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Direct numerical simulations are used to study the postformation evolution of a laminar vortex ring.
The vortex structure is described by calculating the embedded boundaries of the vortex inner core,
vortex core, and vortex bubble. The topology of the vortex ring is found to be self-similar during the
entire postformation phase. We also show that extracting the vortex inner core provides an objective
method in setting the upper value for the cutoff vorticity level separating the vortex from its tail. The
computed power laws describing the decay of the translation velocity and integrals of motion
�circulation, impulse, and energy� are shown to be consistent with both studies of Dabiri and Gharib
�J. Fluid Mech. 511, 311 �2004�� and Maxworthy �J. Fluid Mech. 51, 15 �1972��. We prove that the
apparently different scaling laws reported in these two studies collapse if a virtual time origin is
properly defined. Finally, the computationally generated vortex rings are matched to the classical
Norbury–Fraenkel model and the recent model proposed by Kaplanski and Rudi �Phys. Fluids 17,
087101 �2005��. The former model provides not only a good prediction of normalized energy and
circulation but also a good estimation of individual integrals of motion. The latter model offers, in
addition to a good prediction of integral quantities, a more accurate description of the vortex ring
topology when comparing the contours of the inner cores or vortex signatures. Both models
underestimate the volume of fluid carried inside the vortex bubble. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2949286�

I. INTRODUCTION

The fundamental and practical interest of the scientific
community in vortex rings has generated a large volume of
literature for at least a hundred years �see the reviews by
Shariff and Leonard,1 and Lim and Nickels2�. The present
work focuses on the postformation evolution of a laminar
vortex ring and is motivated by two recent contributions on
this topic, made by Dabiri and Gharib3 and, respectively, by
Kaplanski and Rudi.4 The former used a new experimental
technique to measure vortex ring entrainment and reported
scaling laws for the main integrals of motion different from
those established by Maxworthy5 in 1972 and currently used
in the literature. The latter proposed a more realistic model
than the commonly used Norbury–Fraenkel6,7 model to de-
scribe the postformation vortex ring. The purpose of this
paper is to numerically investigate the scaling laws and geo-
metric parameters characterizing the postformation evolution
of a vortex ring. We also address the more general question
of how to fit the properties of a numerically �or experimen-
tally� generated vortex ring to ideal vortex ring models.

Laminar vortex rings are usually generated in laboratory
by a piston/cylinder arrangement sketched in Fig. 1. A col-
umn of fluid is pushed by a piston into a quiescent surround-
ing. The boundary layer at the edge of the cylinder separates
and rolls up into a vortex ring. The flow is assumed to be
axisymmetric and thus easily described in cylindrical coordi-
nates �r ,z�. The main integrals of motion are the circulation
���, the hydrodynamic impulse �I�, and the energy �E�, de-
fined for the case of axisymmetric motion as8

� =� �drdz, I = �� �r2drdz, E = �� ��drdz ,

�1�

where � is the �azimuthal� vorticity and � the corresponding
Stokes stream function.

A simplified description of the formation process consid-
ers that the velocity across the exit plane of the generator of
diameter Dp is constant and equal to the average velocity Wp

of the piston. The corresponding characteristic time of the
process is therefore defined as Dp /Wp. The piston stroke Lp

determines the duration of the fluid discharge, taking place
for nondimensional times 0�Wpt /Dp�Lp /Dp.

After the piston stops, the vortex ring continues to en-
train surrounding irrotational fluid and a part of its wake. At
later times, a vortex bubble is formed ���b in Fig. 1� defined
by the dividing streamline ��vr=0� and the forward �A� and,
respectively, rearward �B� stagnation points. This closed vol-
ume of the vortex ring is also called vortex atmosphere.9

Inside the vortex atmosphere, the fluid circulates over closed
streamlines. The vortex ring has the shape of an oblate ellip-
soid of revolution, with the vorticity concentrated in the vor-
tex core ��c. In the meridional section of the vortex, the
vorticity has approximately Gaussian distribution10,11 with
the maximum at the core center �C� of coordinates �Rc ,Zc�.
The vortex ring translates with its own induced velocity Wv.

An important progress in understanding the behavior of
the vortex ring during the formation phase was made by

Gharib et al.12 They experimentally showed that for large
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stroke ratios tp=Lp /Dp�4, only a limited amount of the cir-
culation delivered by the discharging flow is engulfed by the
vortex ring. The maximum circulation that the vortex ring
can attain is produced by the apparatus at a critical time tf

� tp, referred as the “formation number.” Any additional cir-
culation generated at the inlet ends up in a trailing jet. The
formation number value was reported to range from 3.6 to
4.5 for a variety of exit diameters, exit geometries, and pis-
ton velocity moving programs. The investigation of the uni-
versality of the formation time has focused the effort of most
recent experimental,12–14 numerical,15–17 and theoretical18–21

studies. The formation time is presumed to have a major
importance in practical applications �e.g., propulsion and lo-
comotion of biological systems, injection in internal combus-
tion engines�.

The evolution of the vortex ring during the postforma-
tion phase was, in exchange, less investigated by means of
modern experimental and numerical techniques. The refer-
ence work on the diffusive evolution of the vortex ring goes
back to the 1970s, when Maxworthy5,22 experimentally and
theoretically established the scaling laws for the main inte-
grals of motion. He reported a −1 power-law decay for the
translational vortex ring velocity �Wv� t−1� and a −2 /3
power-law decay for the vortex ring circulation ��v� t−2/3�.
He also predicted a −1 /3 power law for the circulation of the
entire flow field �vortex bubble and its wake�. This analysis
was performed assuming the impulse of the vortex bubble to
be a constant. In recent experiments of Dabiri and Gharib3

�henceforth denoted as DG� much smaller decay rates were
measured: Wv� t−1/3 and �v� t−p, with p=0.15 or p=0.27,
depending on the stroke ratio. The source of discrepancy in
these results was believed to lie in the configuration of the
apparatus generating the vortex ring �Maxworthy used a
sharp-edged orifice and DG a piston/cylinder arrangement�
and in the Reynolds number of the flow, Re=WpDp /	. Since
the scaling law predictions of Maxworthy5 are admittedly
limited to large Reynolds numbers, it was believed that the
Reynolds number in experiments of DG was too small �Re
=1400�. However, Maxworthy’s scaling law for the circula-
tion was confirmed in numerical simulations of James and
Madnia23 for a vortex ring generated at Re=300. It is the first
objective of this contribution to numerically investigate the
scaling laws characterizing the postformation evolution of
the vortex ring.

Another important question concerning the vortex ring
postformation is how to fit the characteristics of an experi-
mentally or numerically generated vortex ring to those of an
ideal model. This is the first step of analytical models pre-
dicting the value of the formation time.4,12,18,19,21 The idea
behind these theories is to match the values of the circulation
��p�, impulse �Ip�, and kinetic energy �Ep� of the discharged
fluid to the corresponding values ��v , Iv ,Ev� of the vortex
ring after the formation phase. The maximum plug length
characterizing the formation time is finally predicted using
an additional constraint imposed either by equating the trans-
lational velocity of the vortex ring by the one predicted by
the slug model18,24 �Wv�Wp /2� or by matching the volume
of the plug to that of the vortex ring.21

The ideal vortex ring model of Norbury and Fraenkel6,7

remains popular to describe the postformation vortex ring
evolution. Vortices of this family are identified by a single
geometric parameter calculated by equating either the nor-
malized energy12,17–19,21 or normalized circulation17,18 of the
experimental or numerical vortex ring,

Ev
* = Ev/�Iv

1/2�v
3/2�, �v

* = �v/�Iv
1/3Wv

2/3� , �2�

to the corresponding values from the theoretical model. It
was found that normalized quantities predicted by the model
follow closely the experimental or numerical values. This
might be surprising since the hypotheses used in deriving
this family of vortices are far from being realistic: the vor-
ticity distribution is linear and the dynamics is inviscid. Ka-
planski and Rudi4 derived a more realistic vortex ring model
by taking into account the viscosity and a Gaussian vorticity
distribution in the core. Their model was used to successfully
predict the value of the formation number, but, to our knowl-
edge, a detailed numerical validation of its predictions has
not yet been provided.

The second objective of this paper is therefore to nu-
merically evaluate the validity of ideal vortex ring models in
describing not only the evolution of normalized energy and
circulation, but also of individual quantities ��v , Iv ,Wv�. We
also compare geometric characteristics such as the core size,
the shape, and the volume of the vortex bubble, the position
of the vortex center, etc. These geometric details, which are
absent in previous studies, may be very useful in modeling
phenomena occurring in practical application. One of these is
the ignition of a combustible mixture, when the ignition ker-
nel is the vortex ring that forms at the head of the injected
transient jet.

II. NUMERICAL AND PHYSICAL PARAMETERS

We integrate the incompressible Navier–Stokes equa-
tions in cylindrical coordinates �r ,
 ,z� using the numerical
method proposed by Verzicco and Orlandi.25 Since this
method is described in great detail by Orlandi,26 we outline
here only its main characteristics. The equations are written
in primitive variables �r ·vr ,v
 ,vz� and solved on a staggered
grid to avoid the problem of singularities introduced by the
axis r=0. Second order finite differences are used for the
spatial discretization. For the time advancement we use a
fractional-step method27 based on a combination of a low-
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FIG. 1. �Color online� Sketch of the formation of a vortex ring generated by
a piston/cylinder arrangement and geometric parameters of the ring during
the postformation phase.
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storage third-order Runge–Kutta scheme for the convective
terms and a semi-implicit Crank–Nicolson scheme for the
viscous terms. At each substep of the Runge–Kutta scheme,
the momentum equations are solved by an approximate fac-
torization technique and a Poisson equation is solved for the
pressure correction. The Poisson solver uses a fast Fourier
transform following the azimuthal direction 
 and an effec-
tive cyclic reduction method �Fishpack subroutines� for solv-
ing the remaining two-dimensional system following �r ,z�
directions. The method is globally second order accurate in
space and time.

For the purpose of this paper, we perform axisymmetric
direct numerical simulations of the laminar vortex ring. The
piston/cylinder vortex generator can be numerically modeled
either by simulating the flow in the cylinder28 or by prescrib-
ing the axial velocity profile at the inflow boundary.15–17,23

We adopt the second method and specify at the inlet �z=0� a
discharge velocity profile varying in time and space,

Vz�t,r� = V0�t�Vzb�r� , �3�

where V0�t� is the “velocity program” proposed by James
and Madnia23 to describe the piston motion,

V0�t� =�
Wp

2
	1 + tanh
 5

�1
�t − �1��� ,

t � �1 + �2/2
Wp

2
	1 + tanh
 5

�1
��1 + �2 − t��� ,

t � �1 + �2/2,


 �4�

and Vzb is the classical hyperbolic tangent profile, which
matches very well the shape of profiles measured in experi-
ments �see, e.g., Michalke29�,

Vzb�r� =
1

2
	1 + tanh
 1

2��
�Dp

2r
−

2r

Dp
��� . �5�

The parameter �� is the dimensionless thickness of the vor-
ticity layer at the inlet, i.e., ��=WpDp / ��Vz /�r�max. The con-
stants �1 and �2 separate the three parts in the piston motion:
acceleration for t� ��0,�1��, velocity plateau V0=Wp for t
� ��1 ,�2� and deceleration for t� ��2 , toff�. At toff the axial
velocity becomes zero in the entire inlet section. The injected
plug is usually described using the so-called slug model,1,2

assuming that near the exit plane of the vortex generator the
flow is parallel and characterized by a top-hat velocity profile
�see Fig. 1�. It follows that the stroke length �Lp�, circulation
��p�, impulse �Ip�, and kinetic energy �Ep� of the discharged
fluid at the cylinder lip are calculated as

Lp = �
0

toff

V0���d�, �p =
1

2
�

0

toff

V0
2���d� , �6�

Ip =
�Dp

2

4
�

0

toff

V0
2���d�, Ep =

�Dp
2

8
�

0

toff

V0
3���d� . �7�

In the following, all presented quantities will be normalized
using the characteristic length Dp, velocity Wp, and time
Dp /Wp.

Physical parameters of simulations are set accordingly to
experiments of DG: the Reynolds number is Re=1400 and
the stroke ratio is Lp /Dp=2 or 4. A third stroke ratio
Lp /Dp=6 is considered in order to extend our analysis to a
case with well-defined vortex pinch-off. The impulsive mo-
tion of the piston is modeled by setting short-time
acceleration/deceleration phases ��1=0.15�. The value of the
parameter �2 is determined by the stroke ratio ��2�Lp /Dp�.
We consider in our simulations a thin vorticity layer at the
inlet with ��=0.05. All parameters describing the injection
programs used in present simulations are summarized in
Table I.

In order to follow the vortex ring for a long time period
�t�40� for all considered stroke ratios, the axial extent of
the computational domain is set to 20Dp. This allows to
avoid vortex ring getting close to the downstream boundary
�max�Zc��16Dp�, where we apply a convective30 boundary
condition, enforced by a global mass conservation
procedure.31 The domain extends radially to rmax=4Dp,
which ensures a negligible influence of lateral slip-wall
boundary on the dynamics of the vortex ring. In the follow-
ing, we present high resolution simulations employing 301

1251 grid points. The grid is uniform in the axial direction
and stretched in the radial direction such that at least 30 grid
points are clustered in the vorticity layer of the inflow axial
velocity profile. Computation with higher spatial resolutions
confirmed the grid independence of the results.

III. POSTFORMATION EVOLUTION
OF THE VORTEX RING

A typical evolution of the vortex ring during the entire
numerical simulation is presented in Fig. 2 for the case
Lp /Dp=6. The total circulation � is obtained from Eq. �1� by
integrating the vorticity over the entire computational do-
main, excepting a small region near the inlet �z�0.2�. This
eliminates the negative vorticity developing in the inlet wall
boundary layer and allows comparison with numerical re-
sults of Zhao et al.16 and experimental data of Gharib et al.12

Good agreement with both numerical and experimental data
is observed.

Figures 2�b�–2�d� show some typical snapshots of the
normalized vorticity field ��̃=� /�max�. In order to estimate
the formation time, we separate the leading vortex ring from
the flow using the contour line �̃=0.05 �see also the next
section�. When the separation is not well defined �e.g., t
=10, t=15.4�, this contour line is truncated and closed at the
downstream location of the center of the vortex �z=Zc�. The
resulting domains, represented by gray patches in Figs.
2�b�–2�d�, are used to compute the vortex ring circulation.

TABLE I. Numerical parameters for the injection programs and correspond-
ing integral quantities evaluated using slug-model equations �6� and �7�.

Lp /Dp �1 �2 toff �p Ip Ep E
p
*

2 0.15 2.0 2.29 0.98 1.55 0.77 0.63

4 0.15 4.0 4.29 1.98 3.12 1.55 0.31

6 0.15 6.0 6.29 2.98 4.69 2.34 0.21
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The pinch-off of the vortex ring is defined to occur15 when
the contour line �̃=0.05 encircles the vortex for the first
time. A clear pinch-off is observed in our simulations starting
from t=15.4, a value consistent with previous numerical
results.15,28 Figure 2�a� shows that the circulation of the vor-
tex ring reaches its maximum at the pinch-off time. We infer
from the same figure that the formation time at which the
total circulation delivered by the vortex generator is equal to
the circulation of the pinched-off vortex ring is approxi-
mately 3.6. An identical value was experimentally12 and
numerically15 obtained for similar configurations of the vor-
tex generator.

It seems reasonable to consider that the postformation
phase of the vortex ring starts right after the pinch-off. Nev-
ertheless, a well-defined ellipsoidal shape, appropriate to
compare results to theoretical predictions, is observed at later
times. We note from Fig. 2�d� that a small kink of the lowest
vorticity contour is still present at t=20. For t�20, vorticity
contours displayed in Fig. 3 show vortex rings of ellipsoidal
shape for all considered stroke ratios. As expected from the
estimated value of the formation time �tF=3.6�, the trailing
jet is absent for Lp /Dp=2� tF and reduced to a very weak
vorticity tail for the stroke ratio Lp /Dp=4. The pinch-off in
this latter case occurs earlier than for Lp /Dp=6, a result al-
ready reported by Rosenfeld et al.15 Following these obser-
vations, our analysis of the postformation phase will consider
vortex ring evolution for 20� t�40.

A. Vortex structure: Vortex core, inner core,
and bubble

The difficulty in calculating the integrals of motion
��v , Iv ,Ev� and geometric characteristics of the vortex ring is
to properly separate the leading vortex from its tail. Since the
vorticity distribution is approximately Gaussian with the
maximum ��max� in the center �C� of the vortex �see Fig. 1�,
the generally used method consists in truncating the vorticity
field at an ad hoc low value. The vortex core ���c� is thus
identified as the region of normalized vorticity �̃=� /�max

��̃cut. This corresponds to the intuitive definition of the core
as the region concentrating most of the vorticity. Of course,
the core is not in practice well defined and the cutoff level is
set to the best appreciation of the authors. The values of �̃cut,
when reported, range from 2% �Ref. 17� and 5% �Refs. 15,
16, and 28� in numerical studies, to approximately 10% �Ref.
3� in experiments.

In the following, we suggest a more objective way to set
the cutoff level �̃cut. The idea is to use the notion of “inner
core radius” introduced by Saffman32 and defined as the ra-
dius measured from the center C of the vortex at which the

FIG. 2. �Color online� Simulation for Lp /Dp=6. �a� Time evolution of the
total �solid line� and vortex ring �dashed line� circulation normalized by the
maximum value ��max=3.27�. Symbols are extracted from Fig. 7 of Zhao
et al. �Ref. 16�; ��� experimental data of Gharib et al. �Ref. 12�; ���
numerical result of Zhao et al. �Ref. 16�. �b�–�d� Contour lines �min=0.05,
max=0.95, increment=0.05� of normalized vorticity ��̃=� /�max� before
�t=10�, close to �t=15.4�, and after �t=20� the pinch-off of the vortex ring
from its tail. The gray patches are used to compute the circulation of the
leading vortex ring.
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local tangential velocity has its maximum. It is obvious that
for a circular vortex with uniform vorticity distribution, the
core coincides with the inner core. It is also the case for
Hill’s spherical vortex and, more generally, for Norbury–
Fraenkel’s vortex rings �see next sections�. This definition
was intuitively used in experimental studies of Sullivan10 and
Akhmetov9 to calculate the dimensions of the core following
axial and radial directions. Requesting that the truncated vor-
ticity field includes the inner core will allow to calculate an
upper bound �̃cut

max for the cutoff value. We illustrate this
method by considering the case Lp /Dp=4 for which the vor-
tex ring separates earlier.

Figure 4 shows the normalized vorticity field �̃ at t
=30. We can already observe that the isocontour level �̃
=0.02 is more elongated than the others, including a part of
the vortex ring tail. Following the approach used in
experiments,9,10 we now extract velocity profiles following
axial and transverse sections through the center of the vortex.
The center �C� of the vortex is located at Rc=0.87 and Zc

=11.35. We plot one-dimensional profiles vz�r ,Zc� �cut line
B� and vr�Rc ,z� �cut line A� that correspond to tangential
velocities in the frame of reference centered in �C�. The
peaks �A1 ,A2� and �B1 ,B2� of these profiles define the radial
and, respectively, axial extents of the inner core. If we mea-
sure the distances a1 ,a2 and b1 ,b2 �see Fig. 4� and normalize
them with the vortex ring radius Rc, we notice that the center
of the vortex is located at approximately half the distance
between A1 and A2 �a1 /Rc�a2 /Rc=0.45�, while there is a
strong asymmetry in the radial direction since b1 /Rc=0.29
and b2 /Rc=0.59. These ratios indicate that the vortex ring
has a relatively thick inner core, but not as thick as Hill’s
vortex for which the ratio between the core radius and the
vortex radius is �2. Note that similar vortex structures can be
seen in Fig. 6 of Mohseni et al.,17 displaying numerically
generated vortex rings by applying nonconservative forces of
long duration.

The complete contour ��ic of the inner core is calculated
using the same procedure. Velocity profiles along 36 radii

starting from the center of the vortex at angles covering uni-
formly �0,2�� are extracted from the flow field by a bicubic
interpolation procedure. For each radial direction, the point
corresponding to the maximum of the tangential velocity �in
the frame of reference attached to the vortex center� is lo-
cated and finally used to draw the inner core. The contour of
the inner core is superimposed to vorticity isocontours in
Fig. 4 and plotted separately in Fig. 5 for different time in-
stants. The shape of the inner core is different from the gen-
erally admitted circular one9,10 and remains remarkably simi-
lar during the postformation phase if we use normalized local
coordinates �r0 /Rc, z0 /Rc� in the frame of reference attached
to the center of the vortex.

It is interesting to follow the evolution in time of the
dimensions of the inner core. Figure 6 shows that the axial
symmetry is kept �a1�a2� while the inner core becomes
more elongated in the radial direction, since b1 is almost
constant and b2 increases �see also Fig. 5�. This is a direct
consequence of the increase of the vortex ring radius Rc dur-
ing the postformation phase. We now monitor the minimum
value of the normalized vorticity contained in the inner core.
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Figure 6 also shows that the point B2, which is the closest to
the axis, sets this minimum value to approximately 0.10.
Consequently, the criterion of including the inner core in the
truncated vorticity field imposes that �̃cut�0.1. For the other
considered stroke ratios, we obtain �̃cut

max=0.08 for Lp /Dp

=2 and �̃cut
max=0.13 for Lp /Dp=6. In the next section, when

calculating the integrals of motion, we shall set �̃cut=0.05, a
value satisfying our criterion for all stroke ratios.

Since in theoretical models the vorticity is zero outside
the vortex core, we can assimilate the core of the simulated
vortex ring to the simply connected surface �c= ��̃��̃cut

=0.05� that has the vortex center C as an inner point. In other
words, the boundary ��c is the closed isocontour curve �̃
=0.05 that encircles the center C �see Fig. 7�.

The truncated vorticity field is used to calculate the
stream function � in the laboratory frame by inverting the
elliptic equation

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
= − r� �8�

using the same solver as in the Navier–Stokes code. Dirichlet
conditions are calculated from the velocity field at the
boundaries, and particular care is devoted to the treatment of
the singularities introduced by the axis �r=0�. The stream

function in the reference frame moving with the vortex ring
is finally calculated as

�vr = � − 1
2r2Wv, �9�

with the translational velocity estimated by tracking the po-
sition of the vortex center Wv=dZc /dt. The dividing stream-
line �vr=0 sets the contour of the vortex bubble ��b. The
structure of the vortex ring sketched in Fig. 1 can be now
plotted more precisely. Figure 7�a� displays the contours of
the vortex core, inner core, and vortex bubble for the case
Lp /Dp=4, t=30. This structure remains similar during the
postformation evolution of the vortex ring. The areas of the
inner core and vortex core increase slowly in time, but the
area ratios �see Fig. 7�b�� are remarkably constant for t
�25 ���c� / ��b��0.54 and ��ic� / ��b�=0.2�. These area ratios
slightly decrease with the stroke ratio Lp /Dp.

B. Scaling laws for the integrals of motion

The main integrals of motion ��v , Iv ,Ev� for the vortex
ring evolution during the postformation phase are calculated
using the formulas �1�. The integrals are numerically com-
puted over the vortex core domain �c defined previously.
Notice that �c is varying with time.
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FIG. 6. �Color online� Simulation for Lp /Dp=4. Variation in time of the axial �a1 ,a2� and radial dimensions �b1 ,b2� of the inner core and normalized vorticity
corresponding to points A1, A2, B1, and B2 �see Fig. 4 for definitions�.
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The postprocessing program was tested by reconstruct-
ing on the present computational grid the velocity field cor-
responding to Hill’s spherical vortex of similar size as simu-
lated vortex rings. The errors in computing the known values
�e.g., Saffman8� for �v, Iv, and Ev were 5
10−6, 2
10−4,
and 4
10−4, respectively. We remind that the normalized
energy and circulation for Hill’s vortex are E

Hill
* =0.16, �

Hill
*

=2.7.
Figure 8 displays the evolution of the integrals of motion

��v , Iv ,Ev�, the translation velocity �Wv� and normalized en-
ergy �E

v
*� and circulation ��

v
*� of the vortex ring. The decay

of each quantity is estimated by a least squares fit to power
laws of the form tp. We recall that the time t is measured
relative to the beginning of the injection, as in experiments
of DG. The exponents of the power-law fits shown in the
figure are summarized in Table II. Very good agreement with

the results reported by DG is observed for the stroke ratio
Lp /Dp=4: we obtain a −0.23 power-law decay for the circu-
lation �v and a −0.34 power-law decay for the translation
velocity Wv, values very close to experimental ones: −0.27
for the circulation and −0.34 for the velocity �see Figs. 7 and
8 from DG�. Similar exponents for the power-law fits are
obtained for the case Lp /Dp=6, not considered in experi-
ments. The integral quantities decay slightly faster for the
smallest stroke ratio Lp /Dp=2, but still at comparable rates:
we obtain a −0.27 power-law exponent for �v and −0.43 for
Wv, compared to the values of −0.07 and, respectively, −0.37
reported by DG.

A striking feature of the postformation evolution of the
vortex ring is the fact that nondimensional energy and circu-
lation vary very slowly during this phase. The normalized
energy E

v
* decays at a low rate for Lp /Dp=2 and is practi-

cally constant for Lp /Dp=4 and 6. For the three stroke ratios,
the normalized circulation slowly oscillates around the value
�

v
*�2.1, consistent with previously obtained values from

theoretical modeling18 �1.77��
v
*�2.07� and numerical

simulations17 ��
v
*�2�.

Oscillations in the variation of �
v
* are due to the slow

rotation of the noncircular core of the vortex ring that
slightly affect the measure of the translational velocity Wv.
This phenomenon was also observed in experiments of DG.
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FIG. 8. �Color online� Evolution of main integrals of
motion and corresponding power-law fit. Simulations
for Re=1400 and different stroke ratios Lp /Dp=6 ���,
Lp /Dp=4 ���, and Lp /Dp=2 ���.

TABLE II. Exponents p for the power laws tp describing the main integrals
of motion �see also Fig. 8�.

Lp /Dp �v Iv Ev Wv E
v
* �

v
*

2 −0.27 −0.06 −0.57 −0.43 −0.13 0.04

4 −0.23 −0.04 −0.43 −0.34 −0.06 0.01

6 −0.21 −0.03 −0.36 −0.32 −0.03 0.01
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It is important to observe from Fig. 8 and Table II that
the impulse Iv of the vortex ring decays at very small rates.
Note also that these decaying rates are consistent with the
dimensional analysis of DG resulting in the estimation Iv
��v

3 /Wv
2. This observation suggests that the main hypothesis

in the analysis of Maxworthy,5 considering a constant im-
pulse vortex ring, is verified in our simulations to a fair de-
gree of approximation. This might raise the question of
whether there is a discrepancy between the power-law expo-
nents experimentally measured by DG and the higher values
theoretically predicted by Maxworthy. The answer comes
from the different mathematical forms of the power laws
used in these studies. Maxworthy used power laws of the
form �t− t0�p, with t0 defined as a virtual origin. In order to
estimate the value of t0, Maxworthy plotted the time varia-
tion of the third power of the vortex ring radius �Rc

3�, quan-
tity considered as a characteristic dimension of the vortex
bubble. Using a linear fit of Rc

3�t�, the value of t0 was ex-
trapolated as the intersection point with the time axis �see
Fig. 6 from Maxworthy5�.

We apply the same analysis to our numerical data. Fig-
ure 9 shows that the curve Rc

3�t� is reasonably approximated
by a linear fit for all considered stroke ratios. The virtual
origin coordinate t0 can be easily computed as the intersec-
tion point of the linear fit with the time axis. The values are
compiled in Table III. Notice that the values of t0 are prac-
tically identical for the largest stroke ratios, Lp /Dp=4 and 6.
The exponents p of the power laws �t− t0�p are calculated
from Fig. 8 and displayed in Table III. The main results of
Maxworthy are remarkably recovered: the measured −1
power law for the translational velocity Wv and the predicted
−2 /3 power-law decay for the vortex circulation. The same
decay rate for the circulation was obtained from numerical
data by James and Madnia23 when using an appropriate esti-
mation of the virtual origin. Therefore, we can conclude

from our numerical simulations that there is no major dis-
crepancy between the exponents of the power laws recently
reported by DG and those predicted by Maxworthy in 1972.

Nevertheless, it is prudent to remember that the virtual
origin model is a purely mathematical description of the vor-
tex ring evolution that has some physical inconsistencies.
Maxworthy’s theory is based on his experimental results5

showing an exponential decay of the translation velocity
with the downstream position of the vortex ring,

W�Zc� =
dZc

dt
= W0 exp� Zc

W0t0
� , �10�

where W0=W�0� and −�� t0�0 is the negative virtual ori-
gin. This assertion was recently confirmed by experimental
measurements of Scase et al.33 Integrating Eq. �10� with the
condition Zc�0�=0 results in

Zc�t� = − W0t0 ln�1 −
t

t0
� , �11�

and, finally, Maxworthy’s −1 power-law decay for the trans-
lational velocity is recovered,

W�t� =
− W0t0

t − t0
. �12�

From Eqs. �11� and �12� we infer that the virtual origin lo-
cation is Zc�t0�=−� and the translation velocity at this point
is infinite. An infinite number of vortex ring trajectories are
mathematically possible to get from the virtual origin �t= t0,
Zc=−�, W=�� to the cylinder lip �t=0, Zc=0, W=W0�, but
all are physically incorrect since the vortex ring has to travel
over an infinite distance in a finite time. Besides, the physical
interpretation of the constant W0 of the model is subject to
caution since at t=0 the vortex ring is not yet formed.

In conclusion, Maxworthy’s theory is to be regarded as a
mathematical model using two parameters �W0 , t0� to de-
scribe the vortex ring evolution. The imagined vortex ring is
forced to pass the cylinder lip with the correct values of
circulation, impulse, radial size, and translation velocity.
This model is required by the experimental evidence5,33 of
the exponential decay equation �10� of the translation veloc-
ity with the downstream position of the vortex ring. As stated
in the original paper of Maxworthy, this is rather unusual,
compared to the cases of jets, plumes, etc., in which an al-
gebraic variation of all quantities with distance is observed.
The exponential decay law �10� is also verified by our nu-
merical data, as shown in Fig. 10. Solid lines in the graph
represents the theoretical law �10� with constants �W0 , t0�
calculated by a nonlinear fit. It is interesting to note from
Fig. 10 that the value of W0 is close to the value Wp /2
=0.5, used in analytical models18,24 to approximate the trans-
lation velocity of the vortex ring. We have also checked that
the values of the virtual time origin obtained from this fit are
consistent with those displayed in Table III �e.g.,
t0=−55.16 for Lp /Dp=4 and t0=−63.66 for Lp /Dp=6� and
do not significantly affect the scaling law exponents in the
same table.

The last point that needs to be discussed here is Max-
worthy’s assumption of constant bubble impulse. Using the

t

R
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FIG. 9. �Color online� Determination of the virtual origin t0 from the time
variation of Rc

3. Simulations for different stroke ratios: Lp /Dp=6 ���,
Lp /Dp=4 ���, and Lp /Dp=2 ���.

TABLE III. Exponents p for the power laws �t− t0�p describing the main
integrals of motion. The value of the virtual origin t0 is calculated from
Fig. 9.

Lp /Dp t0 �v Iv Ev Wv E
v
* �

v
*

2 −48.85 −0.66 −0.15 −1.36 −1.01 −0.29 0.06

4 −56.51 −0.65 −0.12 −1.20 −0.97 −0.16 0.04

6 −56.63 −0.60 −0.09 −1.01 −0.93 −0.06 0.05
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virtual origin model results in larger exponents in the power-
law decay of the impulse, as shown in Table III compared to
Table II. However, the decay rate of the impulse remains
very slow �around a −1 /10 power-law decay� and, for the
considered time interval, the total variation of the impulse
does not exceed 2.5% for all stroke ratios. This reduced loss
of impulse explains why the model of Maxworthy is still
satisfactory. Finally, we remind that the impulse considered
in Tables III and II is computed using the vortex core ��c� as
integration domain. Integrating the nontruncated vorticity
over the larger domain �b �see Fig. 7� resulted in similar
decaying power laws for the vortex bubble impulse. In ex-
change, the impulse of the domain including the vortex
bubble and its wake remains remarkably constant. This sug-
gests that the impulse is continuously transferred from the
bubble to the wake, as described in Maxworthy’s theory.

C. Fit to ideal vortex ring models

Matching numerically or experimentally generated vor-
tex rings to ideal vortex models is useful in theoretical analy-
sis predicting properties of practical interest such as the for-
mation number.4,18,19,21 We consider in this section two
classes of vortex ring models: the largely used Norbury–
Fraenkel6,7 vortex family �see also Shariff and Leonard1� and
the recent model proposed by Kaplanski and Rudi.4 The vor-
tex ring numerically obtained for Lp /Dp=4 at t=30 �see
Figs. 4 and 7� will be matched to these two models. The
details of the fitting procedures are explained in the Appen-
dix. We present in the following the main characteristics of
the ideal vortex models �hereinafter denoted as NF and, re-
spectively, KR vortex� and analyze their relevance in de-
scribing numerically generated vortex rings.

Norbury6 numerically calculated the properties of a class
of inviscid vortex rings with vorticity distribution propor-
tional to the distance to the axis of symmetry. The vortices of
this family are identified by a single geometric parameter �,
which is the nondimensional mean core radius,

� =
���c�/�

Rc
. �13�

For �→0, the classical thin-core vortex8 is recovered, while
Hill’s spherical vortex is included at the upper bound ��
=�2�. Norbury calculated the shape of the vortex core and
vortex bubble, the integrals of motion of the vortex ring for

different values of the parameter � and presented the results
in tabular form. Analytical expressions of these quantities
were proposed by Fraenkel7 for �→0 and Norbury6 for �
→�2. This model is easy to use in practice since the calcu-
lation of the parameter � needs as input only the normalized
energy E

v
* of the real vortex ring. The value of � allows to

compute all remaining characteristic scales of the vortex
from tabulated values �see the Appendix for details and a
discussion�.

Kaplanski and Rudi4 have recently proposed a more re-
alistic class of ideal vortex rings. The vorticity in the core is
Gaussian and a viscous �diffusive� length scale � is intro-
duced. This class of vortex rings, that can be considered as
the viscous analog to NF vortices, is also identified by a
single geometric parameter �=Rc /�. The matching procedure
also starts by calculating � using as input the normalized
energy E

v
*; the integrals of motion are then calculated from

somewhat cumbersome analytical expressions �see the Ap-
pendix for details�.

The simulated vortex ring �Lp /Dp=4, t=30� has the nor-
malized energy E

v
*=0.27 and normalized circulation �

v
*

=2.1. It is useful to remember that these values vary slowly
�of 4% maximum� during the postformation phase �see Fig.
8�. The corresponding fits using as input the value of E

v
* give

the following values for the main parameters: �=0.6 for the
NF vortex and �=3.48 for the KR vortex. We first note that
the equivalence between the two classes of vortices sug-
gested by Kaplanski and Rudi4 is not valid in this case. They
proposed to approximate the area of the vortex core as ��c�
=��2, obtaining from Eq. �13� that �=1 /�. This is mani-
festly not the case for our example.

The complete comparison between the simulated vortex
and the resulting fits to ideal models is displayed in Fig. 11.
The vorticity and streamline fields were numerically recon-
structed for each vortex model. We should emphasize the
fact that the fitted vortices have the same circulation �v and
impulse Iv as the simulated vortex. This determines the geo-
metrical characteristics of the vortex models: the vortex ring
radius Rc is calculated by the fitting procedure, while the
axial coordinate Zc is imposed for all vortices.

As expected, normalized vorticity isocontours �Figs.
11�a�–11�c�� are circular �quasi-Gaussian vorticity distribu-
tion� for the KR vortex and straight �linear vorticity distribu-
tion� for the NF vortex. It is useful to extract radial vorticity
profiles at z=Zc in order to determine the exact position of
the vortex center. Figure 12 shows that the KR vortex has
realistic vorticity distribution. The vorticity peak is slightly
larger than for the simulated vortex and shifted toward the
symmetry axis. This sets the vortex radius at a lower value
�Rc

KR=0.78� compared to simulated vortex �Rc=0.87�.
The linear vorticity distribution in the NF vortex allows

to define only a geometrical vortex center, as the midpoint of
the radial extent of the core. We obtain from Fig. 12 the
value Rc

NF=0.72. It is interesting to note that applying the
same definition to the simulated vortex results in a very close

value, R̄c=0.71. The fact that the NF and simulated vortices
have the same geometrical center is also visible in Fig. 11�g�
showing the contours ��c of vortex cores. The core of the
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FIG. 10. Verification of the exponential decay equation �10� of the transla-
tion velocity with the downstream position of the vortex ring. Plot using
semilogarithmic axis for Lp /Dp=6 ���, Lp /Dp=4 ���, and Lp /Dp=2 ���.
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NF vortex is elongated in the axial direction, as for the simu-
lated vortex, while the core of the KR vortex is circular.
Since the circulation is the same, the different vorticity dis-
tribution accounts for the larger core area of the KR vortex
����c

KR� / ���c�=0.80� compared to the NF vortex

����c
NF� / ���c�=0.52�. Another demonstration of the more re-

alistic vorticity distribution in the KR vortex is offered by the
contours ��ic of the inner core shown in Fig. 11�h�. The KR
vortex and the simulated vortex have similar inner cores,
while for the NF vortex the core and the inner core are iden-
tical.

The main argument used in theoretical studies17,21 to jus-
tify matching of experimentally or numerically generated
vortices to NF vortices was the similarity of the streamlines.
In order to verify this assumption, we compute from Eqs. �8�
and �9� the instantaneous streamlines in the frame of refer-
ence translating with the vortex. Figures 11�d�–11�f� show
qualitatively similar streamlines for the three vortices. For a
more quantitative comparison we separate in Fig. 11�i� the
dividing streamline ��vr=0� bounding the vortex bubble
��b. Surprisingly, the bubbles of NF and KR vortices are
practically the same. The volume of the bubble, representing
the volume of fluid carried with the vortex ring, is underes-
timated by 40%. This could be a drawback of both models
when estimating quantities of practical interest as the fluid
entrainment in the vortex ring.3

A final quantitative assessment of the streamline distri-
bution is provided by calculating the vortex ring signature
V��vr� introduced by Moffatt34 to identify a vortex ring with-
out swirl. This topological invariant is defined as the volume
inside the torus �vr=cst. �V�0� is the volume of the vortex
bubble�. Figure 13 shows that the normalized signature
V��vr� /V�0� allows to identify the numerically generated
vortex ring since it is invariant during the entire postforma-
tion phase. As a consequence of the more realistic vorticity
distribution, the KR vortex has a signature closer to that of
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FIG. 11. Fit of the vortex numerically obtained for Lp /Dp=4, t=30 to ideal models of Norbury and Fraenkel and of Kaplanski and Rudi. Isocontours of the
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the simulated vortex than the NF vortex. Similar qualitative
and quantitative results were obtained for the fit of vortex
rings generated for the other two stroke ratios �Lp /Dp=2
and 6�.

IV. SUMMARY

Direct numerical simulations of an axisymmetric laminar
vortex ring generated by a piston/cylinder arrangement have
been performed using an incompressible Navier–Stokes
solver in cylindrical coordinates. The Reynolds number of
the flow �Re=1400� and the piston stroke ratios �Lp /Dp

=2,4 ,6� were prompted by recent experiments of Dabiri and
Gharib.3 Numerical results are first validated for the forma-
tion phase. Good agreement with existing numerical16 and
experimental12 data is obtained. The main body of the paper
focuses then on the postformation phase of the vortex ring by
considering long time simulations.

Two main diagnostics are considered in this study in
order to characterize the postformation vortex ring: the scal-
ing laws of the integrals of motion �circulation, impulse, en-
ergy� and the topological structure of the vortex. The two are
related since the calculation of the integrals of motion re-
quires to separate the vortex core from the vortex wake flow
by truncating the vorticity field. We show that extracting the
vortex inner core32 provides an objective method in setting
the upper value for the cutoff vorticity level. The vortex
structure is then completely described by calculating the em-
bedded boundaries of the vortex inner core, vortex core, and
vortex bubble. This topology is found to be remarkably self-
similar during the entire postformation phase. Concerning
the scaling laws of the integrals of motion, the present study
dissipates the apparent discrepancy between the recent ex-
perimental results of Dabiri and Gharib3 and theoretical pre-
dictions of Maxworthy.5 We show that the exponents of the
power laws depend on whether or not the virtual time origin
proposed by Maxworthy is used. In this way our numerical
data become consistent with both studies.

We finally address in detail the question of how to fit
computationally or experimentally vortex rings to ideal vor-
tex models. Two classes of vortex ring models are consid-
ered: the largely used Norbury–Fraenkel6,7 inviscid vortex
family and the recent viscous model proposed by Kaplanski
and Rudi.4 Although the linear vorticity distribution in the
Norbury–Fraenkel vortex is far from being realistic, match-
ing the simulated vortex to this model provides not only a
good prediction of the normalized quantities as already

shown in the literature, but also a good estimation of indi-
vidual integrals of motion, such as circulation or impulse.

The realistic �Gaussian� vorticity distribution in the
Kaplanski–Rudi model offers, in addition to a good predic-
tion of integral quantities, a more accurate description of the
vortex ring topology when comparing the contours of inner
cores or calculating the vortex signatures.34 Nevertheless, it
is prudent to note that both models underestimate the volume
of fluid carried inside the vortex bubble by 40%. This could
be a drawback in practical applications requiring an estimate
of the flow entrainment. An improved Kaplanski–Rudi
model taking into account the oblate ellipsoid shape of the
real ring could eventually overcome this difficulty.
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APPENDIX: FITTING TO IDEAL VORTEX
RING MODELS

We present in this appendix the details of the procedures
used to fit the numerically simulated vortex rings to ideal
vortex models. We use as a reference case the vortex ob-
tained for Lp /Dp=4 at t=30 �see Figs. 4 and 7�, described by
the following quantities:

�v = 1.38, Iv = 2.66, Ev = 0.73,

Ev
* = 0.27, �v

* = 2.1, Wv = 0.32.

We consider in the following that the density of the fluid is
�=1.

1. Nobury–Fraenkel model

The vorticity distribution in a Norbury–Fraenkel vortex
is linear, proportional to the distance to the axis of symmetry,

� = �r . �A1�

The other two parameters characterizing the vortex are the
ring radius Rc of the vortex ring and the geometric parameter
� defined by Eq. �13�. The main physical quantities are cal-
culated following the expressions6

� = �Rc
3�2 �NF��� , �A2�

I = �Rc
5�2 INF��� , �A3�

E = �2Rc
7�4 ENF��� , �A4�

W = �Rc
2�2 WNF��� , �A5�

where nondimensional quantities ��NF are given in tabular
form. Useful asymptotic expressions are given by Fraenkel7

for �→0 �thin vortices�,

�NF��� = � , �A6�

ψ

V
(ψ

)/
V

(0
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

simulation t=20
simulation t=30
simulation t=40
Norbury-Fraenkel fit
Kaplanski-Rudi fit

FIG. 13. Fit to ideal vortex models. Signature �Ref. 34� of the vortex ring
normalized by its maximum value.
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and Norbury6 for �→�2 �thick vortices�,

�NF��� =
1

3
a3
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3
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�̄2 ln�8�2

�̄
� + 1.69�̄2� ,

�A10�
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�̄2� , �A11�
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�̄2� , �A12�

WNF��� =
2
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where �̄=�2−� and a=2�1− �̄ /2�2�.
The generally used19,35 fitting procedure is based on

Fraenkel’s expressions. From Eqs. �A6�–�A8� the normalized
energy E*=E / �I1/2�3/2� can be obtained as a function of the
single parameter �. Solving the nonlinear equation E*=E

v
*

will then give the value of �. However, Fraenkel’s
asymptotic expressions can be used with reasonable accuracy
only for ��0.5, as shown in Fig. 14. For intermediate val-
ues of the parameter � is better to use numerical tabulated
values. Norbury’s expansions �A10�–�A13� are limited for
1����2.

We use the following fitting procedure based on numeri-
cal tabulated values from Norbury6 �note that we have to
extract three parameters from four equations�.

• The value of the normalized energy E*=E
v
* is used to

interpolate from Fig. 14�a� the parameter �; all nondi-
mensional quantities ��NF are then interpolated from
Figs. 14�b�–14�e�.

• We impose the values of the dimensional circulation

FIG. 14. �Color online� Norbury–Fraenkel ideal vortex
model. Variation of the nondimensional quantities ��NF

with the parameter �. Numerical tabulated values from
Norbury �Ref. 6� �solid line�, asymptotic approxima-
tions of Fraenkel �Ref. 7� �dashed line� and Norbury
�Ref. 6� �dash-dotted line�. The points represent values
corresponding to the simulated vortex ring for Lp /Dp

=4 at t=30.
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�v and impulse Iv and calculate from Eqs. �A2� and
�A3� the remaining parameters of the model,

Rc =� Iv

INF

�NF

�v
, � =

�v

�NF

1

Rc
3�2 . �A14�

• We check the accuracy of the model by calculating
from Eqs. �A4� and �A5� the values of the dimensional
energy E, translation velocity W, and, finally, normal-
ized circulation �*.

Figure 14 also shows the points resulting from the fitting
procedure. The ideal vortex is characterized by �=0.605,
Rc=0.724, and �=3.215. The values of the dimensional cir-
culation and impulse are exactly fitted. The model predicts
the values of the dimensional energy, translation velocity,
and normalized circulation with relative errors of 0.01% and,
respectively, 3% and 2%. Test of different fitting procedures
�starting from the value of the normalized circulation or us-
ing Fraenkel’s expansions� resulted in slightly larger relative
errors, in particular, for the translation velocity.

2. Kaplanski–Rudi model

The parameters describing a Kaplanski–Rudi vortex4 of
given impulse I are the vortex ring radius Rc, the diffusivity
scale of the ring’s core �, and the vorticity amplitude �. A
vortex from this family is identified by the ratio �=Rc /�. The
vorticity distribution is Gaussian,

� = � exp�− 1
2 ��2 + �2 + �2��I1���� , �A15�

where �=r /�, �= �z−Zc�t�� /�, and Zc the axial coordinate of
the vortex center. Analytical expression are obtained4 for the
circulation,

� = �0
1 − exp�−
�2

2
��, �0 =

I

�Rc
2 , �A16�

energy,
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2
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�A17�

and translation velocity,

W =
I

4�2

�
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�,	2,

7

2
�,− �2�� . �A18�

In previous expressions I1 is the first-order modified Bessel
function and 2F2 the generalized hypergeometric function.
The fitting procedure consists in the following steps.

• Combining the relations �A17� and �A16� we obtain an
expression of the normalized energy E*=E / �I1/2�3/2�
depending only on the parameter �; solving the non-

linear equation E*=E
v
* gives the value of the param-

eter �.
• Matching �=�v and I= Iv in Eq. �A16� allows to cal-

culate �0 and the vortex radius Rc=�I / ���0�.
• The viscous scale results immediately, �=Rc /�, and

the vorticity amplitude is calculated as4

� =
2Iv

�2��3/2Rc�
3 . �A19�

• The translation velocity is finally calculated from Eq.
�A18�.

The fitting procedure for our example vortex gives �=3.48,
Rc=0.781, �=0.225, �=38.21, and W=0.293. The transla-
tion velocity and normalized energy are approximated with a
relative error of 8%.
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