig. 2. We can distinguish
three cases.

(i) a,1 (weak attractive case) is the case closest to the
experiments and is strongly influenced by the(positive) har-
monic part. ForV=0, a classical prolate condensate is ob-
tained. As V increases, the effective trapping potential
Vef fsr d=Vsr d−«2V2r2 starts to have a Mexican hat structure.
A vortex lattice appears for intermediate values ofV and
turns into a lattice with a hole for largeV.

(ii ) 1,a,1+j, with j=b1/4k5/8/Îp (intermediate repul-
sive case): at V=0, as an imprint of the negative harmonic
part, the density profile has a depletion close to the center but

FIG. 1. Thomas-Fermi limitrTF for different values ofa.

FIG. 2. Different shapes of the condensate atV=0: isosurfaces
of lowest density in the condensate fora=0.9 (picture 1), 1.1 (pic-
ture 2), 1.2 (picture 3).

A. AFTALION AND I. DANAILA PHYSICAL REVIEW A 69, 033608(2004)

033608-2



no hole. The density profile starts to have a hole for interme-
diate values ofV.

(iii ) a.1+j (strong repulsive case): the density profile
has a hole for allV.

III. DESCRIPTION OF THE RESULTS

We show the three-dimensional structure of vortices in
details. The first two cases(weak attractive and intermediate
repulsive) display a similar transition from a vortex lattice to
an array of vortices with a central hole whenV is increased
and the merging process starts from the top and bottom of
the condensate to reach the center. This is due to the fact that
as V is increased, the effective potential has a Mexican hat
structure. The difference though is that for the intermediate
repulsive case, the phenomenon does not take place at high
rotation value. The vortex lattice is not so dense.

In the last case(strong repulsive), giant vortices are ob-
tained for lowV and a hole with a circle of vortices around
for largerV, that is the transition takes place in the opposite
direction.

A. Weak attractive case„a=0.9…

This is the case closest to the experiments[13,14].The
density profile of the solutions are shown in Figs. 3(top view
and 2D cut in the planez=0) and 4(three-dimensional struc-
ture).

At low V [Figs. 3, 4(a), and 4(b)], there are isolated sin-
gly quantized vortices, forming a lattice. AsV is increased,
the vortex lattice gets denser[20 vortices in Fig. 3(b) and 38
in Fig. 3(c)]. As a consequence, the angular momentumLz
grows rapidly to high values(Fig. 5). It is interesting to note
from the side view of the condensate(Fig. 4) that most vor-
tices of the lattice are straight but some are bending. This
explains why the values ofLz in Fig. 5 are slightly lower
than the corresponding number of vortices.

As V is further increasedsV /v'=0.48d, a hole starts to
appear at the center of the condensate[Fig. 3(c)]. It is clear
from Figs. 3(c) and 4(c) that close toz=0, the lattice has not
merged into a hole, while close to the top, there is already a
giant vortex. This phenomenon is highly three dimensional.
However, this central depletion is not strong enough to ex-
plain alone the absence of visible vortices in recent experi-

ments[14]. An explanation derived in Refs.[14,16] to ac-
count for the lack of visibility of vortices is that a small
fraction of the gas is at higher temperature and thus de-
creases the visibility of vortices. The vortex lattice should be
visible only at ultralow temperature that cannot be reached in
the experiments. Our study seems to favor this hypothesis:
when looking for the ground state of the system, we found
that much longer times were required for largeV to reach a
well-ordered vortex lattice[the convergence time to reach a
stable state in Figs. 3(c) and 3(d) is 3–4 times larger than for
Fig. 3(a)]. Transient states before convergence(which seems
to correspond to experimental observations) display incom-
plete vortex reconnection and an irregular lattice structure.
This confirms the hypothesis of the fragility of the vortex
lattice in the regime of fast rotation.

For V /v'=0.56[Figs. 3(d) and 4(d)], the central vortices
have completely merged into a giant vortex. The lattice still
exist around as two concentric rings of singly quantized vor-
tices.

FIG. 3. sa=0.9d Top view of the isosurface of lowest density
(up) and density contours in the planez=0 (down) for V /v'

=0.32 (a), 0.4 (b), 0.48 (c), and 0.56(d).

FIG. 4. sa=0.9d Side view of the condensate forV /v'=0.32
(a), 0.4 (b), 0.48 (c), and 0.56(d).

FIG. 5. Angular momentumLz (in units of ") for all studied
configurations.
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IncreasingV /v' to 0.64 leads to a larger central hole
surrounded by a single ring of vortices(pictures not shown),
and a large value of the angular momentumsLz<100d. It
would be an interesting theoretical problem to understand the
criterion for the existence of a single ring of vortices around
the hole. This should depend on the size of the condensate,
the size of the annulus and onV.

B. Intermediate repulsive case„a=1.1…

Since the regime of fast rotation is experimentally diffi-
cult to investigate, we suggest in the following section a new
form of trapping potential that allows to obtain giant vortices
for lower rotation frequencies and with smaller time of sta-
bilization, leading to less fragile vortices.

The trapping potential(7) for this case has aquartic–
minus-harmonicform and displays a Mexican hat shape(Fig.
1). The shapes of the solutions are plotted in Figs. 6(top
view andz=0 cuts) and Figs. 7(side view).

The transition from isolated vortices to a hole with a
circle of singly quantized vortices around is observed. This
happens for lower rotation frequencies and with a smaller
number of vortices than in the previous case, that is, before a
dense lattice is formed. ForV small, the density of the solu-
tion has a depletion close to the center but no hole and no
vortices are observed[Figs. 6(a) and 7(a)]. ForV larger[Fig.
6(b)], vortices are nucleated and the angular momentumLz
starts to grow(Fig. 5).

For 0.16øV /v',0.24, the density of the solution is
zero close to the top and bottom of the condensate, but not at
the center, which gives rise to a special structure of vortices

[Fig. 7(b)]: the top view[Fig. 6(b) and 6(c)] indicates that
vortices arrange themselves along two concentric circles.
The inner circle is made up of vortices which are isolated in
the center of the condensate but reconnect towards the top of
the condensate to form a giant vortex[Fig. 7(b)]. The outer
circle is made up of almost straightU vortices that reconnect
to the top and bottom of the condensate. AsV increases, the
number of vortices on each circle increases. In Figs. 6(b) and
6(c), the inner vortices seem to be bigger, but this is just an
effect due to the projection and the bending: the view atz
=0 allows to check that all vortices have the same size.

For V /v'=0.24 [Figs. 6(d) and 7(c)], the straight vorti-
ces that were close to the axis of the condensate have merged
into a central hole. There are also isolated vortices regularly
scattered on a circle around the giant vortex. AsV increases,
the number of vortices inside and outside the giant vortex
increases and the length of the isolated vortices decreases as
can be seen in Figs. 7(c) and 7(d).

Note that the isolated vortices areU vortices that recon-
nect to the giant vortex at the center, not to the boundary of
the condensate, as in the case of the harmonic trapping[15],
that is, their bending is concave not convex.

For V /v'=0.48 [Figs. 6(h) and 8], the number of vorti-
ces has increased. On the top view[Fig. 6(h)], there seems to
be two outer circles of vortices around the giant vortex,
whereas the view atz=0 indicates that there is only one: the
inner U vortices reconnect to the giant vortex and the outer
to the outer boundary of the condensate. Both have different
concavity in their bending as illustrated in Fig. 8. This may
be explained using the analysis of Refs.[17,18]: the bending
of the vortex depends on its location with respect to the level
linesrTF=cst. The vortex is almost straight in its central part
and then reaches the boundary using the shortest distance:
for harmonic trapping and oblate condensates, it leads to U
vortices, for harmonic trapping and prolate condensates, it

FIG. 6. sa=1.1d Top view of the isosurface of lowest density
(up) and density contours in the planez=0 (down) for V /v'

=0.12(a), 0.16(b), 0.2 (c), 0.24(d), 0.28(e), 0.32(f), 0.4 (g), and
0.48 (h).

FIG. 7. sa=1.1d Side view of the condensate forV /v'=0.12
(a), 0.2 (b), 0.28 (c), 0.32 (d). Isosurface of lowest density.
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leads to straight vortices and in this case, it should lead to a
bending direction depending on the location of the straight
part of the vortex; namely, if we plot the line equidistant to
the inner and outer boundary of the condensate with respect
to the distanceeg rTF dl, then this divides the condensate
into two regions, one where vortices bend inwards and the
other where they bend outwards.

These simulations open a few interesting directions of
theoretical work: understand why the merging of the lattice
starts from the top of the condensate to the center, and how
the length of vortices decreases withV. Let us point out that
the transition from vortex lattice to giant vortex has been
analyzed in 2D[10]. But this analysis requires a large num-
ber of vortices. With the type of trapping potential that we
have studied, the number of vortices at the transition is low,
and we believe that the analytical tools to be developped
should be different from the ones used up to now.

C. Strong repulsive case„a=1.2…

In this case, the effective potential has a Mexican hat
structure for allV and the density profile of the solution
always has a hole in the center as illustrated in Fig. 9. For
low values ofV, the density has a dip, without circulation,
there are no vortices, that isLz=0 (Fig. 5); it is only the
modulus of the solution that goes to zero. ForV /v'ù0.12,
the hole contains a giant vortex andLz increases withV (see
Fig. 9).

The giant vortex phase profiles(Fig. 10), which are simi-
lar to those obtained in the 2D simulations[12], show that
the phase singularities do not completely overlap in the cen-
ter of the vortex. Consequently, the giant vortex can be re-
garded as a hole containing singly quantized vortices with
such low density that they are discernible only by the phase
defects. Let us point out that the plot in Fig. 10 only takes
into account the vortices inside the hole.

As V is increased, there is a giant vortex which turns into
a giant vortex with a single circle of vortices around. In the
previous cases, this type of transition did not take place asV
was increased but decreased. It is characterized by a dramatic
increase of the angular momentumLz (Fig. 5). To our knowl-
edge, this transition(which is similar to the case of the ro-

tating bucket experiment for helium) has not been studied in
BEC. It would be interesting to predict the location of the
isolated vortices around the giant vortex and their height. For
the moment, we have a work in progress[19] in the spirit of
Ref. [17] to characterize in this setting the location of the
circle of vortices in terms ofrTF. The 3D equivalent requires
more tools.

A question raised by A. L. Fetter[20] is whether increas-
ing V further would lead to a disappearance of the circle of
vortices around the giant vortex. The angular velocity re-
quired seems to be beyond our computational possibilities
since the size of the annulus has to get of the order of the
mesh.

IV. CONCLUSION

We have studied stable configurations of the Gross Pi-
taveskii energy when the trapping potential has a combined
quartic and harmonic term.

For weak quartic potentials, the solution evolves from a
vortex lattice to a vortex array with hole when the angular
velocity V is increased. For stronger quartic potentials, giant
vortices are obtained for lowerV, at a stage where the lattice

FIG. 8. sa=1.1d Vortex details forV /v'=0.48.

FIG. 9. sa=1.2d Top and side view of the condensate for
V /v'=0.12 (a), 0.2 (b), and 0.3(c).

FIG. 10. sa=1.2d Phase distribution in a centralz=0 cut plane.
V /v'=0.2 (a) and 0.3(b). Open circles mark phase defects located
inside the central hole seen in Fig. 9.
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is not so dense. The typical structure of vortices has a central
giant vortex with an outer circle of vortices around. We be-
lieve that there should be a criterion depending on the radius
of the condensate and the radius of the annulus that should
characterize the final structure of the giant vortex: whether
there is or not a circle of vortices around the giant vortex and
its precise location.

In the regime of fast rotation, the 2D picture seems to be
a good approximation since vortices are almost straight. We
show more details on the three-dimensional structure of vor-
tices and understand the 3D effects of the trapping potential
on the number, shape, and location of vortices, asV is in-
creased. The merging process of individual vortices into a
giant vortex is shown to be highly three dimensional.

The form of the potential considered in our simulations

was inspired from recent experiments[13]. The regime of
fast rotation leads to a fragile lattice which needs long time
to stabilize. We have checked that keeping the exponential
part of the potential instead of itsquartic minus harmonic
approximation does not change the qualitative behavior of
the solutions. This suggests that if this situation could be
achieved experimentally, it would allow to observe giant vor-
tices for lower velocities than previously, that is, before
reaching the fast rotation regime.
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