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ABSTRACT 
Quantized vortices were first predicted and 
discovered in superfluid . The first 
experimental realization in 1995 of a Bose-Einstein 
condensate (BEC) has opened novel research 
directions on the properties associated to vortices in 
a macroscopic system with quantum properties. The 
reason is that a dilute-gas BEC is a highly 
controllable system which supports a simple 
theoretical description. Different methods are 
experimentally used to generate vortices in a BEC: 
moving an object (laser beam) through the 
condensates, rotating the condensate, and, recently, 
imprinting topological defects by phase-
engineering. 
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In this paper, we review our recent numerical 
results on the vortex structure of rotating BECs. 
This work was motivated by recent experimental 
achievements by the École Normale Supérieure 
(ENS) group. Using real experimental parameters in 
a three-dimensional (3D) numerical simulation of 
fast rotating BECs is a challenging proposition 
since the capture of the large number of vortices in 
the system requires high grid-resolution and 
accurate numerical methods. 

Our numerical results are obtained by propagating 
the three-dimensional Gross-Pitaevskii equation in 
imaginary time. A high order (compact) finite 
difference method is used for the spatial 
discretization. We characterize several equilibrium 
vortex configurations obtained for different trapping 
potentials. Numerical data are compared to 
available experimental and theoretical results and a 
remarkably good qualitative and quantitative 
agreement is found.  

KEYWORDS  
Quantized vortices, Gross Pitaevskii equation, 
Scrödinger equation, Bose Enstein condensate, 
Abrikosov lattice, imaginary time, finite 
differences, compact schemes. 

NOMENCLATURE 
θρψ ie=    [-]  macroscopic wave function  

u             [-]  dimensionless wave function  
2u=ρ       [-]  atomic density 

m         [-]  atomic mass of the gas 
sa         [-]  scattering length 

ξ          [-]  healing length 
μ         [-]  chemical potential 
Ω         [-]  angular velocity 

zyx ,,  [-]  Cartesian coordinates in the 
rotating frame 

22 yxr +=  [-]     distance to the center 

⊥ωω zyx ,,   [-]  trapping frequencies 

vr          [-]  vortex core radius 

vb         [-]  inter-vortex spacing 
π2/, hh =h  [-]  Plank’s constant 

Bκ         [-]  Boltzmann’s constant 

ABBREVIATIONS 
3D  three-dimensional 
BEC  Bose-Einstein condensate 
GP    Gross-Pitaevskii 
TF  Thomas-Fermi 

 



1.  INTRODUCTION 
 Bose Einstein condensates (BEC) owe their name 
to the prediction of Bose and Einstein in 1925: for a 
gas of non interacting particles at very low 
temperature, a macroscopic fraction of the gas is in 
the state of lowest energy, that is condensed. As a 
consequence, the atoms in the condensate oscillate 
following the same complex wave function ψ . The 
first experimental realization of atomic BEC in 
1995 was awarded the Nobel Prize in 2001, the 
laureates being E. A. Cornell (University of 
Colorado), W. Ketterle (MIT) and Carl E. Wieman 
(University of Colorado) [1]. Since then, a lot of 
properties of these systems have been studied both 
experimentally and theoretically (see, for instance, 
[2]). 
 
 In recent years, several experimental studies 
provided evidence for the existence of quantized 
vortices in rotating Bose-Einstein condensates [3, 8, 
9]. The condensate is typically confined by a 
magnetic potential and set into rotation using a laser 
beam, which can be assimilated to a spoon stirring a 
cup of tea (see Fig. 1). The number and shape of 
vortices depend on the rotational frequency and the 
geometry of the trap. We consider here elongated 
traps resulting in cigar-shape condensates, 
corresponding to experiments performed by the 
École Normale Supérieure (ENS) group [2]. Typical 
size of the condensate is 100 mμ  for the length and 
10 mμ  for the diameter. 

 
 

Figure 1. Sketch of a rotating cigar-shape 
condensate corresponding to experiments described 

in Ref. [2]. 

 Quantized vortices start to nucleate in the 
condensate when the rotation frequency  exceeds 
a critical value c . If the condensate is described 
by the macroscopic wave functio
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where ρ  is the local density and θ  the phase, a 
quantized vortex is a topological defect of ψ . In 
other words, 0=ρ  in the core of the vortex (there 
are no atoms) and around the vortex there exists a 
frictionless superfluid flow with a discontinuous  

phase field. Therefore, if the local velocity in a 
point where the density is non-zero is defined as 
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the circulation around a vortex will be quantized 
(Fig. 2) 
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where is the Planck's constant,  the atomic mass 
and  an integer. The quantification of the 
circulation is a striking feature of superfluid 
vortices compared to vortices in classical fluids. 
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Figure 2. Numerical simulation of a singly 

quantized vortex in a cigar-shape condensate. 
Identification by means of iso-surface of low 

density 
2ψρ = . 

 This description suggests a simple method for the 
identification of vortices in numerical simulations 
by plotting iso-surfaces of low density 

2ψρ = , as 
shown in  Fig. 2 for a singly quantized vortex (n=1). 
It is interesting to note in passing that in classical 
fluid dynamics there are still controversial debates 
on the general definition of a vortex. 
 

For the trapping potentials considered in the 
following, only singly quantized vortices are 
obtained. When increasing , more and more 
vortices appear and arrange themselves into a 

cΩ>Ω

 



regular triangular (Abrikosov) lattice, as will be 
seen below. 
 

In this paper, we review our recent numerical 
results, most of them being contained in [4]. A high 
order finite difference method is proposed to 
numerically investigate the three-dimensional shape 
of equilibrium vortex configurations in a prolate 
(cigar-shape) rotating condensate. Our aim is to 
understand the various vortex configurations 
observed in experiments with different trapping 
potentials.  This is not without its challenges, since 
the description of a condensate with a large number 
of vortices (exceeding 100) requires very high 
spatial resolution and accurate integration schemes. 
Computations become very expensive at high 
rotation frequencies, which explains why such 3D 
simulations are not, to the author's knowledge, 
currently available in the open literature. 

2.  MATHEMATICAL MODEL  
 

We consider a pure BEC of  atoms confined in 
a  trapping potential rotating along the  axis 

at angular velocity Ω . The energy of the system in 
the rotating frame is described by the Gross-
Pitaevskii (GP) functional: 
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The interaction coefficient is defined as 
,  where  is the scattering 

length. The wave function is normalized to unity i.e. 
mag sD /4 2

3 hπ= sa

∫∫∫ =
D

12ψ . The trapping potential has usually the 

(harmonic) form: 
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with zyx ,,ω  the trap frequencies along each spatial 
direction.  

For numerical purposes, it is convenient to use 
the scaling introduced in [5]: R/xr = , 

, where )x((r) / ψ23Ru = ε/dR = and 
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The 3D dimensionless energy becomes  
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where H  is the hamiltonian 
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V the dimensionless potential and  the angular 
momentum  

zL
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The equilibrium of the system corresponds to 

minima of the Gross-Pitaevskii energy. 
 

3. NUMERICAL MODEL 
 We compute critical points of  by solving 
the norm-preserving imaginary time propagation of 
the corresponding equation: 
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where εμ  is the Lagrange multiplier for the 

constraint ∫∫∫ =
D

u 12
 and  on . Here,  

is a rectangular domain containing the condensate. 

0=u D∂ D

 
A hybrid 3 steps Runge-Kutta-Crank-Nicolson  

scheme [6] is used to advance the equation in time: 
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where  contains the remaining non-linear terms. 
The corresponding constants for every step 

F

3,2,1=l  are: 
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The resulting semi-implicit scheme is second 
order time accurate and allows reasonably large 
time steps, making it appropriate for long time 
integration. The large sparse matrix linear systems 

 



resulting from the implicit terms are solved by an 
alternating direction implicit (ADI) factorization 
technique. 

For the spatial discretization we use finite 
differences on a Cartesian uniform mesh. To 
accurately resolve sharp gradients of the variable in 
presence of vortices, low numerical dissipation and 
very accurate schemes are required for the spatial 
derivatives. A sixth-order compact finite difference 
scheme [7] with spectral-like resolution was chosen 
to this end. For example, the first and second 
derivatives at the grid point i, far from the 
boundaries, are written as : 
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where xδ  is the step of the space discretization. The 
values of the derivatives at all the grid points are 
computed by solving a tridiagonal matrix linear 
system, which provides spectral-like behavior of the 
finite difference scheme. 
 

The size of the computational domain is 
estimated by starting from the theoretical Thomas-
Fermi (TF) density distribution law:  
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where 22 yxr +=  and μ  is the chemical 

potential given by the constraint ∫∫∫ . 

The maximum transverse radius  and 
longitudinal half-length  can be then calculated 
from Eq. (15) in order to estimate the dimensions of 
the rectangular computational domain. For high 

=
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Ω  
(when the condensate is nearly spherical and more 
than 100 vortices are present), up to 240 240× ×240 
grid points are used to compute equilibrium states. 
 

It is worth at this point to describe how the 
condensate evolves in the "imaginary" time (i.e. 
how it relaxes to an equilibrium state). A typical 

simulation starts either from an initial condition 
given by the steady-state TF density distribution 
(15) - no vortices in the condensate -, or from an 
artificial field obtained by superimposing to the 
steady-state a simplified model for vortices. When 
solution branches are followed, the converged field 
for lower Ω  is used as initial condition. 
 

When suddenly increasing , new vortices are 
generated at the border of the condensate and enter 
the condensate. In the first stages of the 
computation, 3D vortex lines are strongly distorted, 
giving a spaghetti image of the lattice (see Fig.3). 

Ω

 
Figure 3. Spaghetti-like vortex structure in a 

condensate evolving in the imaginary time before 

convergence to an equilibrium state.  

Close to equilibrium, vortices become straight in 
their central part and arrange themselves in a more 
and more regular lattice (Fig. 4). Convergence is 
particularly slow at the end of the computation 
when the position and shape of vortices evolve very 
slowly. Convergence is considered when the energy 
remains constant (relative fluctuations less than 

) for a relatively long time to be sure that a 
stable state was obtained. The convergence time is 
longer for high values of the rotation frequency. 
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Figure 4. Example of energy decrease during the 
propagation of 3D Gross-Pitaevskii equation in 

imaginary time. Energy is normalized by the 
equilibrium (final) value . Inserts show iso-

contours of the integrated (along z) density 
corresponding to three successive time instants 

represented on the energy curve. 
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4. DESCRIPTION OF THE RESULTS 
 
We describe in detail the three dimensional structure 
of vortices for different trapping potentials used in 
experiments. 
 

4.1. Harmonic trapping potential 
 
In experiments, the condensate is typically confined 
by the harmonic (quadratic) potential given by Eq. 
(5). The values of constants in (10) are set to  
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corresponding to the experiments of the ENS group. 
The condensate is made of and has the 
following physical parameters: 
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The angular frequency Ω  is varied from 0 to the 
maximum value of xω9.0 . 
 

This type of potential was used to experimentally 
study single vortex lines in a cigar-shape (or 
prolate) condensate [8]. Experimental evidence was 
provided to prove that the vortex line is not straight 
along the axis of rotation, but bending. The vortex 
displays therefore a U  shape. More complicated 
configurations ( vortices) were also observed in 
experiments. 

S

Our numerical simulations reproduce remarkably 
well these vortex shapes (Fig. 5). The U vortex (see 
Fig. 5a) was numerically obtained by starting the 
simulation from an initial condition containing a 
straight vortex away from the z axis. For a 
relatively large value of the rotation frequency, the 
final steady state (i.e. the local minimum of the GP 
energy) displays a planar U  shape with a straight 
central part on the z axis and an outer part reaching 
the condensate boundary perpendicularly. 

 
Figure 5. Single vortex lines in a prolate (cigar-

shape) rotating condensate with harmonic trapping 
potential: U  vortex (a), planar  vortex (b) and 

non-planar  vortex (c).  
S

S

The  vortex exists for the range U
/ 86.042.0 ≤Ω≤ xω .  When varying Ω  at the 

lower bound, the U  vortex disappears and a 
vortex-free configuration is obtained, while at the 
higher bound the U  vortex degenerates in a three-
vortex configuration. 
 

Planar  vortices (see Fig. 5b) were numerically 
obtained from artificial generated initial conditions 
containing such a vortex. We checked that the final 
steady state for a given Ω  is always the same 
(different initial planar  shapes evolved to the 
same final configuration). The  vortex exists for 
all values of 

S

S
S

Ω  - they are only local minima of the 
GP energy. We also obtained  vortices with the 
bent arms rotated by 90 degrees (see Fig. 5c). We 
could check that non planar  configurations with 
an angle between the branches different from 90 
degrees, do not exist. For a given Ω , the three 
configurations are topologically equivalent by a z-
rotation of the bent arms of the vortices. 

S

S

 
The two branches of solutions (U and ) were 
followed by continuation and the energy diagram is 
plotted in Fig. 6. It is interesting to note that at

S

cΩ , 
when the U  vortex appears, the energy of the U  
vortex is bigger than the energy of the vortex free 
solution (we have set to zero the energy of the 
vortex free solution). 

 

 



 
Figure 6. Harmonic trapping potential: energy (in 
units of xωh ) for the single vortex configurations. 

4.2. "Quartic plus harmonic" trapping 
potential 
 

The harmonic trapping potential allows for 
rotation frequencies lower than xω ; for xω=Ω

x

 the 
centrifugal force compensates the trapping force 
and the confinement of the atoms vanishes. The fast 
rotation regime, corresponding to ω≅Ω , is the 
focus of a lot of attention since new physical 
phenomena are expected. 
 

The experimental approach to reach the fast 
rotation regime explored by the ENS group [9] 
consists in modifying the quadratic (harmonic) 
trapping potential by superimposing a blue detuned 
laser beam to the magnetic trap holding the atoms. 
The resulting harmonic-plus-Gaussian potential 
removes the singularity at the limit xω=Ω

x

 and 
allows to reach rotation rates up to ω05.1=Ω . 
 

The trapping potential becomes 
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The trapping frequencies are Hz 
and 

5.7520 ⋅=⊥ πω
112 ⋅= πωz  Hz, resulting in a cigar-shape 

condensate. The laser waist is m25 μ=w

0

 and the 

amplitude of the laser beam is 90⋅= BU κ nK, 
where Bκ is the Boltzman’s constant. 
 

For  sufficiently small, the potential  
can be approximated by:  
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For this quadratic-plus-quartic potential, the 
equivalent transverse trapping frequency is 
decreased to  Hz. Since the 
amplitude  of the laser beam is low in 
experiments, the quadratic part of the potential  
remains positive (repulsive interactions) and the 
quartic part is very small. 
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The numerical evolution of the 3D structure of 

the condensate with increasing Ω  can be seen in 
Fig. 7. The simulations offer a detailed 3D picture 
of vortex configurations that is not available from 
experiments and 2D simulations. In particular, the 
vortex merging leading to the formation of the 
central hole (giant vortex) in a condensate is proved 
to be highly three-dimensional and is clearly 
observed, which is not the case in experiments. The 
giant vortex can be regarded as the region 
containing singly quantized vortices with such low 
density that they are discernible only by the phase 
defects. 
 

Our simulations also provide quantitative 
information on the characteristics of the vortex 
lattice, namely the inter-vortex spacing  and the 
vortex core size . We find that  scales with the 

healing length
vr

ρπξ = sa8 , as is usually assumed 

in theoretical studies. The variation of  with the 
distance to the center of the condensate describes 
the vortex lattice inhomogeneities; a remarkably 
good agreement is found with the theoretical 
findings of Sheehy and Radzihovsky [10] (see Fig. 
8). 

vb

 



 
Figure 7. Numerically generated condensates 
obtained using a quadratic+quartic trapping 

potential with the parameters corresponding to 
experiments of [9]. Each column corresponds to a 

value of the rotation frequency - from top to 
bottom: 73,4.70,66,64,602/ =Ω π  

(respectively, 11.1,08.1,01.1,98.0,92.0/ =Ω ⊥ω ). 
Three-dimensional views of the vortex lattice 

identified by means of iso-surfaces of low atomic-
density. 

 
Figure 8. Harmonic plus quartic potential: vortex 
lattice and variation  of vortex core radius  and 

inter-vortex spacing   (values in 
vr

vb mμ ) as 
functions of the non-dimensional radius . For 

each plot, the value of the rotation frequency 
(

⊥Rr /

π2/Ω ) is indicated. In plots displaying , solid 
line represents the variation of the healing length

vr
 

ξ , scaled by a constant indicated in the legend
Variation of  is compared to theory prediction 
[10] (solid line) and the estimation assuming a 

uniform (rigid-body) vortex distribution (dashed 
line). 

. 

vb

4.3. "Quartic minus harmonic" trapping 
potential 
 

It is interesting to note that a stronger amplitude 
 in Eq. (18) could generate a quartic-minus-

harmonic potential (the interactions in the 
condensate becomes repulsive, instead of attractive 
as previously). We numerically found that this type 
of potential allows to obtain a giant vortex in the 
condensate at lower rotation frequencies than for 
the "quartic-plus-harmonic" potential. Indeed, Fig. 9 
shows condensates with a giant vortex starting from 

0U

 



12.0/ ≥Ω ⊥ω . As  is increased, singly 
quantized vortices are nucleated on a circle around 
the central hole. To our knowledge, this transition 
(which is similar to the case of the rotating bucket 
experiment for helium) has not been studied in 
BEC. 

Ω

 
Figure 9. Quartic-minus-harmonic trapping 

potential: top and side view of the condensate  for 
=Ω ⊥ω/ 0.12 (a), 0.2 (b) and 0.3 (c). 

4.4. "Harmonic plus optical lattice" trapping 
potential 
 

We finally present a sample of recent numerical 
simulations corresponding to a rotating BEC in an 
optical lattice, described by a trapping potential of 
the form:  

).(sin),(),( VzrV htrap =  
 
(19) 
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Intriguing vortex arrangements (see Fig. 10) are 
obtained for the bands of the optical lattice when 
the amplitude  is increased. Since experimental 
data are not yet available for such rotating 
configuration, our numerical simulations contribute 
to the theoretical description of interesting 
phenomena in rotating BECs. This work is in 
progress. 
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Figure 10. Quartic--plus-optical lattice trapping 

potential: view of the vortex arrangements for the 
first 9 individual sites (the condensate is 

symmetrical with respect to the central plane). 

 

 



 

5. CONCLUSION AND FUTURE WORK 
  

We have studied the vortex structure of 
equilibrium states of a rotating BEC by numerically 
propagating the Gross-Pitaevskii equation in 
imaginary time. The spectral-like finite difference 
scheme proved to be very effective in accurately 
capturing the three-dimensional structure of 
vortices. Our simulations offer a detailed 3D picture 
of vortex configurations that is not available from 
experiments. Remarkably qualitative and 
quantitative agreement with available experimental 
and theoretical results is obtained when using real, 
experimental parameters, for the simulation. 
 

Future developments of the numerical system are 
aimed at simulating the real-time dynamics of the 
condensate (solving the non-linear Schrödinger 
equation in 3D). 
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