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Numerical computations of stationary states of fast-rotating Bose–Einstein condensates
require high spatial resolution due to the presence of a large number of quantized vortices.
In this paper we propose a low-order finite element method with mesh adaptivity by met-
ric control, as an alternative approach to the commonly used high-order (finite difference
or spectral) approximation methods. The mesh adaptivity is used with two different
numerical algorithms to compute stationary vortex states: an imaginary time propagation
method and a Sobolev gradient descent method. We first address the basic issue of the
choice of the variable used to compute new metrics for the mesh adaptivity and show that
refinement using simultaneously the real and imaginary part of the solution is successful.
Mesh refinement using only the modulus of the solution as adaptivity variable fails for
complicated test cases. Then we suggest an optimized algorithm for adapting the mesh
during the evolution of the solution towards the equilibrium state. Considerable
computational time saving is obtained compared to uniform mesh computations. The
new method is applied to compute difficult cases relevant for physical experiments (large
nonlinear interaction constant and high rotation rates).

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Recent research efforts in the field of condensed matter physics were devoted to the study of quantized vortices nucleated
in a Bose–Einstein condensate (BEC). Several groups have produced vortices in different experimental set-ups [1–6], leading
to numerous theoretical and numerical studies aimed at a better understanding of such macroscopic superfluid systems with
quantized vorticity.

A typical experimental BEC configuration with quantized vortices is the rotating condensate. The condensate is confined
by a magnetic potential and set into rotation using a laser beam, which can be assimilated to a spoon stirring a cup of tea.
Since the solid body rotation is not possible in a superfluid system, the condensate has the choice between staying at rest and
rotating by nucleating quantized vortices. The number and shape of vortices depend on the rotational frequency and the
geometry of the trap. The fast rotation regime is particularly interesting to explore since a rich variety of scenarios are the-
oretically predicted: formation of giant (multi-quantum) vortices, vortex lattice melting or quantum Hall effects. This regime
is experimentally delicate to investigate [7–9], making numerical simulations very appealing in depicting vortex configura-
tions for fast rotations.
. All rights reserved.
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However, numerical simulations of fast-rotating condensates are also very challenging for at least two reasons. The first
difficulty comes from the presence in a condensate of a large number of vortices when high rotation frequencies are reached.
An example of such configuration is illustrated in Fig. 1 for a condensate trapped in a harmonic magnetic potential. We recall
that a quantized vortex is a topological defect of the macroscopic wave function describing the condensate:
Fig. 1.
density
discont
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðx; y; zÞ

p
eihðx;y;zÞ; ð1Þ
where q is the local atomic density and h the phase. In other words, q = 0 in the core of the vortex (no condensed atoms are
present) and around the vortex there exists a frictionless superfluid flow with a discontinuous phase field. As a consequence
of this phase discontinuity, the circulation around a vortex is quantized:
C ¼
I

v � dl ¼ n
h
m
; ð2Þ
where v ¼ h
2pmrh is the local velocity (defined by analogy with classical fluids), h is Planck’s constant, m the atomic mass and

n an integer (the winding number). A numerical system has to offer sufficient spatial resolution, not only to capture the large
gradients of the density q in the small-size vortex cores, but also to cope with phase discontinuities that extend up to the
edge of the condensate (see Fig. 1). This explains the use in the literature of discretization methods with high order spatial
accuracy: Fourier spectral [10–12], sixth-order finite differences [13–15], sine-spectral [16,17], Laguerre–Hermite pseudo-
spectral [18], etc.

The second numerical difficulty in computing such configurations comes from the numerical algorithm used to converge
to stable states with vortices. Most of the numerical algorithms proposed in the literature use the so-called imaginary time
propagation of the wave function. A typical computation (Fig. 2) starts from an ad-hoc initial configuration and iteratively
search for a minimizer of the energy describing the system (such methods are described in the next section). During the iter-
ative process, the vortices move slowly in the condensate towards their final equilibrium locations. Depending on the initial
condition, new vortices could also enter the condensate. This is the case in Fig. 2 where a converged computation for a lower
value of the nonlinear interaction constant is used as initial condition. This evolution, called imaginary time evolution since it
has no physical relevance, has to be accurately captured by the numerical system and brings up the question of the behavior
of standard dynamic mesh adaptivity methods in this context. To the best of our knowledge, this question was not addressed
in the literature.

In this paper we tackle the two above mentioned difficulties by using a low-order finite element method with mesh adap-
tivity, as an alternative of commonly used high-order methods. Finite element method have been already used [19,20] to
compute vortex states in rotating BEC, but with fixed meshes. An attempt to adapt the mesh was made in [21] by using a
fixed computational domain with different mesh densities; finer meshes were initially set in subdomains where vortices
are guessed to lie in the final equilibrium configuration.

It is important to note that the mesh adaptivity is also of great interest for the simulation of vortex states in type-II super-
conductors. Such systems are described by the Ginzburg–Landau (GL) macroscopic model that has close resemblance with
the GP equation when high values of the GL parameter (kappa) are considered [22]. Several key studies [23,24] have set the
mathematical and algorithmic basis for the use of finite element method to simulate vortex configurations governed by the
GL model (see [25] for a review). However, as mentioned in [25], using mesh adaptivity in computing vortex lattices with a
large number of vortices is still a computational challenge in this field too.

The purpose of the present approach is to use a dynamic mesh adaptivity that allows to follow the evolution of vortices
during the computation until convergence. To this end, we start by implementing in a low-order (piecewise linear) finite
element setting two different algorithms to compute stationary vortex states: a classical method based on the imaginary
time propagation of the wave function and a Sobolev gradient descent method for the direct minimization of the energy
Example of fast-rotating condensate (harmonic trapping potential, g = 5000, X/x\ = 0.95) computed with the present method. Contours of atomic
q (left, low density in black) and phase h (right) of the converged (stationary) state. Note the dense Abrikosov vortex lattice and phase

inuities joining the border of the condensate.



Fig. 2. Illustration of the imaginary time evolution of the solution before reaching the converged state displayed in Fig. 1. Energy decrease and contours of
atomic density q for intermediate states. Note the nucleation of new vortices and their rearrangement in a more and more regular Abrikosov lattice. The
jumps in the energy evolution correspond to mesh refinement.
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functional. These two algorithms are described in the next section. Section 3 presents the finite element setting and the mesh
adaptivity strategy based on metric control. Several numerical experiments are designed in Section 4. We start by answering
the basic question of the choice of the variable used to adapt the mesh. In particular, we show that the approach, that might
appear as natural, of refining the mesh following the atomic density q is not always successful. Extensive numerical tests
prove that refinement using simultaneously the real and imaginary part of the solution as adaptivity variables is the success-
ful approach. The new adaptive mesh strategy is shown to bring an important computational time saving over computations
using refined fixed meshes. Finally, the proposed method is applied to compute difficult cases, with large nonlinear interac-
tion constant and high rotation rates, that are relevant for physical experiments.

2. Numerical methods to compute minimizers of the Gross–Pitaevskii energy

2.1. Mathematical problem

In the zero-temperature limit, a dilute gaseous BEC is mathematically described by a macroscopic complex wave function
w(x), which spatial configuration is obtained by minimizing the Gross–Pitaevskii (GP) energy. We consider a BEC of N atoms
trapped in a magnetic potential eV trap with radial symmetry and transverse trapping frequency x\. The condensate is rotating
along the z-axis with the angular velocity ~X. It is common practice to scale the variables using as characteristic length the
harmonic-oscillator length d ¼

ffiffiffiffiffiffiffiffi
�h

mx?

q
, where ⁄ is Planck’s constant and m the atomic mass of the gas. Using the scaling, r = x/

d, uðrÞ ¼ wðxÞd3=2
=
ffiffiffiffi
N
p

, X ¼ ~X=x?, we obtain the non-dimensional energy (per particle) in the rotating frame:
EðuÞ ¼
Z
D

1
2
jruj2 þ Vtrapjuj2 þ

g
2
juj4 �Xiu�ðAtrÞu; ð3Þ
where Vtrap ¼ 1
�hx?

eV trap, and A = (y,�x,0). We denote by u* the complex conjugate of u. The interactions between atoms are
described by the constant g ¼ 4pNas

d , with as the s-wave scattering length. The mass conservation constraint becomes in this
scaling:
Z

D
juj2 ¼ kuk2 ¼ 1; ð4Þ
where we denote by k � k ¼ k � kL2ðD;CÞ. Note that we have considered that u(r) ? 0, as r ?1 and, consequently, the conden-
sate could be confined in a bounded domain D.

We consider in the following the two-dimensional problem defined on D � R2, with homogeneous Dirichlet boundary
conditions u = 0 on @D. For given constants X, g and trapping potential function Vtrap, the minimizer ug of the functional
(3) under the constraint (4) is called the ground state of the condensate. Local minima of the energy functional with energies
larger that E(ug) are called excited (or metastable) states of the condensate.

We present in the following two different methods to compute minimizers of the GP energy.
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2.2. Imaginary time propagation: Runge–Kutta–Crank–Nicolson scheme

Most of the numerical algorithms proposed in the literature to compute minimizers of the GP energy use the so-called
normalized gradient flow [16]. It consists in applying the steepest descent method for the unconstrained problem:
@u
@t
¼ �1

2
@EðuÞ
@u

¼ r
2u
2
� Vtrapu� gjuj2uþ iXAtru; ð5Þ
to advance the solution u 2 C from the discrete time level tn to tn+1; the obtained predictor ~uðr; tnþ1Þ is then normalized and
used to set the solution at tn+1 satisfying the unitary norm constraint:
uðr; tnþ1Þ,
~uðr; tnþ1Þ
~uðr; tnþ1Þk k : ð6Þ
It is interesting to note that (5) is commonly referred as the imaginary time evolution equation, since the right-hand side cor-
responds to the stationary Gross–Pitaevskii equation. The gradient flow equation (5) (or the related continuous gradient flow
equation, see [16]) can be viewed as a heat equation in complex variables and, consequently, solved by different classical
time integration schemes (Runge–Kutta–Fehlberg [10,11], backward Euler [16,19,17,18], second-order Strang time-splitting
[16,19], etc.). We describe in the following the combined Runge–Kutta–Crank–Nicolson scheme that was successfully used in
[13–15] to compute stationary three-dimensional BEC configurations for different trapping potentials.

If we write (5) under the general form:
@u
@t
¼ NðuÞ þ LðuÞ; ð7Þ
with NðuÞ containing nonlinear terms and LðuÞ linear terms, a combined three-step Runge–Kutta and Crank–Nicolson
scheme reads [26,27]:
ukþ1 � uk

dt
¼ akNðukÞ þ bkNðuk�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Runge—Kutta

þ ck

2
L ukþ1 þ ukð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Crank—Nicolson

; ð8Þ
where k = 1,2,3 are the substeps needed to advance the solution from tn to tn+1. The following values for the coefficients:
a1 ¼
8

15
; a2 ¼

5
12

; a3 ¼
3
4
; ð9Þ

b1 ¼ 0; b2 ¼ �
17
60

; b3 ¼ �
5

12
; ð10Þ

c1 ¼
8

15
; c2 ¼

2
15

; c3 ¼
1
3
; ð11Þ
ensure the third-order accuracy in time for the Runge–Kutta part and second-order overall accuracy. Note that the interme-
diate integration time values are tk = tn + ckdt, with c1 + c2 + c3 = 1. An important computational advantage is that the scheme
is low-storage and self-starting. Indeed, since b1 = 0 the storage of the solution un�1 at the previous time step is not neces-
sary. For numerical purposes, the equation to solve is written as:
1
dt
� ck

2
L

� �
qk ¼ akNðukÞ þ bkNðuk�1Þ½ � þ ckLðunÞ; qk ¼ ukþ1 � uk; ð12Þ
with the variational formulation: find qk 2 H1
0ðD;CÞ such that 8v 2 H1

0ðD;CÞ:
Z
D

1
dt

qkv �
ck

2
LðqkÞv

� �
¼
Z
D

akNðukÞ þ bkNðuk�1Þð Þv þ ckLðukÞv: ð13Þ
Depending on the choice of the linear operator in (7), we can distinguish between different schemes. In [13–15] the linear
operator was defined in the classical way: LðuÞ ¼ r2ðuÞ. We use in the following a different choice that resulted in a better
stability of the scheme:
LðuÞ ¼ r2ðuÞ þ 2iXAtru; ð14Þ

N ðuÞ ¼ �2 gjuj2 þ Vtrap

h i
u: ð15Þ
For this method, the mass conservation constraint (4) is taken into account by using the discrete normalization (6).

2.3. Direct minimization: Sobolev gradient descent method

Another method to compute stationary BEC states is to directly minimize the GP energy (3) using steepest descent meth-
ods. It is interesting to note that in the descent method (5), the right-hand-side represents the L2-gradient (or ordinary gra-
dient) of the energy functional. An important improvement of the convergence rate of the descent method is obtained by
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replacing the ordinary gradient with the gradient defined on the Sobolev space H1ðD;CÞ. The reason is that the use of Sobolev
gradients is equivalent to a preconditioning of the ordinary gradient method. The idea of introducing the Sobolev gradient in
a descent method was developed by J.W. Neuberger in the 1970’s and is now used in several fields of numerical analysis (see
[28]). On the related topic of finding minima of the Ginzburg–Landau energy functional for superconductors [23,24], the
Sobolev gradient method was first presented in [29]. Recent developments of the method in a finite element setting include
the minimization of Schrödinger [30] or Ginzburg–Landau type functionals [31].

In the framework of computing critical points of the Gross–Pitaevskii energy with rotation, a descent method based on
the H1 Sobolev gradient was used in [10,11], in conjunction with a spectral method for the spatial discretization. In [32]
we have equipped the Sobolev space H1 with a new inner scalar product and used the associated gradient to improve the
convergence of the descent method for high rotation frequencies. The new inner product is:
hu; viHA
¼
Z
D
hu;vi þ rAu;rAvh i; ð16Þ
where rA =r + iXAt, and h�, �i denotes the complex inner product. The new Hilbert space is denoted by HAðD;CÞ. Hence, the
HA gradient of the energy functional satisfies the equation:
hrHA
E;viHA

¼ hrL2 E; viL2 : ð17Þ
The numerical method introduced in [32] consists in the following steps:

� We first compute the gradient rHA E. Observing that an equivalent definition of the HA scalar product is:
hu; viHA
¼
Z
D
½1þX2ðy2 þ x2Þ�u;v
D E

þ hru;rvi � 2iX Atru;v
� 	

; ð18Þ
we infer that the gradient G ¼ rHA E could be directly computed from (17) as the solution of the variational problem:
Z
D
½1þX2ðy2 þ x2Þ�Gv þrGrv � 2iXðAtrGÞv ¼ RHS; 8v 2 H1

0 D;Cð Þ; ð19Þ
where the right-hand-side term represents the L2 gradient (in the weak form):
RHS ¼
Z
D
rurv þ 2 Vtrap uþ ðgjuj2Þu� iXAtru

h i
v : ð20Þ
� In order to satisfy the mass constraint (4), we project the gradient rHA E onto the tangent space associated to the con-
straint. In our case, we project onto the null space of b0(u), where bðuÞ ¼

R
D juj

2. The final expression (see [32] for details)
of the projection that will be used for numerical implementation is:
Pu;HA
G ¼ G � Rhu;GiL2

Rhu;vHA
iL2

vHA
; ð21Þ
with R denoting the real part, and vHA computed such as that:
R vHA
;v

� 	
HA
¼ b0ðuÞv ¼ Rhu;viL2 : ð22Þ
� The solution is finally advanced following the general descent method:
unþ1 ¼ un � dt Pu;HAGðunÞ: ð23Þ
It should be noted that the projection step ensures that the norm of the initial condition (u0) is preserved through the iter-
ative process (23).
3. Finite element spatial discretization and mesh adaptivity

The finite element implementation uses the free software FreeFem++ [33], which proposes a large variety of triangular
finite elements (linear and quadratic Lagrangian elements, discontinuous P1, Raviart–Thomas elements, etc.) to solve partial
differential equations (PDE) in two dimensions (2D). FreeFem++ is an integrated product with its own high level program-
ming language with a syntax close to mathematical formulations. FreeFem++ was recently used to test algorithms for the
minimization of Schrödinger or Ginzburg–Landau functionals [30,31].

3.1. FreeFem++ implementation

It is very easy to implement the variational formulations associated to the above described algorithms using FreeFem++.
We outline here the main features of the finite element implementation that were helpful in writing efficient FreeFem++
scripts. Let T h be a family of triangulations of the domain D. We assume that T h is a regular family in the sense of Ciarlet
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[34], with h > 0 belonging to a generalized sequence converging to zero. We denote by Pl(T) the space of polynomial functions
on triangles T 2 T h, of degree not exceeding l P 1. We also introduce the finite element approximation spaces:
Wl
h ¼ wh 2 C0ð�DhÞ; whjT 2 PlðTÞ; 8T 2 T h

n o
; ð24Þ
and
Vl
h ¼ wh 2Wl

h; whjCh
¼ 0

n o
: ð25Þ
The finite dimensional space Vl
h is a subspace of H1

0ðDÞ and therefore will be used to discretize the variational formulations
previously written. We use in the following P1 (l = 1, piecewise linear) finite elements to approximate the solution and a P4

representation of the nonlinear terms. It is interesting to note that FreeFem++ allows to switch to P2 (l = 2, piecewise qua-
dratic) finite elements by a simple change of the definition of the generic finite element space Wl

h.
An efficient implementation of the algorithms described in the previous section is obtained using the pre-computation of

the complex matrices associated to linear systems. For the imaginary time propagation method, the integral form (13) leads
to the following linear system:
1
dt

AM þ
ck

2
AG �

ck

2
AX

� �
Q k ¼ A4

M � ðakNk þ bkNk�1Þ � ckAGUk þ ckAXUk; ð26Þ
where Uk is the solution vector at substep k of the Runge–Kutta method and Qk = Uk+1 � Uk. Denoting by wl
h the basis func-

tions of the space Vl
h, the matrices in (26) are defined in the classical way using l = 1:
ðAMÞm;p ¼
Z
Dh

w1
h


 �
m w1

h


 �
p; ð27Þ

ðAGÞm;p ¼
Z
Dh

r w1
h


 �
mr w1

h


 �
p; ð28Þ

ðAXÞm;p ¼ ð2iXÞ
Z
Dh

Atr w1
h


 �
p

� 
w1

h


 �
m: ð29Þ
Nonlinear terms Nk, corresponding to (15), are computed with higher accuracy using P4 finite elements. The (non squared)
matrix A4

M is consequently computed as:
A4
M

� 
m;p
¼
Z
Dh

w1
h


 �
m w4

h


 �
p: ð30Þ
Previous two-dimensional integrals are computed using a fifth order quadrature formula. If the imaginary time advancement
is conducted with fixed size time step, a further optimization comes from the storage of the three matrices of the linear sys-
tems corresponding to each substep of the Runge–Kutta integration procedure.

For the Sobolev gradient method, the discrete form of (19) becomes:
ASG ¼ A4
M � Nn þ AGUn � AXUn; ð31Þ
with Nn corresponding to a P4 representation of nonlinear terms 2(Vtrap + gjunj2)un. The matrix AS of the linear system:
ðASÞm;p ¼
Z
Dh

1þX2ðy2 þ x2Þ
h i

w1
h


 �
m w1

h


 �
p þr w1

h


 �
mr w1

h


 �
p � 2iXðAtrÞ w1

h


 �
p w1

h


 �
m; ð32Þ
is computed by a fifth order quadrature formula. An important computational tine saving is obtained if the matrix AS is
stored and factorized before the time loop (23).

The last point to emphasize concerning the FreeFem++ implementation is that all previous equations are solved in com-
plex variables. As a consequence, the corresponding matrices also have complex elements. The approach used in [30], based
on the separation of the real and imaginary part of the unknown variable, results in considerably larger computational times.
Besides, this separation is not possible when computing the HA gradient from (19).

3.2. Adaptive mesh refinement strategy

Mesh adaptivity by metric control is a standard function offered by FreeFem++. Details on the ingredients used in the
metric mesh adaptation can be found in [35–40]. The key idea is to modify the scalar product used in an automatic mesh
generator to evaluate distance and volume, in order to construct equilateral elements according to a new adequate metric.
The scalar product is based on the evaluation of the Hessian H of the variables of the problem. Indeed, for a P1 discretization
of a variable v, the interpolation error is bounded by:
E ¼ v�Phvj j0 6 c sup
T2T h

sup
x;y;z2T

HðxÞj jðy� zÞ � ðy� zÞ; ð33Þ
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where Phv is the P1 interpolate of v; HðxÞj j is the Hessian of v at point x after being made positive definite, and � denotes the
dot product. We can infer that, if we generate, using a Delaunay procedure (e.g. [38]), a mesh with edges close to the unit
length in the metricM¼ jHj

ðcEÞ, the interpolation error E will be equally distributed over the edges ai of the mesh. More pre-
cisely, we have:
1
cE aT

iMai 6 1: ð34Þ
The previous approach could be generalized for a vector variable v = [v1,v2]. After computing the metrics M1 and M2 for
each variable, we define an metric intersection M¼M1 \M2, such that the unit ball of M is included in the intersection
of the two unit balls of metricsM2 andM1. For this purpose, we use the procedure defined in [39]. Let kj

i and v j
i, (i, j = 1,2) be

the eigenvalues and eigenvectors of Mj, j = 1,2. The intersection metric cM� 
is defined by:
cM ¼
cM1 þ cM2

2
: ð35Þ
where dM1 (resp. dM2 ) has the same eigenvectors than M1, (resp. M2) but with eigenvalues defined by:
~k1
i ¼ max k1

i ; v
T
i1
M2v1

i

� 
; i ¼ 1;2: ð36Þ
FreeFem++ uses mesh generation tools developed in [38,39] with the novelty that the Delaunay mesh generation procedure
introduces an extra criterion to keep the new mesh nodes and connectivity maps unchanged as much as possible when the
prescribed mesh by the new metric is similar to the previous mesh. This reduces the perturbations introduced when the
solution is embedded by interpolation from the old mesh to the new one.

The mesh adaptivity strategy used in this work is based on the fact that the energy of the solution decreases during the
computation to attain a plateau corresponding to a local minima (see Fig. 2). Since we generally use a convergence criterion
[13–15,32] based on the relative change of the energy of the solution, dEn = (En+1 � En)/En < ec, we monitor the same quantity
to trigger the mesh adaptivity procedure following the next algorithm:

1. choose a sequence of decreasing values ei P ec, that represent threshold values for the mesh adaptivity;
2. set i = 1;
3. if ei+1 < dEn < ei and dEn > ec, call the mesh adaptivity procedure; the solution u is interpolated on the new mesh and nor-

malized to satisfy the unitary norm constraint;
4. if step 3 was performed Nad P 1 times, increase i to i + 1. Limiting the number of mesh refinements for the same thresh-

old, is necessary since, at step 2, the interpolation on the new refined mesh and the normalization of the solution could
lead to an increase of the value of dEn.

As an example, for the computation displayed in Figs. 1 and 2, we fixed the convergence threshold to ec = 10�8 and mesh
refinement threshold values to e 2 {10�6,5 � 10�7,2.5 � 10�7,10�8}. The number of calls for the mesh refinement procedure
was Nad = 3 for each fixed threshold. We can notice in Fig. 2 the jump in the energy evolution when the mesh refinement
was applied, resulting in a faster convergence to the final value of the energy.

An essential question that remains when defining the mesh refinement procedure is the choice of the mesh adaptivity
variable v. Since vortices are characterized by small cores in which the atomic density rapidly decreases to zero in the vortex
center, it may appear obvious to use as mesh refinement variable v = juj, the modulus of the wave function. We prove by
extensive numerical tests described in the next section that this approach is not always successful. In exchange, the adap-
tivity strategy considering simultaneously the real and imaginary part of the solution to compute the metrics, i.e. v = [ur,ui],
proved effective in capturing the right solution with an important reduction of the computational time compared to fixed
mesh calculations. This strategy was applied in computing the complex vortex configuration displayed in Fig. 1.
4. Numerical experiments

In computing stationary states of rotating Bose–Einstein condensates, the initial condition u0 plays a crucial role. It was
theoretically proved in [41] that in a real-time evolution of the rotating condensate, the number of vortices attained by the
condensate depend upon the rotation history of the trap and on the number of vortices present in the condensate initially.
This observation also holds for the imaginary time evolution: for the same rotation frequency, different stationary states,
characterized by closed values of the energy, could be obtained starting from different initial conditions.

Three types of initial conditions are generally used for computing stationary states in a rotating BEC: (i) condensate with-
out vortices, with a wave function distribution derived from a physical model, called the Thomas–Fermi approximation; (ii)
condensate described by the Thomas–Fermi model on which vortices could be artificially superimposed using an mathemat-
ical ansatz; (iii) initial state set equal to a converged state for a different rotation frequency X or a different interaction con-
stant g. The computation depicted in Figs. 1 and 2 was performed for g = 5000 and started from a converged state obtained
for g = 2000.
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The Thomas–Fermi approximation consists in neglecting the contribution of the kinetic energy in the strong interaction
regime (large values of g). A simplified energy functional is obtained:
ETFðqÞ ¼
Z
D

Vtrapjuj2 þ
g
2
juj4; ð37Þ
with a minimizer corresponding to the so-called Thomas–Fermi atomic density:
qTFðrÞ ¼ juj
2 ¼ l� Vtrap

g

� �
þ
; ð38Þ
where l is the chemical potential. Since l is a Lagrange multiplier, a relation that allows to compute l is obtained by impos-
ing the mass constraint in (38). The initial condition is finally set to u0ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qTFðx; yÞ

p
.

This model is also useful in estimating the necessary size of the computational domain. When a rotation X is applied, the
Thomas–Fermi approximation (38) stands with Vtrap replaced by:
Veff ðrÞ ¼ VtrapðrÞ �
X2r2

2
: ð39Þ
The resulting radius RX
TF, corresponding to the point where qX

TF ¼ 0, is used to estimate the size rD of the domain D in sim-
ulations rD > RX

TF

� 
.

Initial conditions with vortices are obtained by superimposing to the Thomas–Fermi wave function distribution a simple
ansatz for the vortex [13–15]. For example, an initial condition with Nv vortices of radius �v and centers xi

v ; y
i
v


 �
; i ¼ 1; . . . ;Nv

is obtained by imposing:
u0ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qTFðx; yÞ

q YNv

i¼1

ui
vðx; yÞ; ð40Þ

ui
vðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 1þ tanh

4
�v
ðrl � �vÞ

� �� �s
expðihlÞ; ð41Þ
where (rl,hl) are polar coordinates in the framework centered at xi
v ; y

i
v


 �
. Note that the ansatz is written for singly quantized

vortices (winding number equal to 1).
We present in the following different types of numerical experiments. We start with test cases reflecting two different

imaginary time evolutions: (i) the number of vortices at convergence remains the same as in the initial condition; (ii)
new vortices enter the condensate. These experiments will serve to test different strategies for mesh adaptivity and to ascer-
tain the computing time gain offered by the present method. Finally, the method is used to compute complex configurations
relevant for physical rotating condensates.

We also mention that the converged final state is characterized by its energy E(u) and angular momentum Lz(u) which
gives a measure of the rotation:
LzðuÞ ¼
Z
D

R iu�ðAtrÞu

 �

: ð42Þ
4.1. Numerical experiment 1

In laboratory experiments, the condensate is typically confined by a harmonic trapping potential Vtrap = r2/2. It is easy to
see from (39) that this potential sets a upper bound for the rotation frequency, since for X = 1 the centrifugal force balances
the trapping force and the confinement of the condensate vanishes. To overcome this limitation, different forms of the trap-
ping potential are currently studied, experimentally and theoretically. We use in this experiment a combined harmonic-
plus-quartic potential [42,14,15,43] that allows high rotation frequencies.

We set the following parameters of the simulation:
g ¼ 500; Vtrap ¼ r2=2þ r4=4; X ¼ 2: ð43Þ
The computational domain is circular of radius Rmax ¼ 1:25 � RX
TF, where the Thomas–Fermi radius is for this case RX

TF ¼ 3:4.
The initial mesh is generated using M = 200 equally distributed points on the border of the domain.

The computation is depicted in Fig. 3. The initial condition contains an array of six singly quantized vortices equally dis-
tributed on the circle of radius 0:5 � RX

TF. The converged state contains the same number of vortices, but with larger cores than
initially set, and placed closer to the center of the condensate, at 0:33 � RX

TF. Two computations with fixed mesh (M = 200 and
M = 400) are run and compared to adaptive mesh computations using as adaptivity variable v = juj and v = [ur,ui], respec-
tively. Convergence test is set to dEn 6 2 � 10�6 for all computations and threshold values for mesh refinement are chosen
as e 2 {10�2,10�3,10�4,10�5,10�6}. Three mesh refinements are done for each threshold (Nad = 3).

It is interesting to note from Fig. 3 the monotone decrease of the energy which is typical for the steepest descent method.
This evolution is not affected by the projection method for the unitary norm constraint, as showed for the computations
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Fig. 3. Computation for g = 500, X = 2 and combined harmonic-plus-quartic trapping potential. Initial condition with six vortices artificially placed at
0:5 � RX

TF. Energy evolution for constant mesh and different adaptive mesh computations; the result obtained with a sixth order finite difference method is
also plotted for comparison. Density contours (juj) for initial and converged solution (low density in black).
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using fixed meshes. The mesh refinement results in a jump in the energy evolution curve at adaptivity thresholds. As already
stated, this is the consequence of the interpolation on the new refined mesh and the normalization of the interpolated solu-
tion. Such jumps are naturally less visible close to the convergence, when small variations of the energy are monitored.

In order to assess for the correct behavior of the numerical system, we also compare present finite element results with
those obtained using a high-order finite difference method. For this purpose, the imaginary time propagation method pre-
sented in Section 2.2 was implemented using for the spatial discretization a sixth order compact finite difference scheme
that offers spectral-like accuracy [44]. The method has similarities with that used in [13–15] to compute stationary vortex
states in a three-dimensional BEC. The finite difference method uses a squared computational domain of size 2Rmax and a
uniform mesh of 105 � 105 grid points. The constant mesh size dx = dy = 0.08 thus becomes similar to the minimum edge
size of the final refined finite element grid (hmin = 0.08).

All computations lead to identical configurations of the final, converged state, as represented in Fig. 3. A detailed compar-
ison between finite element and finite difference results is offered in Fig. 4. The finite element grid contains initially 7054
triangles and ends with an adapted mesh with 3722 triangles, while the finite difference mesh has a fixed size of 11,025 grid
points. A zoom inside the zone containing two neighboring vortices of the final configuration shows that contours of the
X

Y

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

X

Y

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Fig. 4. Computational case depicted in Fig. 3. Comparison between the results obtained with the finite element method for M = 200 and mesh adaptivity
using v = [ur,ui] and the sixth order finite difference method with a 105 � 105 equally spaced grid. Details of the contours of the atomic density juj and
corresponding grids (dashed lines for the finite difference results).
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atomic density juj are almost identical. It should be noted that in adapting the finite element mesh, one could impose the
values for hmax and hmin, which are the maximum and, respectively, the minimum edge size of the triangular mesh. Reducing
the value of hmax will result in a finer mesh and smoother contour lines, comparable to those obtained with the high-order
finite difference discretization. However, the present comparison is more than satisfactory with a final finite element grid
using almost three times less grid points than the finite difference setting.

The exact values of the energy E(u) and angular momentum Lz(u) characterizing the final state are shown in Table 1. Com-
pared to the fixed mesh computation using a refined mesh (M = 400), the adaptivity strategy using two variables (v = [ur,ui])
gives the closest energy value. We can also see from Fig. 3 that this is also the case when comparing with the sixth order
finite difference result. Meanwhile, this adaptive mesh strategy results in a computational time reduction by a factor of 6
for the Sobolev gradient method and by a factor of 4 for the imaginary time propagation method. Table 1 also shows that
the two numerical methods used to compute stationary states behave similarly. Since this is also the case for all subsequent
numerical experiments, we discuss in the following, for the sake of simplicity, only the results obtained with the Sobolev
gradient method. This method has also the advantage to allow a constant time step for different mesh densities (see also
[32]).

The mesh evolution for the two adaptivity strategies can be followed in Fig. 5. Only meshes for the first (e = 10�2) and final
(e = 10�5) thresholds are represented. It can be easily seen that adaptivity taking into account only the modulus of the solu-
Table 1
X = 2: run cases corresponding to the numerical experiment depicted in Fig. 3. Parameters of the initial mesh (number of points M placed on the border of the
circular domain to generate the mesh and number of triangles Nt), energy E(u) and angular momentum Lz(u) of the final state, and computational efficiency
(number of iterations and computational CPU time).

Run case M Nt Sobolev gradient method Imaginary time method

E(u) Lz(u) Iter CPU E(u) Lz(u) Iter CPU

Adapt [ur,ui] 200 3722 11.87 5.118 232 55 11.87 5.112 139 54
Adapt [juj] 200 2586 12.04 5.095 241 44 12.02 5.088 142 40
No-adapt 200 7054 11.98 5.126 223 72 11.91 5.085 75 43
No-adapt 400 27,674 11.91 5.169 243 315 11.83 5.125 92 211

a

c d

b

Fig. 5. Mesh evolution during the computation for experiment 1 (see Fig. 3). First (e = 10�2) and final (e = 10�5) refined meshes are represented for the
adaptive mesh strategy using v = juj (a and b) and v = [ur,ui] (c and d).
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tion results in a very dense mesh in the center of vortices. Adaptivity following the real and imaginary part of the solution
also generates a refined mesh in the core of vortices, but also a dense mesh from vortices towards the border of the conden-
sate. This allows to have a better representation of the phase of the solution (as previously pointed out when discussing
Fig. 1). We shall see in the following that this feature is crucial for the success of the adaptivity strategy when more com-
plicated cases are computed.
4.2. Numerical experiment 2

In this experiment, we consider the same parameters as for experiment 1 and increase the rotation frequency to X = 2.5.
The initial condition is the converged state previously computed for X = 2. For this case, new vortices are nucleated inside
the condensate and the final state contains a second circle of 10 vortices. Fig. 6 shows that only the adaptive mesh strategy
based on v = [ur,ui] converges to a similar stationary state as the computation using the fixed refined mesh (M = 400). This is
also visible from Table 2, when comparing the values of the energy and angular momentum of the final state. In exchange,
mesh refinement using v = juj do not allow the nucleation of new vortices; as a consequence, the energy of the system is not
decreasing and the final state has the same configuration as the initial condition. It is important to note from Table 2 that the
successful adaptive mesh strategy allows a tremendous (factor of 10) gain of computational time.

The explanation for the failure of the adaptive method based solely on the modulus of the solution is offered in Fig. 7. A
computation is subject to inherent numerical perturbations that will trigger the nucleation of new vortices. Such perturba-
tions usually have small amplitudes, and the refinement based on the modulus of the solution will damp them since the
mesh size in these regions is not small enough to capture them. The adaptive mesh strategy using v = [ur,ui] generates re-
fined meshes over larger regions than the core of vortices (see Fig. 7(c) and (d), and consequently allow the nucleation of new
vortices.
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Fig. 6. Computation for g = 500, X = 2.5 and combined harmonic-plus-quartic trapping potential. Computations start from the converged state obtained for
X = 2. Energy evolution for constant mesh (M = 400, dashed line) and different adaptive mesh computations: v = juj (dash-dot line) and v = [ur,ui] (solid
line). Density contours (juj) for initial and converged solution (low density in black).

Table 2
X = 2.5. Same legend as for Table 1. Initial condition 1 is the converged state obtained for X = 2 (Fig. 6) and initial condition 2 contains an artificially generated
state with three arrays of vortices (Fig. 8).

Run case M Nt Initial condition 1 Initial condition 2

E(u) Lz(u) Iter CPU E(u) Lz(u) Iter CPU

Adapt [ur,ui] 200 8968 6.08 11.95 1266 321 5.94 12.87 222 195
Adapt [juj] 200 2540 9.43 5.41 456 33 7.14 11.30 3280 947
No-adapt 400 27,654 6.23 12.81 3041 3368 6.31 13.01 249 327
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Fig. 7. X = 2.5 mesh evolution during the computation for experiment 2 (see Fig. 6). Refined meshes corresponding to thresholds e = 10�3 and e = 10�5.
Adaptive mesh strategy using v = juj (a and b) and v = [ur,ui] (c and d).
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An intriguing question that one could raise after analyzing numerical experiments 1 and 2 is whether the adaptive mesh
strategy based on the modulus is successful if the perturbation necessary to nucleate vortices are present in the initial con-
dition. This question is addressed by performing computations starting from an initial condition with three arrays containing
6, 12 and 36 vortices, respectively. The external circle of vortices plays the role of a dense perturbation field that could trigger
vortices for this high rotation frequency. Fig. 8 and Table 2 shows that, once again, only the adaptive mesh strategy consid-
ering simultaneously the real and imaginary pert of the solution is successful. The converged configuration for this compu-
tation is very similar to that obtained when using a refined (M = 400,hmin = 0.0506) fixed mesh or a sixth order finite
difference method using a 125 � 125 uniformly spaced grid (dx = dy = 0.053).
4.3. Condensates with giant vortex or dense vortex lattice

In order to assess for the efficiency of our numerical system, we consider in this section two cases closer to experimental
configurations. Such cases are difficult to compute since they involve high values for the atomic interaction constant g and/or
rotation frequency X.

The first case considers the condensate trapped in the harmonic-plus-quartic potential (43), but with higher atomic inter-
action constant, g = 1000. Fig. 9 shows the evolution of the stationary state of the condensate when the rotation frequency is
increased. Vortices in the center of the condensate progressively merge to form a giant hole, also called giant vortex. This
intriguing configuration has been intensively studied in the physical literature [42,14,15,43]. The adaptive mesh refinement
is very useful in computing such cases since the atomic density in a large zone in the center of the condensate is close to zero.
As a consequence, large triangles are generated in the center of the condensate, while the mesh is highly refined in the annu-
lus zone, where vortices nucleate. For instance, the simulation for X = 4 started with an initial mesh with Nt = 18670 trian-
gles and ended with a fine mesh with Nt = 69859 triangles. For reference, a constant mesh that offers a similar mesh density
in the annular zone is obtained for M = 600 and contains Nt = 108212 triangles, since all the computational domain is finely
meshed.

The second configuration considers the case, displayed in Figs. 1 and 2, of the condensate trapped in harmonic potential
and rotating at X = 0.95. We recall that for this case the rotation frequency cannot exceed X = 1. The difficulty for this case is
to increase the atomic interaction constant g that sets the amplitude of the nonlinear term. Fig. 10 displays the converged
configurations for increasing g = 5000, 10000 and 15000. The condensate becomes larger with increasing g, and, conse-
quently, contains more and more vortices that arrange into a regular triangular lattice (or Abrikosov lattice). The large num-
ber of vortices present in the condensate requires refined meshes making the computations very costly. For reference, the
Fig. 9. Condensate trapped in a harmonic-plus-quartic potential (g = 1000). Two- and three-dimensional representation of the atomic density contours (low
density in black) for increasing values of the rotation frequency X. Note the formation of a giant vortex (hole) in the center of the condensate.



Fig. 10. Condensate trapped in a harmonic potential (X = 0.95). Two- and three-dimensional representation of the atomic density contours (low density in
black) for increasing values of the atomic interaction constant g. Note the increase of the number of vortices with increasing values of g.
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final refined meshes contain, for the three cases, Nt = 238262, 405405 and, 620706 triangles, respectively. Nevertheless, such
computations performed with FreeFem++ remain affordable on a single processor computer.

5. Summary

We have shown in this work that low-order finite element methods with mesh adaptivity are a valid alternative of com-
monly used high-order methods in computing stationary vortex states of a fast-rotating Bose–Einstein condensate. The mesh
refinement using metric control proved effective in computing difficult cases with a large number of vortices or with giant
vortex. We showed by extensive numerical tests that adaptive mesh strategy using simultaneously the real and imaginary
part of the solution to compute metrics is the successful approach. The strategy based only on the modulus of the solution
failed for complicated test cases. An effective algorithm for mesh adaptivity was proposed, with an important computational
time reduction over computations using refined fixed meshes.

The present finite element discretization with mesh adaptivity was tested with two numerical methods for computing
stationary states: a Sobolev gradient descent method for direct minimization of the energy functional and a method based
on the imaginary time propagation of the wave function describing the condensate. The method is, however, of more general
interest, and could be used in conjunction with different numerical methods for computing imaginary or real-time evolution
of superfluid systems with vortices, such as rotating Bose–Einstein condensates or type-II superconductors. In this context, it
is interesting to mention that, after the present manuscript had been completed, the recent review paper [25] was brought to
our attention. Among the remaining issues in developing numerical methods for computing vortex states in superconduc-
tors, adaptive methods were considered in [25] as challenging because of the complicated patterns of the solution with vor-
tices. The necessity to refine the mesh not only around vortex cores was intuitively recalled when discussing the different
patterns displayed by the real and imaginary parts of the solution. The present study confirms in some sense this intuition
and offers an effective method to answer the challenging question of computing solutions with quantized vortices.
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