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Abstract — Vortex rings are generated in numerous practical applications (biological propulsion,
internal combustion engines) by the sudden injection of a fluid. Measurements of such flows often
provide partial information, generally limited to the exterior of the vortex ring. We propose in this pa-
per a new algorithm for the reconstruction of the stream function inside a bounded domain, where
a vortex ring is supposed to form. We derive a quasi-Newton Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm for this problem, using a cost function that describes the matching between the
reconstructed field and given values of normal derivatives on the boundary of the domain. The al-
gorithm computes the best parameters of the vortex model that is used to describe the vorticity dis-
tribution inside the vortex ring. Several vortex models are considered. The method is implemented in
FreeFem++ using a P1 finite-element spatial discretization. Validation tests using analytical models
(Hill’s spherical vortex) and Navier-Stokes direct numerical simulation data show good agreement
between reconstructed and reference fields.

Keywords: Vortex ring models, Finite element methods, Reconstruction, BFGS

1. Introduction

Vortex-ring flows are fundamentally significant [4,28,1] for many practical applic-
ations in fluid mechanics, ranging from biological propulsion problems [8,24,22]
to the study of fuel injection in automobile engines [5,19,11]. For the latter applic-
ation, PIV (Particle Image Velocimetry) measurements of the injected two-phase
flow do not provide reliable velocity vectors in the core of the vortex ring, because
of the high density of seeding particles. It is then necessary to theoretically recon-
struct the flow field not accessible by measurements. The present contribution is,
to the best of our knowledge, the first attempt to develop an effective algorithm for
the reconstruction of the velocity field associated to vortex ring flows, using only
the outside-core available information. A similar field reconstruction problem from
partial measurements is encountered in the study of Tokamak plasma reactors [7].
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Vortex rings were extensively studied in the mathematical [2,15,13,6] and phys-
ical literature [26,14,20,12] as fundamental solutions of Euler equations. The vor-
tex ring problem is displayed in Fig. 1. The flow is supposed to be axisymmetric
and thus described in cylindrical coordinates, with (z, r, ϑ ) denoting the longitud-
inal, radial and azimuthal direction of the flow, respectively. We also consider that
the motion is steady in a reference frame translating with the vortex ring velocity
W (assumed constant). Let ψ denote the Stokes stream function in this reference
frame. The advantage of this description is that inside the vortex ring the fluid cir-
culates over closed streamlines ψ = const., while the streamlines are open for the
external flow (see Fig. 1a). The vortex bubble Ωb is defined by the dividing stream-
line (ψ = 0) ; the flow outside the bubble is generally considered as a potential flow.
The vorticity is concentrated in the vortex core Ωc and is zero elsewhere. It is gen-
erally assumed that the vortex core boundary ∂Ωc is a streamline ψ = k, with k a
positive constant. Physically, 2πk represents the flow rate between the axis Oz and
∂Ωc. On the axis of symmetry (r = 0) the radial velocity is vr = 0 and consequently
ψ = 0.
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Figure 1. Direct numerical simulation (DNS) of the physical vortex ring by solving the incompress-
ible Navier-Stokes equations [9]. (a) Streamlines in the reference frame travelling with the vortex ring
velocity W . (b) Velocity vectors in the same reference frame. Boundaries of the vortex bubble Ωb
(continuous thick red line) and the reconstruction domain ΩR (dashed blue line).

For the reconstruction problem, the streamline ψ (or velocity vectors) are not
known inside the domain ΩR displayed in Fig. 1. Supposing that measurements (or
DNS) provide streamline values ψexp on ∂ΩR and outside ΩR, we develop in this
paper an algorithm to reconstruct the missing flow field inside ΩR.

The mathematical difficulty of the reconstruction problem comes from the non-
uniqueness of the vortex-ring solution that could be used to fill the missing field.
Such models generally require fitting parameters based upon integral quantities
(circulation, impulse and energy) and assume a particular vorticity distribution in
the core. Our reconstruction procedure starts from a particular vortex ring model
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with given circulation (assumed known from measurements or other estimations,
e. g. slug-flow models) and compute the other parameters of the model by solving
an associated optimal control problem. For this problem we first define a suitable
cost function describing the match between the velocity field induced by the vor-
tex and the prescribed external field. The cost function is then minimized using a
quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method based on finite-
element spatial discretization. Different vortex models are analysed, based on clas-
sical Norbury-Fraenkel model [26], or Kaplanski-Rudi model [20,21].

The algorithm will be tested using DNS vortex-ring data [9,10] obtained by
solving the Navier-Stokes equations in cylindrical coordinates. The velocity field
(vz,vr) obtained from DNS (an example is shown in Fig. 1) will be used to compute
the reference stream function ψexp by solving the equation L ψexp = ∂vz/∂ r−∂vr/∂ z
with Dirichlet boundary conditions and L defined below.

2. Mathematical problem

The problem of the inviscid, steady vortex ring is defined by:

L ψ =


ω0 f

(
r,ψ +

1
2

Wr2
)
, in Ωc

0, in Π\Ω̄c,
(2.1)

where Π = {(z,r)|r > 0} is the half-plane and L is a self-adjoint elliptic operator
given by:

L =−
(

∂

∂ z

(
1
r

∂

∂ z

)
+

∂

∂ r

(
1
r

∂

∂ r

))
=−∇ ·

(
1
r

∇

)
, (2.2)

with ∇ =

(
∂

∂ z
,

∂

∂ r

)t

. We note that L (1
2Wr2+k) = 0, with W and k real constants.

The additional constraints on the solution are (see Fig. 1):

ψ and ∇ψ are continuous across ∂Ωc, (2.3)

ψ = k on ∂Ωc, ψ = 0 on Oz, (2.4)

ψ +
1
2

Wr2→ 0 when r2 + z2→ ∞. (2.5)

There are four parameters of the problem: W , the translation velocity (assumed
constant), k, the flux constant, ω0, the vortex strength (constant) and f (r,ψ), the
vorticity function. An additional constraint could be imposed [15] by prescribing
the kinetic energy of the vortex ring:

η =
∫

Π

(v2
r + v2

z )rdrdz =
∫

Π

1
r
|∇ψ|2 drdz. (2.6)
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Generally, the constant ω0 and the vorticity function f (r,ψ) are prescribed by, what
is called, a vortex ring model (see below). As a consequence, two different formu-
lations of the vortex ring problem are possible (see also [6]):
(i) the free vortex velocity problem: given η > 0 and k > 0, find ψ and W > 0, sat-
isfying (2.1),
(i) the free flux parameter problem: given η > 0 and W > 0, find ψ and k > 0, sat-
isfying (2.1).
For a discussion of mathematical results on the existence and uniqueness of solu-
tions of these two problems, we refer to [3,15,6].

It is interesting to note that the main difficulty in solving these problems comes
from the fact that the boundary ∂Ωc is not known, which makes it a free boundary
problem. The problem could be reduced to a semi-linear elliptic problem [15] by
extending f as

f (r,ψ)> 0, ∀ψ > k, and f (r,ψ) = 0, ∀ψ < k. (2.7)

It results, by the maximum principle, that the vortex core Ωc could be defined as:

Ωc = {x ∈Π;ψ(x)> k} , (2.8)

and (2.1) is equivalent to

L ψ = ω0 f
(

r,ψ +
1
2

Wr2
)

χψ(x)>k, in Π, (2.9)

where χψ(x)>k is the characteristic function of the domain Ωc.

3. The optimal control problem

Before introducing the optimal control problem, we define the function space [15]

H0(Ω) =

{
u ∈ L2(Ω) :

1
r
|∇u|2 ∈ L1(Ω) | u = 0 on Γ = ∂Ω

}
. (3.1)

H0(Ω) is the closure of the standard test function space for the Hilbert norm

‖u‖H0(Ω) =

(∫
Ω

|u|2dτ +
∫

Ω

1
r2 |∇u|2 dτ

)1/2

, dτ = rdrdz (3.2)

It is interesting to note that the semi-norm

‖u‖=
(∫

Ω

1
r2 |∇u|2 dτ

)1/2

=

(∫
Ω

1
r
|∇u|2 dx

)1/2

, dx = drdz, x = (r,z), (3.3)

is in fact a norm on H0(Ω), equivalent to the norm (3.2) [6,15], and hence

a(u,v) =
∫

Ω

1
r

∇u ·∇vdx, (3.4)
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is an elliptic symmetric bilinear form corresponding to the inner product < u,v >=
a(u,v) in H0(Ω). We consider in the following the space H0(Ω) equipped with the
inner product inducing the norm (3.3); this is a natural setting for the problem (2.1),
since

< u,v >=
∫

Ω

1
r

∇u ·∇vdx =
∫

Ω

vL udx, for u ∈ H0(Ω),v ∈ H0(Ω)∩C2(Ω).

(3.5)
Considering Ω ⊂ Π a bounded domain with a smooth boundary ∂Ω, we intro-

duce now the following general vortex ring problem:{
L ψ = ω0 f (x,ψ,X), in Ω,

ψ(x) = g(x), on ∂Ω,
(3.6)

where f (x,ψ,X) is the generalized vorticity function and X the set of parameters
describing the vorticity function. In several vortex models, the function f is dis-
continuous, with f (x, ·, ·) 6= 0, x ∈ Ωc and f (x, ·, ·) = 0, x ∈ Ω \Ωc. As a con-
sequence, the stream function is ψ ∈C1(Ω)∩C2(Ω\∂Ωc). The requirement that ψ

is C1 across the boundary of the vortex core ensures the continuity of the velocity v.
Assuming that g(x) = 0 and using the scalar product (3.5), the corresponding

variational form is given by{
Find: ψ ∈ H0(Ω) such that

< ψ,ϕ >= (ω0 f (x,ψ,X),ϕ), ∀ϕ ∈ H0(Ω),
(3.7)

where (·, ·) denotes the L2(Ω) scalar product. If g(x) 6= 0, we can set ψ(x) :=ψ(x)−
g(x) and get the similar variational problem (3.7) with the homogeneous boundary
condition.

For the reconstruction model, Ω = ΩR, and the vorticity function f is prescribed
by a vortex ring model based on physical or mathematical considerations. The val-
ues of parameters X must guarantee the existence of a vortex ring that best matches
the external given field. It is important to note that the vortex strength ω0 is an ad-
justable parameter that is generally prescribed by imposing physical characteristics
of the vortex ring. Indeed, since the vorticity of the vortex ring is ω = ω0 f (x,ψ,X),
the main integral quantities describing the flow are the circulation Γ, the hydro-
dynamic impulse I and the energy E:

Γ =
∫

ωdrdz, I = π

∫
ωr2drdz, E = π

∫
ωψdrdz. (3.8)

We choose in the following to prescribe the circulation of the vortex ring (from
experiments or DNS simulations), which is generally the approach used in physical
modeling of such flows. Formally, ω0 is determined from

Γexp =
∫

∂Ω

1
r

∂ψexp

∂n
dS = ω0

∫
Ω

f (x,ψ,X)drdz. (3.9)
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The set of p parameters X ∈Rp will be determined from the following optimal
control problem:

Min
X∈Rn

J(ψ) =
∫

∂ΩR

∣∣∣∣1r
(

∂ψ

∂n
− ∂ψexp

∂n

)∣∣∣∣2 dS (3.10)

subject to{
L ψ = ω0 f (x,ψ,X), in ΩR,

ψ = ψexp, on ∂ΩR.
(3.11)

The quantity 1
r

∂ψ

∂n = 1
r ∇ψ ·n = v · τ represents the tangential velocity to the bound-

ary ∂ΩR. When the boundary of the domain is a streamline, the normal component
of the velocity is zero, and thus, our formulation enforces the constraint of the con-
tinuity of the velocity across ∂ΩR.

In order to solve the optimization problem, the gradient of the cost function J(·)
will be needed. We use the adjoint method (e. g. [29,27]) to compute the variational
derivatives of J(·) with respect to Xi, i = 1, . . . , p:

δJ
δXi

=
δJ
δψ

δψ

δXi
= 2

∫
∂Ω

1
r2

(
∂ψ

∂n
− ∂ψexp

∂n

)
∂

∂n

(
δψ

δXi

)
dS (3.12)

The quantities δψ/δXi can be calculated from (3.11) as follows
L

(
δψ

δXi

)
= ω0

δ f (x,ψ,X)

δXi
, in Ω,

δψ

δXi
= 0, on ∂Ω.

(3.13)

3.1. The quasi-Newton BFGS algorithm

The minimization problem (3.10) is solved using the modified quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (e. g. [18]):

1. Set an initial guess X (0) of the p parameters and ψ(0). Initialize the iteration
tolerances epsJ , epsX and the maximum iteration steps N.

2. Use the experimental data ψexp on ∂ΩR to calculate Γexp from (3.9) and get
ω

(n)
0 from the same equation.

3. Solve (3.11) and obtain ψ(n). Note that in the case of a vorticity function f
depending on the solution ψ itself, equation (3.11) is non-linear and specific
algorithms must be used (see next section). Particular attention must be paid
when f is discontinuous; a numerical algorithm for such cases is proposed in
[11].
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4. Get ∇J(ψ(n)) by the following equation

∇ψJ ·δψ
(n) = 2 ·

∫
∂ΩR

1
r2

(
∂ψ(n)

∂n
− ∂ψexp

∂n

)
· ∂ (δψ(n))

∂n
dzdr. (3.14)

From (3.11), we can compute

L

(
∂ψ(n)

∂Xi

)
= ω

(n)
0

∂ f (ψ(n),X)

∂Xi

∣∣∣∣∣
X=X (n)

. (3.15)

with homogeneous Dirichlet boudary conditions:

∂ψ(n)

∂Xi
= 0, on ∂ΩR. (3.16)

Then, ∇X J(ψ(n)) is calculated from (3.14)

∇X J(ψ(n)) =

{
∇ψJ ·

(
∂ψ(n)

∂Xi

)}
i=0,...,p

. (3.17)

5. Compute the maximum acceptable Euclidean norm of the gradient ‖∇X J(ψn)‖.
If ‖∇X J(ψn)‖ 6 epsJ , the iteration is terminated. Otherwise, the following
Step 6 is implemented.

6. Using the Hessian matrix H
(
ψ(n+1)

)
, we have

∇X J
(

ψ
(n+1)

)
≈ ∇X J

(
ψ

(n)
)
+H

(
ψ

(n+1)
)
·δX (n+1). (3.18)

If (3.18) is equal to zero, we obtain

δX∗,(n) =−H−1
(

ψ
(n+1)

)
·∇X J

(
ψ

(n)
)
. (3.19)

We can thus update X (n+1) by

X (n+1) = X (n)+β
(n)X∗,(n), (3.20)

where β (n) is an acceptable step size in the direction δX∗,(n) obtained by a
line search algorithm.

7. H
(
ψ(n+1)

)
is obtained by the classical BFGS method [18] as follows

H
(

ψ
(n+1)

)
= H

(
ψ

(n)
)
+

Y (n)Y (n),T

Y (n),T δX (n)
−

H
(
ψ(n)

)
δX (n)(H

(
ψ(n)

)
δX (n))T

δX (n),T H
(
ψ(n)

)
δX (n)

,

(3.21)
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and H−1
(
ψ(n+1)

)
is calculated by

H−1
(

ψ
(n+1)

)
=

(
I− Y (n)δX (n),T

Y (n),T δX (n)

)T

H−1
(

ψ
(n)
)(

I− Y (n)δX (n),T

Y (n),T δX (n)

)

+
δX (n)δX (n),T

Y (n),T δX (n)
(3.22)

where Y (n) and δX (n) are defined by

Y (n) = ∇X J
(

ψ
(n+1)

)
−∇X J

(
ψ

(n)
)
, δX (n) = β

(n)
δX∗,(n). (3.23)

8. If
∥∥X (n+1)−X (n)

∥∥/∥∥X (n)
∥∥ 6 epsX or n+ 1 > N, the iteration is terminated.

Otherwise, go to Step 2.

3.2. Vortex models and comparison with DNS data

In this section we review the vortex ring models giving the form of the vorticity
function f and compute the derivatives needed in the previous section. We refer
to Fig. 1 for the geometrical definition of the problem. The ability of the models
to describe real vortex ring flows was evaluated using direct numerical simulation
(DNS) in [9].

3.2.1. The Kaplanski-Rudi viscous vortex model and Gaussian-type models.
Extensive comparisons between analytical vortex ring models and DNS data [9]
showed that the model proposed by Kaplanski and Rudi [20] is the most realistic
since it takes into account the viscosity of the flow. As a consequence, in the clas-
sical Kaplanskin-Rudi model, the vorticity distribution is continuous and assumed
to possess the following Gaussian shape:

ω = ω0 f , f = exp
[
−1

2
(
σ

2 +η
2 + τ

2)]I1(στ), (3.24)

where l is a viscous length scale, σ = r/l, η = [z−Zc(t)]/l and Zc the axial coordin-
ate of the vortex center. I1 is the first-order modified Bessel function. The original
fitting method is presented in [9] using physical considerations.

The main drawback of this model is that the Gaussian distribution (3.24) is
isotropic and does not take into account the real non-isotropic distribution of the
vorticity in the vortex core. A modification of the model based on this consideration
will consider the following vorticity distribution:

ω = ω0 f , f = exp
[
−α

2
R(r−Rc)2−α

2
Z(z−Zc)2] . (3.25)

If αR = αZ = α , we have

ω = ω0 f , f = exp
[
−α

2((r−Rc)2 +(z−Zc)2)
]
. (3.26)
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3.2.2. The smoothed Norbury-Fraenkel-type model. One of the most popular
vortex ring models used in Fluid Mechanics is the Norbury-Fraenkel model [14,26]
assuming that f is a discontinuous function f = rH(x), with H the Heaviside func-
tion H|Ωc = 1,H|Π\Ωc = 0. The limiting case for k = 0 (see Fig. 1) corresponds
to a vortex core occupying the entire vortex bubble, i. e. Ωc = Ωb; when Ωc is a
sphere, we obtain the Hill’s spherical vortex [17,23,4]. It is easy to notice that in
this case, the equation (2.9) becomes a nonlinear eigenvalue problem. Existence
and uniqueness results for this problem are presented in [15,3] for the general case
and in [2,25] for vortex rings bifurcating from Hill’s vortex. Norbury [26] numer-
ically computed a family of such vortex rings by introducing a single geometric
parameter; this model is nowadays largely used to describe real vortex rings gener-
ated experimentally [8] or numerically [9,10].

Since we intend to set a unified numerical approach for different vortex models,
we have supposed in the previous section that the vorticity function f is continuous
and derivable. Consequently, we propose a regularization of the original vorticity
function by the following smoothed function (see also [6]):

fε (ψ,k) =
r
2

(
1+

ψ− k√
(ψ− k)2 + ε

)
, (3.27)

where ε ∈ R+. It is easy to validate the following approximation relation

lim
ε→0+

fε (ψ,k) = f (ψ,k) . (3.28)

In order to guarantee k > 0, let k = α2 in (3.27). Then, the following formulation is
proposed for approaching the problem (3.11){

L ψε = ω0 fε (ψ,α) , in ΩR,

ψε = ψexp, on ∂ΩR.
(3.29)

In order to solve (3.29) effectively for the Step 3 of our algorithm, the Newton
iteration method is employed. The linearized iteration form is given as follows

L ψ
(n)
ε = ω0 fε

(
ψ

(n−1),α
)
+ω0

∂ fε (ψ,α)

∂ψ

∣∣∣∣
ψ=ψ(n−1)

(ψ(n)−ψ
(n−1)). (3.30)

Corresponding to (3.15), we have the following form

L

(
∂ψ

(n)
ε

∂α

)
= ω0

∂ fε(ψε ,α)

∂ψε

∣∣∣∣
ψε=ψ

(n)
ε ,ω0=ω

(n)
0 ,α=α(n−1)

∂ψ
(n)
ε

∂α
+

ω0
∂ fε(ψε ,α)

∂α

∣∣∣∣
ψε=ψ

(n)
ε ,ω0=ω

(n)
0 ,α=α(n−1)

.

(3.31)

Using (3.30) and (3.31), the BFGS algorithm given in Sec. 3.1 can be applied for
the reconstruction problem based on the regularized Norbury-Fraenkel vortex ring
model.
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3.3. Numerical validations

We show here numerical results on the flow field reconstruction using the BFGS
algorithm described in section 3.1. The algorithm is implemented in FreeFem++
using P1 finite elements. It is important to observe that the bilinear form (3.4) ap-
pearing in (3.11) and (3.13) is singular at r = 0. This imposes a modification of
the finite-element basis functions when a triangle possesses a vertex on the axis Oz,
as proposed in [6]. An equivalent treatment is applied here, since the quadrature
formulas used in FreeFem++ are by default of fifth order and, consequently, the in-
tegrands values are automatically set to zero for vertices on the Oz axis. With this
modification, the standard finite element analysis could be applied to our problem
(see [6] for details).

3.3.1. Validation using analytical solutions: reconstruction of Hill’s spherical
vortex by the smoothed Norbury-Fraenkel model. The Hill’s spherical vortex
is a validation case, since we know the analytical solution. This vortex is a limit case
in which Ωc = Ωb is a sphere (see Fig. 1) and the vorticity distribution is

ω =

{
Cr, if r2 + z2 6 a2,

0, if r2 + z2 > a2.
(3.32)

By matching the solution inside the sphere with the external solution describing an
uniform flow of velocity W , the following compatibility relationship is obtained:

W =
2
15

Ca2. The complete solution [4,28,23] in the frame of reference traveling
with the translation velocity W is:

ψ(r,z) =


C
10

r2(a2− r2− z2), if r2 + z2 6 a2,

Cr2a2

15

(
a3

(r2 + z2)3/2 −1
)
, if r2 + z2 > a2.

(3.33)

vr(r,z) =


C
5

rz, if r2 + z2 6 a2,

Ca5

5
rz

(r2 + z2)5/2 , if r2 + z2 > a2,

(3.34)

vz(r,z) =


−C

5
(2r2 + z2−a2), if r2 + z2 6 a2,

−Ca5

15

[
r2−2z2

(r2 + z2)5/2 +
2
a3

]
, if r2 + z2 > a2,

(3.35)
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It is possible to calculate the invariants of motion for the Hill’s vortex, and the
following non-dimensional quantities are useful to validate the numerical system:

Γ

Wa
= 5,

I
Wa3 = 2π,

E
W 2a3 =

3
7

π. (3.36)

We first compute the vortex ring solution using our finite element solver. The solu-
tion is displayed in Fig. 2 for a large domain including the spherical vortex and the
exterior (rectangular) domain.

Figure 2. Computed stream function for Hill’s vortex.

Table 1. Relative errors for the integrals of motion: circulation, impulse and energy given by (3.36).
The mesh of the exterior domain is constant and has Next

t = 36407 triangles and hext = 0.123936.

Nint
t hint W Γ/(Wa) I/(Wa3) E/(W 2a3)

8599 0.033452 1.117e-3 1.02298e-3 9.56182e-4 2.01207e-3
34514 0.020746 1.275e-4 1.01334e-4 8.46485e-5 1.94151e-4

Table 1 displays relative errors in the estimation of main integral quantities,
scaled following (3.36). The relative errors are very small and the mesh containing
Nt = 8599 triangles is more than enough to ensure a very high precision of the
estimates. This mesh density will be used in the following computations. Practically,
this criterion is simply achieved for other domains by prescribing the same number
of points per unit length in the automatic mesh generator of FreeFem++.

We use in the following the BFGS algorithm to reconstruct Hill’s vortex. For
sake of simplicity, let C in (3.32) equal to 1 and a = 1. In Fig. 3, we show the
computational domain. ΩR and Ωc denote the clipped reconstruction domain and
the Hill’s vortex domain, respectively. The center of Hill’s vortex ring is at (0,0). ΩR
is defined by a semi-ellipse of half-axis 1.2, centered at (0,0). At the initial stage,
ψ is given by the analytic solution (3.33). The regularization strategy proposed in
Sec. 3.2.2, coupled with the BFGS algorithm, is used to reconstruct Hill’s vortex.
The smoothing parameter ε in (3.27) is chosen equal to δx/2, with δx denoting the
mesh scale).
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H

L

Figure 3. Schematic domain for the reconstruction of the Hill’s vortex: L = 6a and H = 3a.

Table 2. Reconstruction of the Hill’s vortex. Values of geometrical parameters and integral quantities.
“E” and “R” denote “Exact” and “Reconstruction”, respectively. RM =

√
mean(|Ωc|)/π .

δx ω0 k Rc Zc RM
Γ

Wa
I

Wa3
E

W 2a3

E. � 1 0 0.7071 0 0.7071 5 2π 3π/7
R. 0.020 1.1778 0 0.6500 -0.0109 0.6959 5.6048 6.8153 0.9113

0.010 1.1793 0 0.7000 -0.0033 0.6983 5.6768 6.9518 0.9731
0.005 1.0050 0 0.7064 -6.23e-5 0.6986 4.8998 6.1365 0.7031

In Table 2, the reconstructed geometrical parameters and integral quantities are
shown with respect to different mesh resolutions. We can notice that the reconstruc-
ted values for the geometrical parameters (Rc and Zc) and vortex intensity (ω0) are
improved when fine meshes are used. The deviation of the reconstructed energy E
from the exact value is attributed to the smoothing properties of fε(ψ,k) used in the
model (3.27). This results in a slightly different representation of the vorticity dis-
tribution than the original one. As a consequence, we notice a qualitative deviation
of the reconstructed ψ from the exact ψ (see Fig. 4), but a fairly good agreement is
obtained for the vortex core geometry and the main integral properties (circulation
and impulse). A detailed analysis on the dependence of the quality of results on the
smoothing parameter ε and mesh resolution δx will be addressed in a future study.

3.3.2. Validation using DNS data: reconstruction of the flow field by Gaussian-
type vortex models. We consider in this section the reconstruction of the flow
field using Navier-Stokes direct numerical simulation (DNS) data from [9,10] as
reference. We use DNS data on the boundary ∂ΩR to extract ψexp and then apply
the BFGS algorithm with vortex ring models (3.25) and (3.26) to recover the stream
function inside ΩR. The reconstructed field is finally compared to original DNS
data.

The reconstruction domain ΩR is chosen such as the boundary ∂ΩR lies in the
exterior flow field, i. e. Ωb⊂ΩR in Fig. 1. The convergence tolerance is 10−6 and the
mesh scale δx = 1/25. The quantities (Γ, I, E, Rc, Zc) for the reconstructed field are
compared to original DNS results in Tab. 3. We can notice that the reconstruction
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(a) Exact ψ (b) δx = 1/50 (c) δx = 1/100 (d) δx = 1/200
Figure 4. Reconstruction of the Hill’s vortex. Stream function contours of the analytical solution (a)
and reconstructed methods (b-d) for different mesh resolutions δx .

Table 3. Reconstruction of the Navier-Stokes simulated (DNS) vortex ring. Comparison between the
reconstructed results and the DNS results.

Type Models Γ I E Rc Zc

DNS Navier-Stokes 1.17592 1.33698 0.216944 0.66194 3.51000
R. Model (3.25) 1.17592 1.77899 0.176575 0.66194 3.51000
R. Model (3.26) 1.17592 1.73646 0.175927 0.65307 3.50953

algorithm provides a nice approximation to the reference DNS data. In particular,
if the elliptical Gaussian distribution in (3.25) is used, the obtained vortex center
position is exact for the current problem. For both (3.25) and (3.26), the values of Γ

are exact and the values of ω0, αR and αZ are slightly different. This was expected,
since the models for the vorticity distribution do not exactly match the real vorticity
in the DNS vortex ring. In Fig. 5, the stream function contours of the reconstructed
ψ are shown against DNS data. We can notice that the results obtained using our
models compare very well with the DNS results.

4. Conclusion

We have developed a new finite-element BFGS algorithm for the reconstruction
of the flow field generated by vortex rings. The algorithm allows to reconstruct
the stream function of the flow inside a bounded domain, where the vortex ring is
supposed to lie. Using the given information on the boundary of the domain, and
supposing a particular model for the vorticity distribution inside the vortex, an op-
timal control strategy is proposed to compute the parameters of the vortex ring mod-
els. The cost function models the match between the reconstructed field and given
values of normal derivatives on the boundary. A quasi-Newton Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm is derived for this problem and implemented
in FreeFem++ using a P1 finite-element spatial discretization. Validation tests us-
ing analytical models (Hill’s spherical vortex) and Navier-Stokes direct numerical
simulation data showed good agreement between reconstructed and reference fields.
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(a) DNS (b) Model (3.25) (c) Model (3.26)
Figure 5. Reconstruction of the Navier-Stokes simulated (DNS) vortex ring. Stream function con-
tours of the original DNS field (a) and reconstructed fields using the proposed models for the vorticity
distribution (b,c).

Future applications of our algorithm include the flow field reconstruction using ex-
perimental data from PIV (Particle Image Velocimetry) of suddenly injected two-
phase flows; such flows, generating vortex rings, are obtained during the injection
phase in internal combustion (automobile) engines.
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