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A NEW SOBOLEV GRADIENT METHOD FOR DIRECT
MINIMIZATION OF THE GROSS-PITAEVSKII ENERGY
WITH ROTATION*

IONUT DANAILAY AND PARIMAH KAZEMI*

Abstract. In this paper we improve traditional steepest descent methods for the direct min-
imization of the Gross—Pitaevskii (GP) energy with rotation at two levels. We first define a new
inner product to equip the Sobolev space H' and derive the corresponding gradient. Second, for
the treatment of the mass conservation constraint, we use a projection method that avoids more
complicated approaches based on modified energy functionals or traditional normalization methods.
The descent method with these two new ingredients is studied theoretically in a Hilbert space setting,
and we give a proof of the global existence and convergence in the asymptotic limit to a minimizer
of the GP energy. The new method is implemented in both finite difference and finite element two-
dimensional settings and is used to compute various complex configurations with vortices of rotating
Bose—Einstein condensates. The new Sobolev gradient method shows better numerical performances
compared to classical L2 or H' gradient methods, especially when high rotation rates are considered.
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1. Introduction. First experimental realizations of Bose—Einstein condensates
(BECs) in dilute alkali-metal gases [8, 12, 14] led to an explosion of mathematical and
theoretical studies aimed at a better understanding of such systems. Recent efforts
were devoted to documenting the superfluid nature of the condensate by providing
evidence for the existence of quantized vortices when rotating the condensate. It was
indeed experimentally observed [24, 25, 1, 18] that instead of solid body rotation, the
condensate rotates by forming vortices with quantized circulation. Initially, a few
vortices are formed, and, as the rotation frequency increases, the vortices form an
array similar to the Abrikosov lattice observed in type II superconductors. Since the
rotating BEC is a highly controllable system with a simple theoretical description,
it provides a perfect setup for the theoretical study of macroscopic systems with
quantized vortices.

In the zero-temperature limit, a dilute gaseous BEC is mathematically described
by a macroscopic wave function derived in the framework of the Gross—Pitaevskii

GP) mean field theory. The spatial configuration of the wave function ¢ (x), with
x = (z,vy, ), is obtained by minimizing the GP energy in the rotating frame,

B0 = [ 2100+ Vgl + St im0 @ e W
o R3 2m trap 2 ’

subject to the normalization condition, [, [¢/[* = N, with N the number of particles
(atoms). In the previous expression, h is Planck’s constant, m the atomic mass of
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2448 JONUT DANAILA AND PARIMAH KAZEMI

the gas, Q the angular velocity vector, and f/tmp the magnetic trapping potential
with trap frequencies (wg,wy,w.). We denote by ¥* the complex conjugate of 1.

The interactions between atoms are described by g = , with ag the s-wave
scattering length. As in most of experimental settings, we consider in the following
that Q = (0,0, Q)t and that Vtmp has a lower bound and f/tmp(x) — 00, a8 X — 00.
Since from the previous assumption we can infer that ¥ (x) — 0, as x — oo, it
suffices to work in a bounded domain D C R? with homogeneous Dirichlet boundary
conditions ¥ = 0 on dD.

In practice it is common to scale the energy so that the units become dimension-

less. Using the scaling r = x/d, u(r) = ¥ (x)d*?/VN, Q = Q/w, , with d = h

mw |
the harmonic-oscillator length and w; = min(w,,w,) the transverse trap frequency,
we obtain the nondimensional energy (per particle) functional

47'rﬁ2a5
m

v 2
(L.1) Bw) = [ 0 4 Viplul? + Sl - i (40,
D
where Viyap = ﬁf/tmp, g = ™% and A = (y,—2,0). The mass conservation

constraint becomes
(12 [l =l =1
D

which we denote by .|| = [|.|[2(p,c)-

For given constants €, g, and trapping potential function V;.qp, the minimizer
ug of the functional (1.1) under the constraint (1.2) is called the ground state of the
condensate. Local minima of the energy functional with energies larger than E(u,)
are called excited (or metastable) states of the condensate. For a detailed discussion
of the derivation of the GP energy and the physics of rotating BECs, see, for example,
[15] and [23].

The two key issues in numerically computing ground or excited states of BEC
are (i) how to derive a numerical algorithm that starts from a chosen initial state
and iteratively diminishes the energy of the solution to rapidly converge to a local
minimum of the functional (1.1), and (ii) how to take into account the mass constraint
(1.2). These two issues are obviously connected and have to be considered together
in deriving efficient numerical algorithms. We present in this paper new approaches
for addressing both issues and prove their superior numerical performance in the case
of the energy minimization of the GP energy with rotation.

Most of the numerical algorithms proposed in the literature use the so-called
normalized gradient flow [9], which consists of two steps: the steepest descent method
is applied to the unconstrained problem,

du_ 10BG) _ Vu
ot 2 du 2

(1.3) — Virapu — glu|®u + iQAVu,

to advance the solution from the discrete time level ¢,, to t,11; the obtained predictor
(7, tp41) is then normalized in order to satisfy the unitary norm constraint and set
the solution at ¢,1:

-
1.4 u(r,t, éTf(r’inH.
(14) boet) = et
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A NEW SOBOLEV GRADIENT METHOD 2449

The gradient flow equation (1.3) (or the related continuous gradient flow equation;
see [9]) can be viewed as a complex heat equation and, consequently, solved by different
classical time integration schemes (Runge-Kutta—Fehlberg [16], backward Euler [9, 5,
10], second order Strang time-splitting [9, 5], combined Runge-Kutta—Crank—Nicolson
scheme [3, 4, 13], etc.), and different spatial discretization methods (Fourier spectral
[16], finite elements [5], finite differences [9, 3, 4, 13], sine-spectral [9], Laguerre—
Hermite pseudospectral [10], etc.).

It is interesting to note that in the descent method (1.3), the right-hand side
represents the L? gradient (or ordinary gradient) of the energy functional. An impor-
tant improvement of the convergence rate of the descent method was obtained in [16]
by replacing the ordinary gradient with the gradient defined on the Sobolev space
HY(D,C). The same Sobolev gradient method (see [26] for various applications of
this method) was recently used to minimize simpler Schrédinger-type functionals in
[28]. A similar increase of the convergence rate over the ordinary gradient method
was reported. The first new contribution of the present paper is to introduce a new
definition of the inner product to equip the Sobolev space H' in the case of the GP
energy with rotation. A proof of the existence of the asymptotic limit for the evolu-
tion equations associated with the Sobolev gradients in a Hilbert space setting is also
given. When implemented in a finite difference or finite element settings, the new
Sobolev gradient method shows better numerical performances compared to classical
L? or H! gradient methods, especially when high rotation rates (£2) are considered.

The second important contribution of this work concerns the issue of the mass
conservation constraint (1.2). Instead of the classical (and very popular) normaliza-
tion approach (1.4), we suggest a projection method that preserves the norm of the
initial state through the minimization procedure. The idea to project the (Sobolev)
gradient into the tangent space associated to the constraint was already used to de-
rive numerical algorithms for minimizing harmonic maps [6, 27], and, recently, to
numerically find the smallest eigenvalue and corresponding eigenvectors of a Hermi-
tian operator [7]. Different algorithms based on the projected gradient were developed
in these studies and successfully applied to different energy functionals: the Oseen—
Frank energy for liquid crystals [6], the Dirichlet energy of harmonic maps [27], and
the Hartree-Fock energy for quantum chemical molecular systems [7]. We derive here
a projected Sobolev gradient method adapted to the GP energy functional and provide
an explicit expression of the projected gradient that allows to minimize trajectories
when Hilbert spaces other than L? are considered. The new projection method proved
very helpful in numerical implementations and allowed us to avoid alternative meth-
ods treating the mass constraint by adding to the energy functional a penalty term
with a Lagrange multiplier (e.g., [16, 11]).

The organization of the paper is as follows. In section 2 we introduce an alternate
inner product on the Sobolev space H! and show that this inner product is equivalent
to the traditional inner product on H'. The corresponding new Sobolev gradient
is also derived. We discuss in section 3 a constructive projection method for the
mass constraint and give our existence and convergence result for the asymptotic
limit of the evolution equation defined by the Sobolev gradients. In section 4 we
give a discussion of the finite difference and finite element implementations in two
dimensions. The last section is devoted to numerical tests designed as benchmarks
to compare performances of different Sobolev gradient methods. The effectiveness
of the newly proposed Sobolev gradient method is proved by computing stationary
states of rotating BEC that are physically relevant (high rotation and large interaction
constants).
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2450 IONUT DANAILA AND PARIMAH KAZEMI

2. Gradient descent methods using several gradients. In optimization
problems that use a gradient descent or ascent technique, one usually has a choice of
norms to use in the argument. If the norm has an associated inner product, then one
can obtain a gradient with respect to this inner product (see [26] for an explanation).
In the example of the minimization problem of Schrédinger-type functionals, the gra-
dient represents the direction of change per unit time. Therefore, one wants to choose
the gradient in the descent method (1.3) so that the change in energy is maximal at
each step. For the case of the GP energy with rotation, we notice that the energy
(1.1) can be written as

Vu + iQA u|?
(2.1) E(u) = / Nt QAW+
D 2 2
where, the effective trapping potential is defined as

QQT'Q
2

Ver(r) = Virap(r) —

This form of the energy suggests the definition of a new norm to equip the domain
of the functional such that the functional is coercive with respect to this norm. This
implies that if the size of the argument is large, then naturally the value of the
functional will be large as well, making it suitable for rotating cases.

2.1. Inner products and norms. We define three inner products on C'(D, C)
and study the completion of this space with respect to the norm arising from each of
these inner products. Consider the inner products

(2.2) (u,v) 2 :/D<u,v>,

(2.3) (u,v)g = /D<u,v> + (Vu, Vv),
and
(2.4) (u,v)g, = /D<u,v> + (Vau, Vo),

where V4 =V +iQA", Q is a fixed positive number. Here (-, -) denotes the complex
inner product. Each of these inner products leads to a norm which we will denote
by || - |22, - ||z, and || - ||zr,. For X = L% H, H 4, consider the completion of {u €
CH(D,C) : |lu|x < oo} with respect to each of the respective norms. In the first case,
one obtains the Hilbert space L? = L?(D,C); in the second case H! = HY2(D,C);
and in the third case we call the resulting Hilbert space Ha = H4(D,C) (see [2]
for details on Sobolev spaces). Furthermore, the following calculation shows how the
three norms are related. We first note that

(2.5) (Vau, Vav) = (Vu, Vo) + Q%2 (u,v) + iQ((Au, Vo) — (Vu, A)).
If rp denotes the radius of D, one has

(V au, V au) = |Vu + iQA|? < 2(|Vul? + r50%ul?),
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A NEW SOBOLEV GRADIENT METHOD 2451
and, consequently,
lular, < /D (14 2392 uf? + 2/ Vul? < clul?,

where ¢ = max(1 + 2r50?,2). Hence one has that the H' norm dominates the H,
norm.
At the same time, using the identity

/ (Alu, Vv) = —/ (Vu, Av),
D D
we infer from (2.5) that
(2.6) / (Vau,Vav) = / (Vu, Vv) —l—/ QO*r? (u, v) — 22'9/ (Vu, Alv),
D D D D
and, consequently,
/ |Vu +iQAw|? = / |Vu|? + Q%2 |ul? — 2Q(iVu, Atu).
D D
Also, for € > 0, one has the inequality

ab = %be < % ((%)2 + (b6)2> .

Now, using the above inequality and Cauchy—Schwarz, one has that

|Atu|2

2|(iVu, Atu)| < 2|Vul|Au| < (e Vul)* + =

Thus
QO At Q 2 |"4tu|2 Q 2 T2D 2
—20iVu, A'u) > —Q (| (e|Vul|)® + a2 > Q| (e|Vul|)* + 6—2|u| )
From this one has that
2
/ |Vu +iQA W * > / |Vu|* + Q%2 |ul? — Q ((6|Vu|)2 + T—I2)|u|2)
D D €
2
= / (1 —Qe*)|Vul* + | Q%2 — ol |u|?
D €2
2
> / (1 - 0e)|Vuf2 - Q"2 Jul?
D €

Now we choose € so that 0 < 1— Qe® <1 and we let k =1+ £r%. Since k > 1, we
can write

k/ |u|2+|VAu|2>/ Klul? + |V aul?
D D

2/ |u|2+(1—962)|Vu|2>(1—§262)/ luf? + |Val?,
D D
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2452 IONUT DANAILA AND PARIMAH KAZEMI

and we infer that the H4 norm dominates the H' norm. Hence the two norms are
equivalent. Furthermore, we have the following relationship between the three Hilbert
spaces:

H'*(D,C) = Ha(D,C) C L*(D,C).

As indicated, sets H! and H,4 are equal. However, by using the equivalent norm
induced on H 4, we will see that the numerical performance of the descent method is
improved for the minimization of the GP energy with rotation.

2.2. Gradients. The next step in writing a descent method to directly minimize
the energy, as given in (1.1) or (2.1), is to obtain a gradient corresponding to each
inner product. Taking the Fréchet derivative of (1.1), one gets that

(2.7) E'(u)h = / R ((Vu, V) + (2Virap u + 2glul*u — 2iQ2AVY, h)),
D
or, equivalently,
(2.8) E'(u)h = / R ((Vau,Vah) + (2Vey u + 2glul®u, h)).
D

Since E’(u) is a continuous linear functional from H! to R, for each u € H! there
exists a unique member of H! which we denote by Vy E(u) so that

E'(w)h = R(VyE(u),h)

for all h € H'. We say that Vg E : H! — H! is a gradient for E taken with respect
to the H! inner product. Likewise E’(u) is a continuous linear functional from H 4 to
R, thus it has a representation like the one given above. We denote this gradient by
Vu,E:Ha— Hya (see [26] for a background on gradients obtained in this manner).
Furthermore, we note from (2.7) that for all h € C°(D, C) one has that

(2.9) E'(u)h=R(VxE,h)x / R(—V2u + 2Vipapu + 2g|ul*u — 2iQA'Vu, h).

When X = L2, we directly obtain the expression of V:E, the L? (or ordinary)
gradient of E, already recalled in (1.3). From a practical point of view, it is interesting
to note that H' and H4 gradients will be computed using different forms of (2.9):
the corresponding strong formulation for the finite difference implementation (see also
[16]) and the weak formulation for the finite element implementation (see also [28]).

3. Constrained energy minimization.

3.1. Projection method for the mass constraint. Before discussing the
gradient descent method, we give a brief description of the projection used to deal
with the mass constraint. In approximating stationary states, one could in principle
use a normalized gradient flow in conjunction with a traditional Lagrange multiplier
for the constraint [16, 11]. We adopt here a different approach and develop a projection
method that will, in the continuous case, enforce the constraint for all time.

The method for enforcing the constraint is presented in [26] for any general con-
straint and hence does not provide the needed expression for our case. For the unitary
norm constraint, several projected gradient methods are developed in [27, 7], based
on the idea to directly compute the gradient in the tangent space to the unit sphere.
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A NEW SOBOLEV GRADIENT METHOD 2453

In this work, in order to facilitate the numerical implementation, we first compute
the gradient and then project it into the tangent space. For this purpose, it is very
helpful to derive an explicit expression of the projected gradient that allows us to
preserve the unitary norm of the solution through the minimization procedure. It
should be noted that explicit expressions of the projected gradient are given in [7] for
the R™ gradient flow of the linear eigenvalue problem on the unit sphere and for the
L? gradient flow of the Hartree-Fock nonlinear eigenvalue problem. We derive below
an explicit expression of the projected gradient that allows us to minimize trajectories
when Hilbert spaces other than L? are considered.

Let X = L?, H', or H4. As previously stated, for each u € X, one can find a
member of X, denoted by Vx E(u), so that E'(u)h = (h,Vx E(u))x. We called such
an element of X a gradient of E at u. Consider 5 : X — R,

(3.1) Blu) = /D uf?.

Since we want to minimize the energy E(u) subject to the constraint f(u) = 1, we
obtain the tangent space for our problem:

Tux =null(f (u)) ={w € X : (u,w)rz = 0}.

Note that T}, x is a closed linear subspace of X, and for each u € X, there exists a
unique orthogonal projection from X onto 73, x. We denote this projection by P, x.
Note also that P, x is a linear transformation with domain X and range T}, x. Thus,
this transformation depends on the Hilbert space and u € X.

Let ug € X so that B(ug) = 1, and write the descent method with the projected
gradient:

(3.2) 2(0) =uop and 2'(t) = =P, xVxE(2(t)).
We can easily see that §(z) is constant since

(B(2))'(t) = B'(2(1)2'(t) = —=B'(2(t))(Pa), x Vx E(2(1))) = 0

for all , as P.() x is the projection of X onto the null space of 5'(2(t)). Thus f(z) is
constant and if u = lim;_,o, 2(¢), then B(u) = B(ug), and the norm of the initial state
is preserved. In conclusion, by projecting the Sobolev gradient of E at z(t) into the
null space of 8'(z(t)) for each ¢, we get that z(¢) satisfies the mass constraint for all ¢
(see [26] for a more detailed development on this topic).

For numerical implementation purposes, we give below a heuristic derivation of
the explicit expression of the projection (see [22] for a more rigorous demonstration).
If, for the sake of simplicity, G = Vx FE(u) denotes the Sobolev gradient of E at u,
the projected gradient is determined from the following two conditions:

(33) P’u.Xg S Tu,Xv

(3.4) (PuxG,hx = E'(wh VheT,x.

In order to satisfy (3.4), we choose the projected gradient of the form P, xG =
G — Bvx, with B € R a constant and vx € X such as

(3.5) (vx,h)x = (u,h)> Vhe X.
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2454 JONUT DANAILA AND PARIMAH KAZEMI

The constant B is then obtained by imposing (3.3). The final expression that will be
used for numerical implementation is

%(u, g>L2

. Py xG=G— ——2"
(3 6) 7Xg g §R<u, UX>L2

vx,

with vy computed from (3.5). Note that if X = L2, vx = u, and we recover the
explicit expression of the projected gradient given in [6]. It is also important to
note that, in regard to numerical consideration as well as obtaining global existence,
uniqueness, and asymptotic convergence, we need that the map u — P, xVx FE(u) be
C' as a map from X to X. Using the above expression for the projection, we present
in the next section some convergence results.

3.2. Convergence results in an infinite dimensional Hilbert space. In
this subsection we define the evolution equation we use in the Hilbert space setting
and give our global existence and convergence result for the constrained minimization
problem. Here we extend the results obtained in [22] for the case of the GP energy
without rotation. In this work, as well as in [22], we move away from the general
theory of Sobolev gradients as presented in [26], since the criteria for asymptotic
convergence of the evolution equation for constrained minimization problems is not
available in [26].

The idea behind the following analysis is to show that the GP energy functional
with rotation has the same properties as the GP energy without rotation if the norm
|| - |z, is used. We thus can adapt the results obtained in [22] to our case. We start
by noting that, due to the mass conservation, one can add a multiple of [, |u|? to the
GP energy, and the resulting functional will have the same minimizers as the original
functional. The idea is to obtain a functional that is uniformly and strictly convex.
We remind the reader that for a Hilbert space X, we say that £ : X — R is uniformly
and strictly convex if there exists € > 0 so that E”(u)(h, h) > €|h|% for all h € X.

Indeed, let us consider the form (2.1) of the energy functional, and suppose that
there exists 1 > ¢ > 0 so that V¢ > 6. We observe that

(37 E'(u)(hh) = /D IV Akl + 2Viglhl? + 2g(ul2lB? + 2R (u, 7)))?
(3.8) > /D IV ahf? 4+ 2Veglhl? > 6 /D IV ahf? + |2 = SAl3,.

and infer that £ : Hy — R is uniformly and strictly convex with the assumption
that Vs is bounded away from zero. Due to the equivalence of norms, £ : H I 3R
is also uniformly and strictly convex. Note that if V., is not bounded away from
zero, then one can obtain this property by adding a multiple of the constraint to the
energy. This does not change the minimization problem as indicated by the following
theorem.

THEOREM 3.1. Let E be a C? function on a subspace X contained in L*(D). Let

E.(u) :E(u)+e/ luf2.
D
Then for B(u) = [ |ul* and h € null(f'(u)), E'(u)h = 0 iff E.(u)h = 0.
Some other properties of the functional are required to obtain the asymptotic

convergence of the evolution equation. In particular, we need the functional to be
continuously twice Fréchet differentiable and bounded from below. The latter two
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A NEW SOBOLEV GRADIENT METHOD 2455

properties are standard and we therefore omit them. With these properties checked,
we can give our global existence and convergence in the asymptotic limit. Using the
space H 4, the proofs of the following two theorems are identical to the ones given in
[22]. Thus we omit the proofs and refer the reader to this work.

THEOREM 3.2. Suppose X is a Hilbert space and that E : X — R is continuously
twice Fréchet differentiable. Suppose also that f : X — R is a given function such
that, if P, x denotes the orthogonal projection of X onto the nullspace of 5'(u), then
the map u — P, x is C1. Then z(t) given by (3.2) is uniquely defined for all t > 0.

THEOREM 3.3. Suppose the hypothesis of Theorem 3.2 and that z(t) is given
by (3.2), with Vx E(up) # 0. If E : X — R is uniformly and strictly convezx, then

g2t =

exists. Furthermore, there exist two constants m and ¢ so that ||u — z(t)||x < me™<,

and E'(u)h =0 for all h € null(5'(u)).

From the above two theorems, if we keep in mind that the functional F defined
in (1.1) is continuously twice Fréchet differentiable and uniformly and strictly convex
when the domain is considered to be Hs or H, we obtain the result that F has a
minimizer in H4 and in H' that satisfies the constraint 3 as given in (3.1). Further-
more, this minimizer is obtained as the limit of the trajectory we defined in (3.2).
This convergence result is not only important on its own, but, as we shall see, plays
an important role in the rate of convergence of our numerical simulations.

4. Numerical implementation. In this section we explain in detail the setup
for our simulations using the descent method with both finite differences and finite
elements discretization in two space dimensions. Both implementations follow the
general lines of the algorithm described below.

ItY = La, He, Ha, denotes the finite dimensional Hilbert spaces resulting after
the discretization of the domain D, the descent method (3.2) takes the following
discrete form. Starting from ug € Y, define a trajectory z,,n > 1 (forward Euler
scheme) as

(4.1) 20 = U, Zn4l = 2Zn — 0t Vs, v Eq(zn),

where V,, y Eg(u) denotes the gradient obtained with respect to each inner product
and projected following (3.6). The time step value d0t,, could be optimized when
computed as the local minimum of the real valued function

(4.2) r— Eq(zn — V5, v Ec(zn)).

As convergence criterion, the algorithm stops when the relative change in energy
FE¢ is below an imposed limit. We note that in the continuous steepest descent
algorithm, the constraint was satisfied for all time ¢ and hence for the converged
solution. In the discrete case, due to the first order discretization in time, it is easy
to see from (4.1) that the norm is conserved at time level (n + 1) up to an error
of order (6t,)?||V., v Ec(2n)||2. After each (or several) iteration(s), one could also
normalize the solution, as in [27] where a Sobolev descent method with step-size 1
is used. This results in an improvement in the accuracy to which the constraint is
preserved. The main observation that we made was that even though we used a first
order discretization in time, our projection method allowed us to take larger time
steps when compared to the method of using the normalization alone.
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2456 IONUT DANAILA AND PARIMAH KAZEMI

4.1. Finite differences. We discretize D into an N x N equally spaced (§, =
8, = &) grid and let D¢ be the set of all K = N? grid points. Let X be the collection of
all complex valued functions on D¢. For f € X, (D1 f)(x,y) is the approximation to
the partial derivative in the first independent variable at (x,y) and (D2 f)(x,y) is the
approximation to the partial derivative in the second independent variable at (z,y).
We have used a fourth order centered finite difference scheme to approximate the first
partial derivatives. When compared to the classical second order scheme, this high
order approximation proved very helpful in computing complex configurations (vortex
lattices within the condensate) with reasonably fine grids. Furthermore D f = (g;;)
For a grid point (z,y), we also define Dy 4 and Da 4 by

(Dl,Af)(xay) = (le)($,y) + zny(x,y)

and
(DZ,Af)(xay) = (DQf)(xay) - zQxf(x,y)

We denote by Dy = (g;ﬁ) the discretized form of the operator V 4. The three inner
products that equip X are defined as follows: for f,g € X,

(fra)ee = (f,9),

(f,9)u = (f,9) + (D1f,D1g) + (D2 f, D2g),

and

(f,9) s = (f,9) + (D1,af, D1,ag) + (D2,af, D2, ag),

where (-, -) denotes the complex CX inner product. Note that (-,-);2 is analogous to
the L2(D,C) inner product, {-,-)y is analogous to the H*?(D, C) inner product, and
(,"Ym, is analogous to the H4(D,C) inner product.

Since Dy, D2, Di 4, D3 4 can be viewed as a linear transformation acting on
CX, we think of each of these transformations as a K x K matrix. Let D}, denote
the conjugate transpose of the corresponding matrix. We note that we can write the
H and H, inner products as

(4.3) (fs9)m = (I + DiD1+ D3D2)f,g) 2
and
(4.4) (f,9)m4 = (I + Di aD1,a+ D3 4 D2.a)f,9) 12

The collection X makes a finite dimensional Hilbert space with each of the above
inner products. We denote the resulting Hilbert spaces by Lé, Hg, and Hy,,. Now
we discretize the energy functional as given in (1.1) and (2.1). Here the subscript G
denotes that we are in the finite difference setting:

45)  Eolf) =03 SUDLIP + D2 S ) + Visap 17 + 5111~ Qrotaf,

where for © € D¢,
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and
Az, y) =y —a).
Equivalently,
1
(4.6) Ec(f) =8 Y 5 (IDvLafP + |Do.aP) + Vg, |11 + S 111*

Dg

If we take a derivative of Eqg, we get that

Eg(f)h = 6°R Y (Dih, Dif) + (Dsh, Do f)
Da

(4.7) + 2(h, Virape |+ g|f|2f - QiAt(Df»-

Observe that for each f € X, E/(f) is a continuous linear transformation on X using
any of the three norms we specified. Thus it has a representation with respect to each
of the inner products we defined above. Using this representation, we will obtain a
gradient. Since the L? inner product is proportional to the Euclidean inner product,
the ordinary or Euclidean gradient (i.e., the list of partial derivatives of E¢ taken with
respect to each of the K independent variables) is easily derived if the real valued
transformation Ef(f) is rewritten as

(4.8) Eg(f)h=R(h,V2E(f))r2.
We get that
(4.9) VpE(f) =6*(DiDif + D3Daof +2(Vipape f +glfI*f — QA" (D).

We now derive the other two gradients, Vg E(f) and Vg, E(f), with respect to
the H and H,4 inner products. From (4.3) and (4.4) we obtain that

Eq(f)h =R, VuEa(f))a =R(h, (I + D" D)V Eg(f))r
and
E/G(f)h = %<hv VHAEG(f)>HA = %<h7 (I + DZDA)VHAEG(JC»L-

By comparing these equations to (4.8), we finally get that

(4.10) VuEq(f) = (I+D*D) 'V E(f)
and
(4.11) Vu,Ea(f) = I+ DyDa) 'V 2E(f).

The discrete descent method (4.1) using the above finite difference discretization
was implemented in MATLAB. The Sobolev gradients are computed from (4.10) and
(4.11) by solving linear systems at each time step using a preconditioned conjugate
gradient method. Since this part is time consuming on fine grids, we used a linesearch
algorithm to locally compute the time step from (4.2). This resulted in a significant
reduction of the number of iterations needed to achieve convergence.
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4.2. Finite elements. The finite element implementation uses the free soft-
ware FreeFem++ [19], which proposes a large variety of triangular finite elements
(linear and quadratic Lagrangian elements, discontinuous P1, Raviart—-Thomas ele-
ments, etc.) for solving PDEs in two dimensions. FreeFem++ is an integrated product
with its own high level programming language with a syntax close to mathematical
formulations.

It is therefore very easy to implement the variational formulations associated with
the calculation of the three gradients, since the definitions of scalar products (2.2)—
(2.4) use an integral form. Following the developments in section (2.2), and using as a
definition of the complex inner product (u,v) = uv*, the ordinary gradient is derived
from (2.7) and computed as the solution G = V2 E of the problem with the following
homogeneous Dirichlet boundary conditions:

(4.12) / G h = RHS,
D
(4.13) RHS = / VuVh + 2 [Vipap u + (glu*)u — iQA"Vu] h,
D

where h now stands for the real valued basis function of the finite element space.
Following (2.9), the H! gradient is directly computed by solving the equation

(4.14) / VG Vh+Gh=RHS, where G=VgE.
D

It is interesting to note that (4.14) is directly derived from the weak formulation of
(2.9), with the obvious advantage of obtaining a simpler right-hand side (4.13), which
is derived by integrating by parts the weak form of the L? gradient. Therefore, in
order to solve (4.14), it is not necessary to explicitly compute the L? gradient (by
solving (4.12)), as required for the finite difference implementation.

Observing from (2.6) that the H4 scalar product could be expanded to obtain
the equivalent definition

(4.15) (u,v) g, = / ([1+ 2 (y* + 2%)] u,v) + (Vu, Vv) — 2iQ(A'Vu, v),
D
the H,4 gradient is directly computed as the solution G = Vg, F of the problem
(4.16) / [1+Q*(y* 4+ 2%)] Gh+ VGVh — 2iQ(A'VG)h = RHS.
D

It is interesting to emphasize the fact that previous equations are solved in complex
variables. The approach based on the separation of the real and imaginary part of the
gradient used in [28] is not possible when computing the H4 gradient. The FreeFem
scripts are written in an optimized form using the precomputation and factorization of
the complex matrices associated with linear systems given by (4.14) and (4.16). It is
interesting to note that the same matrices are involved in the computation of vx from
(3.5); the projected gradient (3.6) could therefore be optimized in the same way. The
implementation uses P1 (piecewise linear) finite elements, with a P4 representation
of the nonlinear terms appearing in (4.13). A fifth order quadrature formula was
used to compute two-dimensional integrals. The FreeFem scripts allow us to switch
to P2 (piecewise quadratic) finite elements by a simple change of the definition of the
generic finite element space. Adaptive mesh refinement was used for simulations of
rotating BEC with a dense lattice of vortices.
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5. Numerical experiments. We first use a test case with an analytical manu-
factured solution to ascertain the convergence of the steepest descent method for each
of the three gradients. Then, we use the numerical setup to compute simple metastable
states of rotating BECs with single or multiple vortices. The performances of the three
methods are comparatively evaluated. Finally, the new H 4 gradient method is used
to compute complex configurations relevant for real rotating condensates (Abrikosov
vortex lattice and giant vortex).

5.1. Test case with manufactured solutions. This test case is used as bench-
mark for the evaluation of the descent method for each of the three gradients (L2, H,
H ). We consider a nonlinear problem close to the GP equation

1
(5.1) —§V2u + Ctrap u + glul*u — iQAV)u = f,

corresponding to the minimization of the energy functional

4
(5.2) E(u,f)= / %|Vu|2 + Clrap [u|* + g % — (ffu+ fu*) — QR(iu*A'Vu).
D

For this energy functional, the L? gradient is expressed as in (2.9), with Virap =
Ctrap = const and a supplementary term —2(f, h) to be added. It should be noted
that this is a test case of minimization without constraint.

In order to test the implemented methods, we manufacture solutions of (5.1):
we consider a given expression for u and calculate the corresponding right-hand side
f(x,y). A simple way to construct such manufactured solutions is to consider solutions
with azimuthal symmetry:

(5:3) ug(z,y) = U(r) exp(imf),

where (r, ) are cylindrical coordinates (r = y/x2 + y?). Since the Laplacian in cylin-
drical coordinates reads as

10 (o), 1
v ~ror or +r286‘2’

and the new term corresponding to the rotation becomes

ou ou ou
t§7 = Yy— —r— = ——
A T Yo xay 00"

We obtain that
f = F(r) exp(imb),

with

110 [ oU\ 1
(5.4) FU):—————(ar)+—ﬁLU+C%wU+gU3—mQU

We choose the domain D to be a circle of radius R and

(5.5) U=7r*R~-r),
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which satisfies the homogeneous boundary condition v = 0 for r = R. For this choice,
we obtain useful analytical formulas for

1 1
F(r) = —5(4R—9r) + 5m2(R —7) + Chrap U + CnU® — mQU,

and energy

RS RS R 3R R®
. E =21 —— —m*— — Cprap— — Qr—.
(56) (u, f) ”( 20 " 120~ Crerigs N20020> T
The contour patterns for such solutions are displayed in Figure 5.1 for m = 1 and
m = 3.

m=1, Real(u) m=1, Imag(u)

Fic. 5.1. Contour patterns of the manufactured solution corresponding to (5.3) and (5.5), with
azimuthal wave numbers m =1 and m = 3.

The numerical application for manufactured solutions consider the following pa-
rameters:

Cirap =20, ¢=100, R=1, m=3, Q=10.

For this case, the theoretical values for energy and angular momentum of the exact
solution are £ = —0.505553 and L, = 0.1122, respectively. The computation is
considered converged if the relative variation of the energy is less than e = 1078.

Tables 5.1 and 5.2 assess the convergence of the descent method by computing
different norms of the difference between the exact and computed solutions. Perfor-
mance of each gradient method are quantified by extracting the overall computing
(CPU) time and the number n of time steps necessary to achieve convergence.

All test cases considered ug = 0 as the initial guess for the descent method.
Different initial conditions (e.g., up computed as the solution of the corresponding
linear problem) were tested with similar convergence results.
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TABLE 5.1
Test case with manufactured solutions. Algorithm efficiency and convergence test for the finite
difference implementation (variable time step computation).

| [N [n | CPU | E(w) [ [lu—uslloo | lu—usllpe [ [lu—uslln |
L 26 1137 35.41 -.4828 .0010 2.25e-4 .0270
H 26 100 16.23 -.4828 2.81-4 1.66e-5 .0021
Hyp 26 38 6.39 -.4828 1.41e-4 3.85e-6 4.73e-4
L 27 1960 308.13 -.4941 4.11e-4 2.84e-4 .0185
H 27 40 36.34 -.4941 6.32e-5 4.81e-4 5.28e-4
Ha 27 18 17.22 -.4941 2.05e-5 6.84e-7 6.26e-5
L 28 > 3000 | > 2040 | -.4985
H 28 30 154.47 -.4997 4.59-5 9.77e-6 .0013
Hyp 28 14 73.21 -.4997 1.56e-6 1.36e-6 1.504e-4

TABLE 5.2

Test case with manufactured solutions. Algorithm efficiency and convergence test for the finite
element implementation (fized time step computation). The triangular mesh is generated with M
points on the border of the domain.

[ [ M/Triangles [ n [ CPU [ E(w) [ u—uslleo [ Mu—usllp2 [ Tu—urlla | 6t |
L 100/1776 1176 85 -.4934 1.988e-3 1.001e-3 1.705e-2 8e-4
H 100/1776 47 3.4 -.4934 1.883e-3 9.220e-4 1.668e-3 1
Ha 100/1776 14 1 -.4934 1.880e-3 9.140e-4 1.665e-2 3

200/7064 4292 1252 -.5025 7.492e-4 4.200e-4 7.401e-3 2e-4
200/7064 47 13.8 -.5025 5.530e-4 2.232e-4 6.548e-3 1
Ha 200/7064 14 4.1 -.5025 5.390e-4 2.119e-4 6.474e-3 3
400/27604 > 8000 > 9193 -.5027 5e-5
400/27604 47 54.2 -.5047 1.687e-4 6.8535e-5 3.954e-3 1
Ha 400/27604 14 16.2 -.5047 1.549e-4 5.730e-5 3.791e-3 3

The first obvious observation is that the descent method using the ordinary L2
gradient has very slow convergence rate because of very small time steps imposed by
the stability limit of the method. This was expected since this method is the equivalent
to the explicit Euler integration scheme for the imaginary time propagation equation.
A similar result was reported in [28] for simpler Schrédinger-type energy functionals.
Larger time steps are allowed in the H' and H 4 methods, since the Sobolev gradients
represent a preconditioning of the ordinary gradient [16, 27, 6].

For the descent methods using a constant time step 0t (finite element implemen-
tation), we compare the computations performed using the maximum value (6t)qz
allowed by the stability of each method. These values, displayed in Table 5.2, were ob-
tained by successive tests: the value of §t was increased by 20% for each new run until
the computation became unstable. It should be noted that we were not interested in a
refined numerical evaluation of the stability limit of each method, since computations
using a more precise estimation of (0t),,4, did not result in a significant variation
of the CPU time. The same approach for comparing methods using their maximum
time step allowed by stability reasons will be applied to all subsequent computations
in this section.

Tables 5.1 and 5.2 also allow us to relate the computing cost to the complexity
of each method. As already stated, the descent method using the L? gradient can
be regarded as an explicit backward Euler scheme. It therefore has little complex-
ity, and the computing cost per iteration step (i.e., the ratio CPU/n) is very low.
Sobolev gradients are computed by solving linear systems, which adds extra compu-
tational cost. For the finite difference implementation, (4.10) and (4.11) are solved
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by a preconditioned conjugate gradient method; since this part of the algorithm is
time-consuming, the CPU time per iteration step (CPU/n) is multiplied up to a fac-
tor of 8 when compared to the L? gradient method. The situation is different in the
finite element implementation. Since the weak formulation of (2.9) is used, the com-
putation of all gradients needs to solve a linear system. In order to have an optimized
numerical implementation that can switch between the three descent methods, the
matrix of this system is stored and factorized before the time loop. As a consequence,
even though the matrix of the system in (4.12) is simpler (mass matrix) than in (4.14)
or (4.16), the ratio (CPU/n) is identical for the computation of all gradients.

In all numerical tests, the convergence of the L? gradient method needs a large
number of time steps, and, consequently, much larger CPU times than the Sobolev
gradient methods. Since the performances of the L? gradient method are very poor,
it will not be used in the following numerical experiments. We shall now focus on the
comparison between the H and H 4 method. For the test case considering a large value
of Q, the H 4 gradient allows for larger time steps, and therefore the computational
time is considerably reduced—by approximately a factor of 3. This suggests that
the preconditioning of the gradient introduced by the new H,4 inner product is very
effective for computing cases with high rotation frequencies € (it goes without saying
that the H and H4 methods are equivalent for 2 — 0).

5.2. Simulations of rotating Bose—Einstein condensates. In computing
stationary states of rotating BECs, the initial state uo in the descent method (4.1)
plays a crucial role. The algorithm usually starts from a wave function distribution
derived from the Thomas—Fermi approximation. In the strong interaction regime
(large values of g), it is reasonable to neglect the contribution of the kinetic energy
and work with the simplified energy functional

9
Ere(p) = [ Vivapo+ Sul.
D

The minimizer of this energy corresponds to the Thomas—Fermi atomic density

6:7) pre(r) = uf? = (1Y)
9 +

where g is the chemical potential. Since p is a Lagrange multiplier, imposing the mass
constraint in (5.7) yields a relation for p. After computing the value of p, the Thomas—
Fermi radius of the condensate can be determined from (5.7) (prr(Rrr) = 0). When
a rotation  is applied, the Thomas-Fermi approximation (5.7) stands with V.ys
replacing Virqp. The resulting radius RS is used to estimate the size of the domain
D in simulations (rp > R$p) -

We also mention that the converged final state is characterized by its energy F(u)
and angular momentum L, (u) which gives a measure of the rotation

(5.8) L.(u) = /D R (iu* (A'V)u) .

5.2.1. Off-center vortex case: Harmonic trapping potential and small 2.
The second numerical experiment considers the classical harmonic trapping potential
and an initial state computed from the Thomas—Fermi approximation plus a singly
quantized vortex of center located at (x,,y,). We use an ansatz for the vortex de-
scribed in [3]. The parameters of the simulation are the following:

g =500, Vipap=12/2, Q=04, 2,=05 vy,=0.
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The Thomas-Fermi radius is for the case R$ = 5.246, and the computational domain
is circular of radius R = 1.25R$%, = 6.56. The final converged state contains a single
vortex centered at the origin (see Figure 5.2).

Fia. 5.2. Off-center vortex case. Initial state with an off-center vortex and final converged state
with a centered vortex. Contours of atomic density |u|?.

TABLE 5.3
Off-center vortex case. Algorithm efficiency and characterization (E(u), L.(u)) of the converged
state for the finite difference implementation (variable time step computation).

[ [N[n [CPU [Em [L( ]
H 26 | 1313 | 169.51 8.3587 | .9998
Hy | 26 | 1197 | 166.34 8.3587 | .9998
H 27 | 1184 | 866.88 8.3605 | .9999
Ha | 27 | 1127 | 890.06 8.3605 | .9999
H 28 | 1274 | 4.9548¢e3 | 8.3606 | .9999
Hy | 28 | 1244 | 4.7882e3 | 8.3606 | .9999

TABLE 5.4
Off-center vortex case. Algorithm efficiency and characterization (E(u), L. (u)) of the converged
state for the finite element implementation. The time step is set to 0.1 for all computations.

| | M/Triangles | n [CPU [ Em) [ L:(uw) |
H 100/1762 701 56.97 8.3819 | .994598
Hy | 100/1762 703 57.47 8.3795 | .994575
H 200/7064 1667 | 537.85 8.3720 | 1.00042
Hy, | 200/7064 1717 | 556.41 8.3694 | 1.00022
H 400/27604 1788 | 2.335e3 | 8.3699 | 1.00052
Hy | 400/27604 1831 | 2.407e3 | 8.3673 | 1.00032

The comparative results are presented in Tables 5.3 and 5.4. It is important to
note that the convergence test must be set to ¢ = 1078 in order to obtain a final
state with a vortex centered at the origin and L, = 1 (theoretical value reached for
the finest meshes). A relaxed convergence criterion will result in a vortex that is not
exactly centered since the convergence rate is very slow at the end of the simulation.
As expected, the Hy and H4 perform similarly because of the low value of €.

5.2.2. Vortex array case: Harmonic-plus-quartic trapping potential
and large 2. The harmonic trapping potential physically sets an upper bound for
the rotation frequency, since for 2 = 1 the centrifugal force balances the trapping
force and the confinement of the condensate vanishes. To overcome this limitation,
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Fia. 5.3. Vorter array case. Initial state with siz vortices and final converged state with an
array of seven vortices. Contours of atomic density |u|?.

TABLE 5.5
Vortex array case. Algorithm efficiency and characterization (E(u),L-(u)) of the converged
state state for the finite difference implementation (variable time step computation).

[ Gradient | N [ n [ CPU | Ew) [ L. |
H 26 | 610 | 89.07 11.2679 | 6.4549
Hy 26 | 459 | 79.76 11.2670 | 6.4576
H 27 | 530 | 466.34 11.2971 | 6.4603
Hy 27 | 442 | 447.92 11.2959 | 6.4603
H 28 | 539 | 2.4760e3 | 11.2990 | 6.4605
Hy 28 | 441 | 2.245e3 11.2977 | 6.4691

TABLE 5.6

Vortex array case. Algorithm efficiency and characterization (E(u),L.(u)) of the converged
state for the finite element implementation. The mazimum allowed time step is 0.1 for the H
gradient and 0.2 for the H4 gradient.

| Gradient | M/Triangles [ n [ CPU [ E(u) [ L. |
H 100/1762 507 | 42.28 12.0553 | 6.1297
Hy 100/1762 330 | 27.70 12.1413 | 6.1654
H 200/7064 418 | 138.53 | 11.5341 | 6.3920
Hy 200/7064 270 | 90.11 11.6171 | 6.4135
H 400/27604 420 | 550.10 | 11.4017 | 6.4641
Hy 400/27604 262 | 346.87 | 11.4846 | 6.4840

different forms of the trapping potential are currently experimentally and theoretically
studied. We use in the third numerical experiment a combined harmonic-plus-quartic
potential (see also [20, 4, 13, 15]) with the following parameters:

g =500, Vipap=12/2+7%/4, Q=2

The Thomas-Fermi radius is for the case R$; = 3.40. The computational domain
is circular of radius R,,ox = 1.25R¥F. The initial state contains a central vortex
plus an array of six vortices equally distributed on the circle of radius 0.25R,,4z-
All the vortices have a winding number m = 1, except the first vortex, which has
m = 2 (left-hand panel of Figure 5.3). Since vortices with winding number m > 1 are
not, physically stable, the m = 2 vortex will split into two singly quantized vortices.
The final state therefore contains a central vortex with an array of seven vortices
(right-hand panel of Figure 5.3). The convergence test is relaxed to e = 1076,
Tables 5.5 and 5.6 show that the converged state is the same for both finite
difference and finite element implementations. The H 4 method has better stability
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properties and allows a CPU time gain up to 36%. This gain was expected since {2 is
large for this case.

5.2.3. Giant vortex and Abrikosov vortex lattice. Finally, to show that the
new method has the capability of handling more complicated cases, we produce the
giant vortex using the H4 gradient in conjunction with the new projection method
proposed to enforce the mass constraint. We use the parameters of the previous
numerical experiment (harmonic-plus-quartic trapping potential) and progressively
increase () from 2 to 4. Each computation starts from an initial field representing
the converged state previously obtained for a lower value of 2. The transition from a
vortex lattice to the giant vortex is observed (Figure 5.4). The giant vortex is a hole
in the condensate (the atomic density goes to zero inside) with multiple phase defects.
This particular vortex structure, theoretically analyzed in numerous studies [20, 4, 13,
15], was captured using both the finite elements and finite difference simulations.

A last complex computational case is illustrated in Figure 5.5. For a harmonic
trapping potential and high rotation frequency (2 = 0.95), an Abrikosov vortex lattice

F1G. 5.4. Giant vortex case. Converged states for Q = 2.5,3,4 showing the formation of a hole
in the condensate (giant vortex) for high rotation rates. Contours of atomic density |u|?.

g=1000 g =5000 g=10000

-15k L L L N n n
-15 10 -5 0 5 10 15

Fia. 5.5. Abrikosov vortex lattice case. Converged states for @ = 0.95 and increasing values
of the interactions constant g. Finite elements computations using mesh adaptivity. Contours of
atomic density |u|?.
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forms in the condensate. The difficulty in computing this case in the strong inter-
action regime (large values of g) comes from the fact that the condensate becomes
larger and the vortex lattice denser when the value of g is increased. In order to
increase convergence, each computation starts from an initial field representing the
converged state obtained for a lower value of g. During the iterative process, new
vortices nucleate at the boundaries and slowly move towards their final equilibrium
locations. In computing such configurations, containing several hundreds of vortices,
the adaptive mesh refinement capabilities of FreeFem proved very helpful in reducing
the computational time and correctly capturing vortex positions.

6. Summary. The numerical study of a rotating Bose—Einstein condensate has
been the subject of many numerical studies, both in two and three dimensions. Since
most of the studies [5, 20, 21, 3, 4, 13, 9, 11] use the imaginary time propagation
method (equivalent to the gradient flow model (1.3)), there are few studies using
direct minimization by Sobolev gradient methods. Nevertheless, replacing the ordi-
nary L? gradient in a descent method with the Sobolev H! gradient proved effec-
tive in minimizing the three-dimensional Gross—Pitaevskii energy [17, 16] or simpler
Schrodinger-type functionals [28].

In this work we introduced a new inner product (H4) to equip the domain of
the GP energy functional with rotation and derived the corresponding gradient. We
demonstrated that numerical performance is enhanced by replacing in the descent
method the L? or H! gradients with the gradient obtained from the H 4 inner product.
The gain in computational time proved very important when configurations with
high rotation rates were computed. We also introduced a new projection method to
enforce the mass constraint. This method avoids more complicated approaches using
an energy functional with a penalty term, or the traditional normalization method
that performs the descent over a path of functions with an imposed norm.

These two new tools allowed us to implement robust descent methods using finite
difference and finite element spatial discretization. Both numerical settings proved
very efficient in computing various complex two-dimensional configurations of rotating
BECs.

We finally emphasize the fact that the new gradient and projection methods for
the mass constraint have a more general interest and could also be used in conjunction
with existing numerical schemes (such as sophisticated time stepping procedures) to
study the energy minimization of GP-type functionals.
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