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We address the challenging proposition of using real experimental parameters in a three-dimensional �3D�
numerical simulation of fast rotating Bose-Einstein condensates. We simulate recent experiments �V. Bretin, S.
Stock, Y. Seurin, and J. Dalibard, Phys. Rev. Lett. 92, 050403 �2004�; S. Stock, V. Bretin, S. Stock, F. Chevy,
and J. Dalibard, Europhys. Lett. 65, 594 �2004�� using an anharmonic �quadratic-plus-quartic� confining
potential to reach rotation frequencies ��� above the trap frequency ����. Our numerical results are obtained
by propagating the 3D Gross-Pitaevskii equation in imaginary time. For ����, we obtain an equilibrium
vortex lattice similar �as the size and number of vortices� to experimental observations. For ���� we observe
the evolution of the vortex lattice into an array of vortices with a central hole. Since this evolution was not
visible in experiments, we investigate the 3D structure of vortex configurations and 3D effects on vortex
contrast. Numerical data are also compared to recent theory �D. E. Sheehy and L. Radzihovsky, Phys. Rev. A
70, 063620 �2004�� describing vortex lattice inhomogeneities and a remarkably good agreement is found.
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I. INTRODUCTION

In recent years, several experimental studies provided evi-
dence for the existence of quantized vortices in rotating
Bose-Einstein condensates �BEC’s� �1–7�. The condensate is
typically confined by a harmonic �quadratic� potential with
transverse frequency �� and starts to nucleate vortices when
the rotation frequency � exceeds a critical value �c. For
increasing ���c, more and more vortices appear and ar-
range themselves into a regular triangular �Abrikosov� lat-
tice.

The fast-rotation regime, corresponding to ����, is par-
ticularly interesting to explore since a rich variety of sce-
narios are theoretically predicted: formation of giant �multi-
quantum� vortices, vortex lattice melting, or quantum Hall
effects. This regime is experimentally delicate to investigate
�8� since for �=�� the centrifugal force compensates the
trapping force and the confinement vanishes. Using evapora-
tive spin up, the Boulder group has recently created conden-
sates with rotation frequencies of the order of 0.99�� and
studied the properties of the vortex lattice in the lowest Lan-
dau level �9–11�.

Another experimental approach to reach the fast-rotation
regime was explored by the École Normale Supérieure
�ENS� group �12–14�. It consists in modifying the quadratic
trapping potential by superimposing a blue detuned laser
beam to the magnetic trap holding the atoms. The resulting
harmonic-plus-Gaussian potential removes the singularity at
the limit �=�� and allows one to reach rotation rates up to
��1.05��. The trapping potential used in these experi-
ments can be well approximated by a quadratic-plus-quartic
form, which has been extensively studied lately �15–24�.
Different transitions involving a rich variety of vortex states
are theoretically predicted when � is increased: from a dense
vortex lattice to an array of singly quantized vortices with a
central hole and, finally, to a giant �multiquantum� vortex or
directly from a vortex lattice to a giant vortex.

For the highest rotation rates reached in experiments, nei-
ther giant vortices nor vortex arrays with holes were clearly

observed �12,13�. In exchange, a dramatic change in the ap-
pearance of the condensate was reported: the vortices are less
visible even thought the gas remains ultracold and in fast
rotation. The most likely explanation for this intriguing be-
havior was related to the transient character of the observed
states leading to a fragile vortex lattice dominated by three-
dimensional �3D� effects �vortices appear to have some ex-
citation or bending leading to poor optical contrast�.

Since such effects are not trackable with previous �2D�
numerical approaches, the purpose of the present contribu-
tion is to investigate the 3D structure of such condensates by
numerically generate the corresponding Gross-Pitaevskii
�GP� wave function. This is not without its challenges, since
the description of a prolate �cigar-shaped� condensate with a
large number of vortices �exceeding 100� requires very high
spatial resolution and accurate integration schemes. Compu-
tations become very expensive at high rotation frequencies,
which explains why such 3D simulations are not, to the au-
thor’s knowledge, currently available in the open literature.

The numerically generated 3D condensates can be seen in
Fig. 1. For increasing rotation frequencies, the vortex lattice
evolves to a vortex array with a hole, which confirms the
scenario theoretically predicted �15,16,19,20� and also ob-
served in 2D simulations �18,24�. Since such transition was
not observed in experiments, we qualitatively analyze the
obtained vortex states, with a particular emphasize on the 3D
features of vortex merging leading to a central hole in the
condensate.

Our analysis is then extended to quantitative comparisons
to experiments and theoretical predictions. We first check
that physical parameters �size, chemical potential� of numeri-
cal condensates correspond well to available experimental
ones. We show in particular that the rotation frequencies
reached in experiments were not enough high to obtain an
annular condensate. We also measure from simulations the
intervortex spacing and compare the numerical results to re-
cent theory of Sheehy and Radzihovsky �26,27� describing
vortex lattice inhomogeneities. A remarkably good agree-
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ment is found. Finally, we discuss how 3D structure of vor-
tices can affect optical contrast of transient states observed in
experiments.

II. PHYSICAL PARAMETERS AND NUMERICAL
APPROACH

We consider a BEC of N atoms confined by the trapping
potential V and rotating along the z axis at angular velocity
�. In the experiments at ENS �12–14�, N=3�105 atoms and
the trapping potential can be written as the superposition of
the harmonic potential Vh created by the magnetic trap and
the potential U�r� introduced by the laser beam propagating
along the z axis:

V�r,z� = Vh�r,z� + U�r� , �1�

with r=�x2+y2 and

Vh =
1

2
m���

�0��2r2 +
1

2
m�z

2z2, U�r� = U0e−2r2/w2
. �2�

The trapping frequencies are �
�

�0�=2��75.5 Hz and �z
=2��11 Hz, resulting in a cigar-shaped condensate. The
laser waist is w=25 	m and the amplitude of the laser beam
is U0=kB�90 nK.

For r /w sufficiently small, the potential V�r� can be ap-
proximated by

V1 = �1

2
m���

�0��2 −
2U0

w2 �r2 +
2U0

w4 r4 +
1

2
m�z

2z2. �3�

For this quadratic-plus-quartic potential, the transverse trap-
ping frequency is decreased to ��=2��65.6 Hz. Since the
amplitude U0 of the laser beam is low in experiments, the
quadratic part of the potential V1 remains positive �repulsive
interactions� and the quartic part is very small. It is interest-
ing to note that a stronger amplitude U0 could generate a
quartic-minus-quadratic potential, which was theoretically
studied in Refs. �20,22,25�.

The numerical results presented in this paper were ob-
tained using a quadratic-plus-quartic potential �Eq. �3��, for
which extensive theoretical studies are available �15–24�.
Numerical simulations using the quadratic-plus-Gaussian
original potential �Eq. �2�� showed the same qualitative evo-
lution of the vortex configuration as in Fig. 1, with a transi-
tion to a vortex array with hole for a slightly lower rotation
frequency.

As a numerical approach, we compute the macroscopic
wave function 
�x ,y ,z� by propagating the three-
dimensional GP equation in imaginary time by the numerical
method used in Refs. �22,28,29�. After rescaling the GP
equation as in Ref. �30�, a hybrid Runge-Kutta-Crank-
Nicolson scheme is used for the time integration and a sixth-
order compact finite difference scheme for the space discreti-
zation.

FIG. 1. �Color online� Numerically generated condensates obtained using a quadratic+quartic trapping potential with the parameters
corresponding to experiments of �12,13�. Each column corresponds to a value of the rotation frequency: from left to right: � /2�
=60,64,66,70.6,73 �respectively, � /��=0.92,0.98,1.01,1.08,1.11�. Three-dimensional views of the vortex lattice identified by means of
isosurfaces of low atomic density �first two rows� and contours of density integrated along the rotation �z� axis. Note that the formation of
the hole in the condensate is not complete for � /2�=70.6 and we still distinguish individual singly-quantized vortices in the center �see also
Fig. 2 for a detailed picture of this configuration�.
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As initial condition we generally use a vortex-free density
distribution following the Thomas-Fermi �TF� law:

�TF�r,z� =
m

4��2as
		 − V1�r,z� +

1

2
m�2r2
 , �4�

where as=5.2 nm is the scattering length and 	 the chemical
potential given by the constraint �d3r�TF=N. For the
quadratic-plus-quartic trapping potential V1, an exact ana-
lytical form for 	 can be derived �15� depending on the value
of � which dictates the shape of the condensate �with or
without a hole�. The maximum transverse radius R� and lon-
gitudinal half-length Rz can be then calculated from Eq. �4�
in order to estimate the dimensions of the rectangular com-
putational domain. For high � �when the condensate is
nearly spherical and more than 100 vortices are present�, up
to 240�240�240 grid points are used to compute equilib-
rium states.

The post-processing of the results follows the experimen-
tal approach �11,12� �with the difference that the radial ex-
pansion after the time of flight is not numerically simulated�.
The numerical 3D wave function is converted to an atomic
density ��x ,y ,z�= �
�x ,y ,z��2 and integrated along the rota-
tion �z� axis. The resulting 2D density �̄z�x ,y� �isocontours
are displayed in Fig. 1, last row of images� will be used in
the following for comparison to experiments and theory.

III. DESCRIPTION OF THE RESULTS

The evolution of the 3D structure of the condensate with
increasing � can be seen in Fig. 1. We start with a qualitative
description of vortex configurations. The obtained results
will be then analyzed quantitatively and compared to avail-
able experimental and theoretical values. All quantitative pa-
rameters discussed in this paper are summarized in Table I.

A. Vortex configurations

For rotation frequencies below �� �� / �2��=60 and 64�
the condensate has the usual prolate shape �see Fig. 1, first
two columns�. Vortices near the center of the condensate are
straight and form a regular triangular lattice. Vortices located
near r=R� are bending, reaching the surface of the conden-

sate using the shortest path. These outer vortices are not
symmetrically arranged and have different lengths. It is in-
teresting to note that for these two values of �, the number
of vortices, Nv, we find numerically �Nv=37 and 51� is very
close to that visible in experimental pictures �12� �Nv

expt=30
and 52�.

Starting with � / �2��=66 �� /��=1.01�, the experimen-
tal pictures show a lack of contrast for entire zones of the
vortex lattice. Vortices are less visible and do not allow a
proper estimation of the rotation frequency from vortex sur-
face density. Numerical condensates for this rotation fre-
quency �Fig. 1, third column� display a well-defined triangu-
lar vortex lattice. Most of the vortices are straight and join
the top and bottom ends of the condensate which are almost
flat. This particular shape of the condensate corresponds well
to that predicted from the TF law �4�. Indeed, for �=��, the
density distribution �TF�r ,z� depends only on the quartic part
of the trapping potential V1 and the surface of the condensate
defined as �TF=0� is flat near the rotation z axis.

For rotation frequencies exceeding ��, experimental con-
densate exhibits a local minimum in the central density, but
the theoretically predicted �15,18� transition to a vortex lat-
tice with a hole �annular condensate� is not experimentally
reported. This is the case in our simulations �Fig. 1�. The
rotation frequency corresponding to this transition is found
to be �h / �2��=71, a value close to the TF prediction
�h

TF/ �2��=70. These values are already larger than those
attained in experiments �� / �2��69�, which can simply ex-
plain why the hole was not experimentally observed.

The numerically generated condensates before and after
transition to an annular condensate are shown in Fig. 1 �last
two columns of images�. For � / �2��=70.6, the central hole
is not yet formed since the top and bottom depletions have
not merged. At the center of the condensate, the density is
very low but not zero, and we can still distinguish individual
vortices from isocontours of the density integrated along the
z axis �Fig. 1�. Since the contrast in this last image is low
near the center, we show details of the vortices near the
rotation axis in Fig. 2. In the center there are three vortices
with larger cores that start to reconnect at the top and bottom
of the condensate. This merging process is highly three di-
mensional and will finally lead to the formation of a central
hole for higher �.

The structure of the condensate is completely different for
� / �2��=73 �last column of images in Fig. 1�. The conden-
sate is nearly spherical, with a large central hole surrounded
by three concentric circles of singly quantized vortices. Most
of the 113 identified vortices are bent, reaching either inner
or outer faces of the condensate. Since convergence for this
case is particularly slow �two weeks of computational time is
necessary using a PC workstation�, we did not explore cases
for higher �. For the considered parameters, a second tran-
sition to a configuration with a pure giant vortex �without
singly quantized vortices in the annular region� may occur at
very high rotation frequencies �24� that are not numerically
affordable in 3D.

B. Vortex lattice inhomogeneity

We now turn on more quantitative analysis of numerical
results. Before analyzing the characteristics of the vortex lat-

TABLE I. Summary of the characteristics of numerically gener-
ated condensates: �maximum� transverse radius R� and longitudinal
half-length Rz, number of vortices Nv and angular momentum Lz

= i�d3r
̄�y�
 /�x−x�
 /�y�, and scaling constant for the ratio be-
tween vortex-core radius rv and healing length � �obtained from
integrated density �̄z�x ,y��.

� / �2�� 60 64 66 70.6 73

� /�� 0.92 0.98 1.01 1.08 1.11

R� �	m� 10.4 12.2 13.2 17.2 19.2

Rz �	m� 29.0 25.4 22.5 20.1 18.6

Nv 37 51 62 126 113

Lz �units of �� 17.4 28.5 39.1 122.6 239.1

rv /� 2.15 1.84 1.65 1.36 1.76
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tice, we first check that the dimensions of the numerical gen-
erated condensates correspond well to experimental ones.
The density �̄z is integrated along the azimuthal direction �
to get the radial density profile �̄z,��r�. This profile is fitted to
the Thomas-Fermi distribution �4�, taking the chemical po-
tential 	 and the rotation frequency � as adjustable param-
eters. The theory fit value of � is within 1% of the value of
� for which the computation was done.

The resulting chemical potential 	 and the transverse ra-
dius R� �which is the maximum radius for the condensate
with hole� are compared in Fig. 3 to experimental values
from Ref. �14� and Thomas-Fermi approximation �4�. For the
experimentally available range of rotation frequencies, nu-
merical results are in good agreement with experimental and
theoretical values. For values of � not available experimen-
tally, numerical results follow the TF prediction. In particu-
lar, the numerical value �h / �2��=71 for which the central
hole first appears in the condensate �corresponding to a
chemical potential 	=0� is well predicted by the TF law
��h

TF/ �2��=70�.
We continue our dimensional analysis by extracting the

characteristics of the vortex lattice: namely, the intervortex
spacing bv and the vortex core size rv. We follow a similar
post-processing procedure as in Ref. �11�. Using the inte-
grated �along z� density field �̄z�r ,��, we identify vortex cen-
ters by 2D searching of local minima. Resulting points are
checked to correspond to vortices visible in Fig. 1 �last row
of images�. Assuming a triangular lattice structure, we select
vortices for which the six nearest vortex neighbors form a
hexagonal pattern. Only for such vortices �i.e., vortices close
to R� are discarded� is the intervortex spacing bv measured

by averaging the distance from the vortex center to the cen-
ters of the six neighbors. The vortex core radius rv is mea-
sured as follows: for a given vortex located at �r0 ,�0�, the
density profile �̄v

z�r� along the radius passing through the
center of the vortex is extracted from the 2D field �̄z; by
subtracting the integrated TF density profile �̄TF

z �r� �corre-
sponding to Eq. �4� integrated along z�, we obtain a vortex-
core residual that is fitted with a Gaussian profile:

�̄TF
z �r� − �̄v

z�r� = A exp�−
1

2
�r − r0�2/rv

2� . �5�

The amplitude A is used to define the vortex contrast �11� as
A / �̄TF

z �r0�—i.e., the ratio between the “missing” column den-
sity at vortex center r0 and the corresponding TF value. Only
vortices with a contrast greater than 0.7 are considered to
compute core radii rv.

Figure 4 shows the variation of rv and bv as functions of
the nondimensional radius r /R�. Values are given in 	m and
rotation frequencies � /���1.01 are considered �conden-
sates without a hole�. As expected �11,15�, the core radius rv
scales with healing length, defined from the TF density fit
��r�= �8�as�̄TF

z �r��−1/2. The scaling constant �also summa-
rized in Table I� decreases with �, with values comparable to
those found in Ref. �11� for a harmonic trapping potential.
We recall that the values presented here correspond to a post-
processing for rv using integrated density �̄z, as in experi-
ments. A similar post-processing using the 2D density field �
extracted from the 3D simulation at z=0 revealed scaling
constants for rv /� of order of 1 �more precisely, rv /�
�0.98,0.93,0.86 for, respectively, � /2�=60,64,66�.

The calculated intervortex spacing bv is compared in Fig.
4 to recent theory of Sheehy and Radzihovsky �26,27�. They
expressed the vortex density nv�r� as a function of the local
superfluid density �s�r�:

FIG. 2. �Color online� Details of the vortex configuration for
� / �2��=70.6. Vortices near the rotation axis are isolated, showing
the merging process that will finally lead to the formation of a
central hole. Insert: top view of the same configuration.

FIG. 3. �Color online� Chemical potential �	� and maximum
transverse radius of the condensate �R�� as functions of the rotation
frequency. Experimental measurements from Ref. �14� �squares�,
numerical results �circles�, and Thomas-Fermi theoretical prediction
�solid line�.
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nv�r� =
�m

��
+ ln��/�2.718m��v

2���2ln��s�r��� . �6�

The second term in Eq. �6� is a small correction to the vortex
density for a uniform vortex distribution corresponding to a
rigid-body rotation nv0= ��m� / ����. The vortex density nv
can be converted to intervortex spacing by

bv�r� = �2/�31/2nv�r�� . �7�

Numerical results are compared to theoretical predictions
using in Eq. �6� the TF fit for the integrated density profile
��s�r�= �̄TF

z �r�� and the characteristic length for the vortex
core �v defined as �26� �v=� / �m��R��. The agreement is
remarkably good. For � /2��64, the density profile is close
to an inverted parabola �the influence of the quartic term
being small� and bv is monotonically increasing with r. Simi-
lar results were reported for a harmonic trapping potential

�11�. As expected, the estimation using the rigid-body rota-
tion assumption �dashed line in the plot� becomes better with
increasing � �the lattice becomes denser�. For � /2�=70.6,
the density profile has a Mexican-hat structure and vortices
are constrained to agglomerate towards the center, where
density is small. The intervortex spacing is small near the
center and increases to the rigid-body value near r /R�

�0.5 where the density is maximum. The theory nicely il-
lustrates this complex dependance of bv on the radial posi-
tion.

IV. DISCUSSION AND CONCLUSION

We have presented in this paper three-dimensional nu-
merical results for a fast-rotating BEC trapped in quadratic-
plus-quartic potential corresponding to experiments at ENS
�12,13�. The obtained vortex configurations show a transition
from a dense vortex lattice to a vortex array with a central
hole at a critical rotation frequency �h / �2��=71. This result
confirms theoretical and 2D numerical results �15,18,24� and
goes beyond experimental observations, since experiments
failed to reach rotation frequencies close to �h.

Our results also support the assumption �12� that vortices
are less visible in experiments for � / �2���66 because of
the fragility of the vortex lattice which becomes dominated
by 3D effects, such as vortex bending. In order to illustrate
this statement it is worth describing how the condensate
evolves in “imaginary” time �i.e., how it relaxes to an equi-
librium state�.

The imaginary-time evolution of the condensate looks
similar to a real-time evolution. When suddenly increasing
�, new vortices are generated at the border of the condensate
and enter the condensate. In the first stages of the computa-
tion, 3D vortex lines are strongly distorted, giving a spa-
ghetti image of the lattice. Close to equilibrium, vortices
become straight in their central part and arrange themselves
in a more and more regular lattice. Convergence is particu-
larly slow at the end of the computation when the position
and shape of vortices evolve very slowly. Convergence is
considered when the energy remains constant �relative fluc-
tuations less than 10−6� for a relatively long time to be sure
that a stable state was obtained. The convergence time is
much longer �roughly by a factor of 2� for values of the
rotation frequency exceeding ��.

An example of intermediate states of the condensate be-
fore reaching a converged equilibrium state is displayed in
Fig. 5. The simulation corresponds to a quadratic-plus-
Gaussian trapping potential �2� �closer to the experimental
one� and a vortex configuration without a hole. Transient
states look closer to experimental pictures than the equilib-
rium states presented in Fig. 1. Three-dimensional explora-
tion of the condensate reveals that vortices which are less
visible have distorted structures which diminish the contrast
in an integrated view along the z axis. These effects are
stronger for condensates displaying a central depletion; even
for equilibrium states of such condensates, it is difficult to
distinguish individual vortices in the center, as can be seen in
Fig. 1 for � / �2��=70.6. This confirms the hypothesis �12�
of the fragility of the experimental vortex lattice for high

FIG. 4. �Color online� Variation of vortex core radius rv and
intervortex spacing bv �values in 	m� as functions of the nondimen-
sional radius r /R�. For each plot, the value of the rotation fre-
quency �� /2�� is indicated. In plots displaying rv, the solid line
represents the variation of the healing length �, scaled by a constant
indicated in the legend. Variation of bv is compared to theory pre-
diction of Sheehy and Radzihovsky �26,27� �solid line� and the
estimation assuming a uniform �rigid-body� vortex distribution
�dashed line�.
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rotation frequencies: for transient states, 3D vortex lines
have some excitations, leading to a poor optical contrast. It is
possible that the very low temperature in experiments slows
down the dissipative process allowing only the observation
of transient states dominated by 3D effects. But is not to be
excluded that a thermal excitation may be at the origin of the
vortex-line bending responsible for low optical contrast and,
therefore, increasing the temperature in experiments is not a
solution to improve vortex lattice contrast.

Our simulations also offer a detailed 3D picture of vortex
configurations that is not available from experiments and 2D
simulations. In particular, the vortex merging leading to the
formation of the central hole in a condensate is proved to be
highly three dimensional. Quantitative measurements of the

intervortex spacing give a new validation of the theoretical
study of Sheehy and Radzihovsky �26,27� predicting vortex
lattice inhomogeneity from local density profile. An interest-
ing question remaining for future numerical investigations is
whether or not the condensate trapped in a quadratic-plus-
quartic potential enters the lowest Landau level regime for
���h.
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FIG. 5. �Color online� Example of energy de-
crease during the propagation of 3D Gross-
Pitaevskii equation in imaginary time. Simulation
for � / �2��=66, using the quadratic-plus-
Gaussian trapping potential �2�. Energy is nor-
malized by the equilibrium �final� value Ef. Insets
show isocontours of the integrated �along z� den-
sity corresponding to three successive time in-
stants represented on the energy curve.
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