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We present a new numerical system using finite elements with mesh adaptivity for the 
simulation of solid–liquid phase change systems. In the liquid phase, the natural convection 
flow is simulated by solving the incompressible Navier–Stokes equations with Boussinesq 
approximation. A variable viscosity model allows the velocity to progressively vanish in 
the solid phase, through an intermediate mushy region. The phase change is modeled by 
introducing an implicit enthalpy source term in the heat equation. The final system of 
equations describing the liquid–solid system by a single domain approach is solved using a 
Newton iterative algorithm. The space discretization is based on a P2–P1 Taylor–Hood finite 
elements and mesh adaptivity by metric control is used to accurately track the solid–liquid 
interface or the density inversion interface for water flows.
The numerical method is validated against classical benchmarks that progressively add 
strong non-linearities in the system of equations: natural convection of air, natural 
convection of water, melting of a phase-change material and water freezing. Very good 
agreement with experimental data is obtained for each test case, proving the capability 
of the method to deal with both melting and solidification problems with convection. 
The presented numerical method is easy to implement using FreeFem++ software using 
a syntax close to the mathematical formulation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Solid–liquid phase change systems involving melting or freezing processes are encountered in numerous practical appli-
cations, ranging from metal casting and thermal energy storage to food freezing. Most of the models consider the conduction 
as the principal mechanism in describing the heat transfer during melting or solidification (Stefan problem). Recent models 
include several other important physical phenomena, such as gravity effects, convection in the liquid phase, the presence of 
a mushy region (containing both solid and liquid particles) at the interface between the two phases, etc. For a comprehensive 
review of such models, see [1].

In particular, it was found that the natural convection in the liquid plays an important role in the heat transfer be-
tween phases and the propagation of the melting/solidification front [2–7]. This is specifically the case in recent practical 
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applications using phase-change materials (PCM) to store heat energy or to diminish temporary peak temperatures in differ-
ent technologies (e.g. thermal regulation of buildings, passive cooling of electronic devices). Another example of convection 
dominated phase-change systems is the water freezing, appearing in many environmental applications, such as water trans-
portation, food processing, weather prediction, etc.

In this paper we use a single domain approach to simulate phase-change systems with convection. In the liquid phase, 
the natural convection flow is simulated by solving the full incompressible Navier–Stokes equations with Boussinesq ap-
proximation. The same system of equations is solved in the solid phase by introducing a variable viscosity coefficient taking 
very large values in the solid (e.g. [8]). This model allows the velocity to progressively vanish in the solid through an in-
termediate mushy region, defined accordingly to classical enthalpy methods (e.g. [3,9,10]). In enthalpy methods, the phase 
change is modeled by introducing an enthalpy source term in the heat equation. The phase-change is supposed to occur 
over a temperature interval setting the width of the mushy region. This temperature interval is also used to regularize 
discontinuous functions representing the variation of material constants (conductivity, specific heat, latent heat) across the 
solid–liquid interface.

The main advantage of the single domain approach is that the same system of equations is solved in both liquid and 
solid phase. In exchange, the numerical method has to tackle two important challenges: properly resolve the convection 
cells in the fluid region and accurately capture the solid–liquid interface. The former issue is related to the non-linearity in 
the momentum Navier–Stokes equations, while the latter comes mainly from the very sharp variation of the coefficients of 
the equations (viscosity, latent heat, etc.) in a small region around the solid–liquid interface. Since most of the numerical 
methods presented in the numerical heat transfer community use finite difference (FD) or finite volume (FV) methods on 
a fixed mesh, the general strategy to address these issues is to dramatically increase the mesh resolution in the whole 
domain. This results is a considerable increase of the computational time, even for two dimensional cases. Finite element 
(FE) methods offer the possibility to dynamically refine the mesh only in the regions of the domain where sharp phenomena 
take place (e.g. solid–liquid interface, recirculation zones).

FE methods were used in late 1980s to derive mathematically sound numerical algorithms for the Stefan problem 
(involving Laplace operators). Different modeling approaches were analyzed, from enthalpy-type methods (e.g. [11]) to front-
tracking methods (e.g. [12]). Only recently, adaptive FE methods were proposed for the phase-change problem. A moving 
mesh technique was developed in [13] and used to simulate melting and solidification problems. The method was based on 
solving a modified set of equations, including two supplementary partial differential equations modeling the mesh move-
ment between two time steps. An anisotropic mesh adaptation algorithm based on an approximation of a hierarchical error 
estimator was proposed in [14] for classical two-phase Stefan problem (without convection). A different mesh adaptivity 
strategy, based on the definition of edge length from a solution dependent metric, was used to deal with the same Stephan 
problems in three-dimensional simulations. This last adaptivity method, based on solution dependent metrics, was also 
tested for phase-change systems with convection in [15]. The use of locally adaptive meshes with strong anisotropy proved 
very effective in reducing the number of computational nodes for phase-change systems.

As a first contribution of the present paper, we introduce an FE method with time-dependent mesh adaptivity by met-
ric control that is effective for a large range of phase-change systems with convection, from melting to solidification. The 
proposed mesh refinement strategy has the capacity to take into account different metrics and thus the ability to refine 
the mesh in different regions of interest in the computational domain. In particular, we show that the method is able to 
simultaneously track several interfaces in the domain, a feature that was not present in previous mesh refinement algo-
rithms. Similar algorithms based on FreeFem++ [16,17] were successfully used for solving different systems of equations 
with locally sharp variation of the solution, such as Gross–Pitaevskii equation [18,19] or Laplace equations with nonlinear 
source terms [20].

The second contribution of this paper is the derivation of a Newton algorithm for solving the nonlinear system of 
equations for the single domain approach of the phase-change system with convection. Newton linearization has been suc-
cessfully used for fluid dynamics and heat transfer equations (e.g. [21]) with the advantage to accelerate computations due 
to its rapid quadratic convergence. Effective classical or high-order Newton methods for the steady Navier–Stokes equations 
were proposed in [22,23] using finite-difference methods on non-staggered grids. For the Navier–Stokes–Boussinesq system, 
a Newton method with explicit treatment of the temperature was briefly introduced in [15]. We derive below a fully-implicit 
Newton method for the phase-change system based on a finite-element formulation of the Navier–Stokes equations. The ad-
vantage of this formulation is to permit a straightforward implementation of different types of non-linearities in the system 
of equations. For the sake of modularity, we derive and test the Newton algorithm by progressively treating the following 
non-linearities:

(i) the convective nonlinear term in the Navier–Stokes–Boussinesq equations (test case: natural convection of air in a 
differentially heated cavity),

(ii) problem (i) plus a nonlinear buoyancy term (test case: natural convection of water in a differentially heated cavity),
(iii) problem (i) plus the enthalpy nonlinear source term and nonlinear variable viscosity (test case: melting of phase-change 

material),
(iv) problem (iii) plus a nonlinear buoyancy term and nonlinear variation of thermodynamic properties (test case: water 

freezing).
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This graduate presentation of the method offers the possibility to implement the algorithm in a flexible way and to easily 
adapt it to different problems, ranging from natural convection to melting or solidification. The FreeFem++ syntax, close to 
the mathematical formulation, greatly facilitates this implementation task. For each test case mentioned above, we use well 
defined classical benchmarks and estimate the precision of our method by quantitatively comparing the obtained results 
with experimental and previously published numerical data.

The paper is organized as follows. Section 2 introduces the governing equations and the proposed regularization tech-
nique. Section 3 presents the Newton algorithm for the Navier–Stokes–Boussinesq system and for the phase-change system 
with convection. The mesh adaptivity technique is also discussed in this section. The final Section 4 is devoted to extensive 
numerical validation of the new method using the four test cases mentioned above.

2. Governing equations

We consider in this paper a solid–liquid system placed in a two-dimensional cavity of width L and height H ; in the 
following, subscripts s and l will refer to the solid and liquid phase, respectively. The vertical walls of the cavity are isother-
mal, of temperatures Th (hot) and Tc (cold). The fusion temperature will be denoted by T f . Using a lengthscale Lref = H
and a liquid reference state (ρref , V ref , Tref ), we can define the following scaling for the space, velocity, temperature and 
time variables:

x = X

Lref
, u = U

V ref
, θ = T − Tref

Th − Tc
, t = τ

tref
, tref = Lref /V ref . (1)

In this setting, the incompressible Navier–Stokes equations with the Boussinesq approximation can be written under the 
form:

∇ · u = 0,

∂u

∂t
+ (u · ∇)u + ∇p − 1

Re
∇ · (2μsl(θ)D(u)

) − f B(θ)ey = 0, (2)

where μsl = μs/μl is the non-dimensional viscosity, f B = g(ρref −ρ)/ρref the (non-dimensional) buoyancy force and D(u) =
(1/2)(∇u + ∇uT ) the rate of strain (deformation) symmetric tensor with components Dij(u) = (1/2)(∂ui/∂x j + ∂u j/∂xi). 
Note that in the Boussinesq approximation, the viscosity does not vary with the temperature θ ; in (2) we use the general 
form of the viscous stress tensor for incompressible flows, solely because the viscosity μsl will be varied in the single do-
main approach to separate the solid (μsl = 108) and liquid (μsl = 1) zones. Also, in the classical (linear) Boussinesq model, 
the buoyancy term varies linearly with the temperature:

f B(θ) = Ra

Pr Re2
θ. (3)

The Reynolds, Prandtl and Rayleigh numbers, are defined as:

Re = ρref V ref Lref

μl
, Pr = νl

αl
, Ra = gβL3

ref (Th − Tc)

νlαl
, (4)

with μ denoting the viscosity, ν the kinematic viscosity, α the thermal diffusivity, β the thermal expansion coefficient and 
g the gravitational acceleration.

For the energy equation we use an enthalpy transforming model [3,9,10] to obtain the following non-dimensional 
form:

∂(Cθ)

∂t
+ ∇ · (Cθu) = ∇ ·

(
K

Pr
∇θ

)
− ∂(C S)

∂t
− ∇ · (C Su), (5)

where C = cs/cl and K = ks/kl are non-dimensional specific heat and conductivity, respectively. The non-dimensional source 
term S = s/(Th − Tc) takes into account the latent heat of fusion and is theoretically a Heaviside function that is zero in the 
solid phase and takes large values in the liquid phase. The hypothesis behind the model is that the change of phase occurs 
over a temperature interval around the fusion point [θ f − ε1, θ f + ε2]. Different models are proposed in the literature [3,7]
for S , using the general form:

S =
⎧⎨
⎩

Sl, θ − θ f ≥ ε2
F S(θ), −ε1 ≤ θ − θ f < ε2
Ss, θ − θ f < −ε1

(6)

It should be noted that usually the reference temperature is Tref = T f and consequently θ f = 0 in the previous formula.
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Fig. 1. Illustration of the variation of the viscosity μsl and the derivative dμsl/dθ for the single domain approach: μsl = 108 in the solid and μsl = 1 in 
the liquid. Functions normalized with their maximum value (indicated on the graphs). The (gray) mushy region is defined as the temperature interval 
[θ f − ε1, θ f + ε2], with θ f = 0 here. Model using the function F defined by Eq. (7) for (a) melting case with ε1 = ε2 = 0.01 and F (θ; 2, ε1, ε1/2) (b) water 
freezing case with ε1 = 0, ε2 = 0.03 and F (θ; 2, ε1, ε2/4).

In the model (6), the function F S (θ) represents a regularization of the enthalpy variation in the mushy region. Linear 
functions are generally used in the literature with FV (e.g. [7]) or FE methods (e.g. [24]). In this paper we propose a regular-
ization of the step function by a continuous and differentiable hyperbolic-tangent function with three parameters, defined 
for all θ :

F (θ;as, θs, Rs) = fl + f s − fl

2

{
1 + tanh

(
as

(
θs − θ

Rs

))}
, (7)

where fl, f s are the imposed values in the liquid and solid phases, as a smoothing parameter, θs the central value (around 
which we regularize) and Rs the smoothing radius. The same function (7), with different parameters given by physical 
models, will be used to represent the variation of all material properties (conductivity, thermal capacity).

The variable viscosity allowing the passage from liquid to solid will be also represented by this function. It is important 
to note that the three parameters as, θs, Rs are useful to make the regularization corresponding to physical assumptions of 
the models for the mushy region. In particular, the sharp variation of the derivative of dF/dθ should be localized near the 
new phase appearing in the system, liquid for melting and solid for freezing (see also [13]). This principle is illustrated 
in Fig. 1, showing the variation of the viscosity μsl , and its derivative dμsl/dθ for the melting and solidification test cases 
computed in this paper. The computations showed the most important sensitivity to the model for the variable viscosity 
than for the other material properties (S, K , C ).

Since we intend to compare numerical results to experiments, it is important to define the characteristic scales in (1). 
Several choices are used in the literature:

V (1)

ref = νl

H
�⇒ t(1)

ref = νl

H2
�⇒ Re = 1, (8)

V (2)

ref = α

H
�⇒ t(2)

ref = t(1)

ref Pr �⇒ Re = 1/Pr, (9)

V (3)

ref = νl

H

√
Ra

Pr
�⇒ t(3)

ref = t(1)

ref

√
Pr

Ra
�⇒ Re =

√
Ra

Pr
. (10)

The last choice (10) is generally used for classical natural convection problems, while the first two choices are preferred 
for melting/freezing problems [7,25]. For these latter problems, Pr > 1 and Ra � 1 and consequently t(3)

ref 	 t(1)

ref < t(2)

ref . We 
shall use in the following the first scaling choice (8), setting Re = 1.

A further simplification of the energy equation (5) is obtained by supposing that the mushy region is very narrow and 
acts like a solid. As a consequence, the last (advection) term in (5) could be neglected (see also [7]). The final system of 
equations that will be solved in the whole domain is the following:

∇ · u = 0,

∂u

∂t
+ (u · ∇)u + ∇p − ∇ · (2μsl(θ)D(u)

) − f B(θ)ey = 0,

∂(Cθ)

∂t
+ ∇ · (Cθu) − ∇ ·

(
K

Pr
∇θ

)
+ ∂(C S)

∂t
= 0. (11)
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3. Finite element algorithms

Aside from the convective non-linearity of the Navier–Stokes equations, a particular difficulty in solving numerically 
the phase-change system (11) comes from the strong non-linearity introduced by the source term ∂(C S)/∂t . When FV or 
FD methods are used with fixed meshes, special semi-implicit methods are necessary to assess the phase change inside 
a cell [3,26]. Nonetheless, such methods still require a very small cell size to reduce the uncertainty of the localization
of the phase-change front. Since the grid is refined in the whole domain, the computation time increases considerably. 
A supplementary difficulty comes from the technique used in the single domain approach to set to zero the velocity inside 
the solid phase. In FV or FD methods, continuous correction techniques (e.g. switch-off, porosity Darcy source terms) [26,27], 
employ large numbers that may reduce accuracy and convergence rate and could trigger numerical inconsistencies [8]. As 
a result, recent techniques in FV methods [7,28] are based on the modification of the numerical algorithm (usually derived 
from SIMPLE family algorithms) by simply cutting-off the velocity in the solid by a relaxation scheme.

We derive in this section a numerical method that takes advantage from the adaptive capabilities of the finite-element 
spatial discretization to accurately capture the solid–liquid front and uses for the time advancement a global Newton al-
gorithm to simultaneously treat the non-linearities present in momentum and energy equations. The weak formulation of 
equation behind the FE method facilitates the use of a continuous correction method based on variable viscosity to bring the 
velocity to zero in the solid phase. This formulation offers a unified time–space approach that could be easily implemented 
using generic FE solvers. We use here the free software FreeFem++ [16] using a large variety of triangular finite elements 
to solve partial differential equations in two or three dimensions. FreeFem++ is an integrated product with its own high 
level programming language with a syntax close to mathematical formulations; it was recently used to solve different types 
of partial differential equations, e.g. Schrödinger or Gross–Pitaevskii [18,19], incompressible Navier–Stokes equations [29,30], 
and Laplace equations with nonlinear source terms [20].

3.1. Algorithms for the Navier–Stokes–Boussinesq equations

We first focus on the Navier–Stokes–Boussinesq part of the system (11), i.e. only the fluid phase is considered (μsl =
μl = C = 1, S = 0). This allows to develop and test the Newton algorithm before applying it to the phase-change system 
of equations. As a reference algorithm to treat the non-linearity in the momentum equations, we use the characteristic 
Galerkin method extended to the Navier–Stokes equations in [31]. Both algorithms will be tested in the following section 
against classical benchmarks of natural convection of air inside a square cavity.

Weak formulations for the Navier–Stokes system are generally based on a separate discretization of the temporal deriva-
tive (using finite difference, splitting or characteristics methods) and the generalization of the Stokes problem for the 
resulting system [32–34]. We consider here a backward implicit Euler scheme for the time advancement and a penalty 
formulation [32,34] to deal with the diverge free constraint for the velocity field. Note that a second order scheme for the 
time integration (as the Gear scheme used in [15]) could allow for larger time steps; for the applications considered below, 
the first order Euler scheme with a relative small time step was preferred to ensure an accurate capture of interfaces.

We obtain the following system of equations that has to be solved at each time level tn+1 = (n + 1)δt in the space 
domain Ω:

∇ · un+1 + γ pn+1 = 0,

un+1

δt
+ (

un+1 · ∇)
un+1 + ∇pn+1 − ∇ · (2μl D

(
un+1)) − f B

(
θn+1)ey = un

δt
,

θn+1

δt
+ ∇ · (un+1θn+1) − ∇ ·

(
K

Pr
∇θn+1

)
= θn

δt
, (12)

with γ > 0 the penalty parameter. It must be noticed, however, that compared to classical penalty methods, we use here 
a very low value γ = 10−7 for the penalty parameter. Since we shall use latter a Taylor–Hood finite element, the formula-
tion (12) will provide only a regularization to ensure a pressure field with zero average and, at the algebraic level, fulfill the 
diagonal of the pressure term. For the sake of simplicity, we consider homogeneous Dirichlet boundary conditions for the 
velocity, i.e. u = 0 on ∂Ω , and set the classical Hilbert spaces for the velocity and pressure:

V = V × V , V = H1
0(Ω), Q =

{
q ∈ L2(Ω)

∣∣∣
∫
Ω

q = 0

}
(13)

Following the generalization of the Stokes problem [32–34], the variational formulation of the system (12) can be written 
as: find (un+1, pn+1, θn+1) ∈ V × Q × V , such that

b
(
un+1,q

) − γ
(

pn+1,q
) = 0, ∀q ∈ Q

1

δt

(
un+1,v

) + c
(
un+1;un+1,v

) + a
(
μl;un+1,v

) + b
(
v, pn+1) − (

f B
(
θn+1)ey,v

) = 1

δt

(
un,v

)
, ∀v ∈ V

1 (
θn+1, φ

) − (
un+1 · ∇φ, θn+1) +

(
K ∇θn+1,∇φ

)
= 1 (

θn, φ
)
, ∀φ ∈ V , (14)
δt Pr δt
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where (u, v) = ∫
Ω

u · v denotes the scalar product in L2(Ω) or (L2(Ω))2; the bilinear forms a, b and trilinear form c are 
defined as [33,34]:

a : V × V →R, a(μ;u,v) =
∫
Ω

2μD(u) : D(v) =
∫
Ω

2μ

2∑
i, j=1

Dij(u)Dij(v),

b : V × Q →R, b(u,q) = −
∫
Ω

∇ · u q = −
2∑

i=1

∫
Ω

∂iui · q

c : V × V × V →R, c(w; z,v) =
∫
Ω

[
(w · ∇)z

] · v =
2∑

i, j=1

∫
Ω

w j(∂ j zi)vi . (15)

In order to apply the Newton method, the system of equations (14) is regarded as F(w) = 0, with w = (un+1, pn+1, θn+1) ∈
W = V × Q × V , and F : W → W a differentiable mapping. The classical Newton algorithm is then used to advance the 
solution from time tn to tn+1: starting from an initial guess w0 = (un, pn, θn) (which is the solution at tn), construct the 
sequence (wk) by solving for each inner iteration k:

D wF
(

wk)(wk − wk+1) = F
(

wk), (16)

where D wF is the linear operator representing the differential of F . Denoting by (uw , pw , θw) = wk − wk+1 and after 
differentiating (14), the system of equations (16) can be explicitly written as:

b(uw ,q) − γ (pw ,q) = b
(
uk,q

) − γ
(

pk,q
)
,

1

δt
(uw ,v) + c

(
uw;uk,v

) + c
(
uk;uw ,v

) + a(μl;uw ,v) + b(v, pw) −
(

df B

dθ

(
θk) θw ey,v

)

= 1

δt

(
uk − un,v

) + c
(
uk;uk,v

) + a
(
μl;uk,v

) + b
(
v, pk) − (

f B
(
θk) ey,v

)
,

1

δt
(θw , φ) − (

uk · ∇φ, θw
) − (

uw · ∇φ, θk) +
(

K

Pr
∇θw ,∇φ

)

= 1

δt

(
θk − θn, φ

) − (
uk · ∇φ, θk) +

(
K

Pr
∇θk,∇φ

)
. (17)

We impose homogeneous Dirichlet boundary conditions (uw , pw , θw) = 0 for this system since boundary conditions are 
time independent. We underline the fact that the Newton loop (following k) has to be iterated until convergence for each 
time step δt following the algorithm:

Navier–Stokes time loop following n
set w0 = (un, pn, θn)

Newton iterations following k
solve (17) to get (uw , pw , θw)

actualize wk+1 = wk − (uw , pw , θw)

stop when ‖(uw , pw , θw)‖ < ξN

actualize (un+1, pn+1, θn+1) = wk+1

(18)

It is interesting to note that the previous system of equations depends only on un and θn and is independent of pn , the 
pressure being in this approach a Lagrange multiplier for the divergence free constraint.

An alternative for the treatment of non-linear terms in the momentum equation is offered by the Galerkin character-
istics method [31]. This method is implemented in FreeFem++ through a convection operator computing (for given mesh, 
convection velocity field and time step) Φ ◦ Xn , with Φ the convected field and Xn an approximation of the characteristic by 
an integration back in time from tn+1 to tn for each grid point x. The weak formulation (14) can be easily rewritten using 
the characteristics method for the convective terms. The resulting system is then solved to advance the solution from tn to 
tn+1 in one step. The drawback of the method is that it requires small time steps for accurately computing the convection 
terms. We note that the characteristics method implicitly uses a non-conservative form of the energy equation, while in the 
Newton method (17) the conservative form was used. The implementation of the Newton method in the non-conservative 
form led to the same numerical results for the test cases of natural convection of air.

It is important to remind that the characteristics method is slightly diffusive and doesn’t need stabilization, since it 
embeds an up-winding mechanism for the convection terms. We shall compare below the characteristics method (which 
is a standard function in FreeFem++) with the new Newton method for natural convection flows. This will be also useful 
to assess on the necessity of stabilization procedures for the convection terms when the Newton method is used. For the 
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cases presented below, the stabilization was not necessary, manifestly because considered flows were laminar (as seen from 
the scaling procedure presented above); the very refined grids used in computations with P2 elements proved stable for all 
simulated flows.

3.2. Algorithms for the phase-change system with convection

We go back now to the system of equations (11). Two new difficulties are to be faced when building an algorithm 
for this system: the non-linearity introduced by the variation of the viscosity μsl(θ) (from 1 in the fluid to 108 in the 
solid) and, similarly, the non-linearity introduced by the enthalpy function S(θ). For sake of simplicity, we consider in the 
heat equation that K = C = 1 (the dependence on θ of these quantities was implemented following the same method 
for the water freezing case). It should be noted that for phase-change material (paraffins), C = K = 1 is a physically valid 
assumption.

We adopt in this paper a full Newton linearization of the equations. A semi-implicit scheme using an explicit treatment 
of the viscosity μsl(θ

n) in (11) was also tested with similar results (but larger computational times for convergence). The 
following Newton algorithm proved very robust and effective for the phase-change system (the new or modified terms 
compared to (17) are underlined):

b(uw ,q) − γ (pw ,q) = b
(
uk,q

) − γ
(

pk,q
)
,

1

δt
(uw ,v) + c

(
uw;uk,v

) + c
(
uk;uw ,v

)

+ a
(
μsl

(
θk); uw ,v

) + a

(
dμsl

dθ

(
θk) θw; uk,v

)
+ b(v, pw) −

(
df B

dθ
(θk) θw ey,v

)

= 1

δt

(
uk − un,v

) + c
(
uk;uk,v

) + a
(
μsl

(
θk); uk,v

) + b
(
v, pk) − (

f B
(
θk)ey,v

)
,

1

δt
(θw , φ) − (

uk · ∇φ, θw
) − (

uw · ∇φ, θk) +
(

K

Pr
∇θw ,∇φ

)
+ 1

δt

(
dS

dθ

(
θk) θw , φ

)

= 1

δt

(
θk − θn, φ

) − (
uk · ∇φ, θk) +

(
K

Pr
∇θk,∇φ

)
+ 1

δt

(
S
(
θk) − S

(
θn), φ

)
. (19)

3.3. Space discretization and mesh adaptivity

For the space discretization of systems (17) or (19) we use standard Taylor–Hood finite elements [35], approximating the 
velocity with P2 finite elements (Xh space), and the pressure with the P1 finite elements (Mh space):

Xh = {
v ∈ H1(]0,1[2)2 ∣∣ ∀K ∈ Th v |K ∈ P2

}
(20)

Mh = {
v ∈ H1(]0,1[2) ∣∣ ∀K ∈ Th v |K ∈ P1

}
, (21)

where K is an element of the triangulation Th . The other variables (temperature, enthalpy) are discretized using P1 finite 
elements.

Mesh adaptivity by metric control is a standard function offered by FreeFem++ [17]. The mesh generator uses Delaunay-
type algorithms developed in [36,37]. The novelty of the present approach is that the adaptivity method is designed to 
reduce the impact of interpolation on the global accuracy. In order to achieve the mesh convergence, we first conserve all 
the nodes of the previous mesh if the distance between two mesh points in the metric is larger than 

√
2/2 (note that 

variables are normalized before computing the metrics and the size of the edge of the mesh is close to unity in the metric 
length) and then continue the classical procedure of the insertion of new mesh points. This reduces the perturbations in-
troduced when the solution is embedded by interpolation from the old mesh to the new one. To interpolate the variables 
from the old to the new mesh, we use the canonical finite element interpolation operator, depending of the type (P2 or P1) 
of the variable. This procedure could be slightly diffusive when applied every time step, but, at least for the cases simulated 
in this paper, it proved very stable and robust. Also, to reduce the impact of the interpolation on the global accuracy for 
time-depending problems, for the same variable used for adaptivity, we consider the metrics computed from actual (at tn+1) 
and previous (at tn) values (see also [14]).

The key idea for the mesh adaptivity (see also [36–40]) is to modify the scalar product used in an automatic mesh gen-
erator to evaluate distance and volume, in order to construct equilateral elements according to a new adequate metric. The 
scalar product is based on the evaluation of the Hessian H of the variables of the problem. Indeed, for a P1 discretization 
of a variable χ , the interpolation error is bounded by:

E = |χ − Πhχ |0 ≤ c sup sup
∣∣H(x)

∣∣(y − z, y − z) (22)

T ∈Th x,y,z∈T
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Fig. 2. Natural convection of air in a differentially heated cavity. Problem definition and streamlines of the steady flow.

where Πhχ is the P1 interpolate of χ , |H(x)| is the Hessian of χ at point x after being made positive definite. We can 
infer that, if we generate, using a Delaunay procedure (e.g. [36]), a mesh with edges close to the unit length in the metric 
M = |H|

(cE)
, the interpolation error E will be equally distributed over the edges ai of the mesh. More precisely, we have

1

cE
aT

i Mai ≤ 1. (23)

The previous approach could be generalized for a vector variable χ = [χ1, χ2]. After computing the metrics M1 and 
M2 for each variable, we define a metric intersection M = M1 ∩ M2, such that the unit ball of M is included in the 
intersection of the two unit balls of metrics M2 and M1 (for details, see the procedure defined in [37]). Since the error 
is related to the Hessian matrix, when P2 variables are used for the mesh adaptation, they are first linearly interpolated 
before proceeding to the metrics calculation (see also [41]). This renders the adaptive mesh not optimal for P2 variables and 
theoretically impacts the overall accuracy of the discretization in the refined zone. For practical calculations, the use of fine 
grids near interfaces makes these effects negligible. Starting from this observation, the use of the so-called mini element 
(see [42,43]), offering a global linear convergence, could be an interesting alternative for the space discretization, instead of 
the Taylor–Hood element, to optimize the computational time. This possibility will be explored in future studies, since the 
mini-element can be programmed in FreeFem++.

For the cases considered in the following, we used up to four metrics intersections to adapt the mesh (the details are 
indicated for each case). The anisotropy of the mesh is a parameter of the algorithm and it was set to values close to 1. This 
is an inevitable limitation since we also impose the minimum edge-length of triangles to avoid too large meshes.

The flexibility of the mesh adaptivity algorithm will be used to simultaneously take into account several metrics com-
puted for different variables monitoring the evolution of the phase-change system. For natural convection system, mesh will 
be refined using the velocity components and temperature as reference variables. For phase-change systems, to accurately 
track the solid–liquid interface we add the variation of the enthalphy source term as adaptivity criterion. For water, we 
also add an extra function tracking the anomalous change of density around 4 ◦C. The capabilities of the mesh adaptivity 
algorithm are illustrated in the next section.

4. Numerical validation

In this section we test the new numerical system by considering well defined benchmarks used to validate numerical 
codes for phase-change problems. The difficulty of the computed cases is increased progressively by considering the follow-
ing physical systems: natural convection of air, natural convection of water, melting of a phase-change system and, finally, 
the freezing of pure water. For each test case we quantitatively compare our results with experimental and previously 
published numerical data, showing the benefits of the new method.

4.1. Natural convection of air

We start by testing the Newton algorithm (17) for the Navier–Stokes–Boussinesq equations presented in Section 3.1. We 
consider a classical benchmark that has been thoroughly studied in literature: the natural convection of air in a differentially 
heated square cavity. The configuration is sketched in Fig. 2.

For air, the Boussinesq term f B (θ) is linear and takes the form (3). To assess for the accuracy of our method by comparing 
to previous studies [7,44], we chose the flow parameters as follows: Ra = 106, Pr = 0.71, θh = 0.5 and θc = −0.5. For this 
value of Ra, a steady state with a single convection cell is reached. The computed streamlines showing the flow structure at 
steady state are represented in Fig. 2. All computations in this section are performed with a fixed triangular mesh, generated 
by the Delaunay algorithm starting with M = 80 points on each side of the square.

A classical validation for this computation benchmark is to extract the horizontal velocity profile u(y) at mid-domain 
(x = 0.5) and compare the maximum value umax and its location Y to values obtained by spectral-accurate simulations by 
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Fig. 3. Natural convection of air in a differentially heated cavity. Longitudinal velocity profile along the vertical symmetry line (a) results obtained using 
the present Newton method (conservative formulation of the convective term in the heat equation), with mesh resolution M = 80; comparison with the 
characteristics-Galerkin method and the results of Wang, Faghri and Bergman [7] (b) results with different mesh resolutions or a non-conservative (NC) 
formulation.

Table 1
Natural convection of air in a temperature driven cavity. Maximum value umax of the horizontal velocity profile at mid-domain 
(x = 0.5) and location Y of this maximum. Comparison to reference values by Le Quéré [44].

Run umax at x = 0.5 (error) Y (error)

Reference values spectral 0.0648344 0.850
Newton M = 40 0.0654152 (0.89%) 0.849812 (0.02%)
Newton M = 80 0.0650082 (0.26%) 0.849906 (0.01%)
Char-Galerkin M = 40 0.0667870 (3.01%) 0.857322 (0.86%)
Char-Galerkin M = 80 0.0662229 (2.14%) 0.856160 (0.72%)

Le Quéré [44]. Fig. 3(a) shows that the horizontal velocity profile from present computations is in good agreement with data 
extracted from [7]. Also, the Newton method behaves similarly to the characteristics-Galerkin method. Fig. 3(b) displays a 
detail of the velocity profile, showing the mesh convergence of the results (M = 40 and M = 80). Since the characteristics 
method uses a non-conservative form of the energy equation, we have also implemented this form for the Newton method. 
Fig. 3(b) also shows that the results using either a conservative or non-conservative form of non-linear terms in the energy 
equation are identical for M = 80.

Table 1 offers a quantitative assessment of the accuracy of the present Newton method. The values of umax and its 
location Y are compared to reference values from [44]. The Newton method gives results quasi-identical to reference values. 
The characteristics-Galerkin method is less accurate, but still offers reasonable agreement with reference values, within 2%
relative error. We also recall that the characteristics method needs a very small time step for refined meshes (δt = 8 · 10−5

for M = 80), while the Newton method allows larger time steps (δt = 10−3 for M = 80) and, consequently, converges faster 
to a steady state.

We can conclude from this section that the proposed Newton method offers an efficient way to solve the Navier–Stokes–
Boussinesq system of equations for natural convection. After this validation, we test in the following section the capability 
of the method to deal with nonlinear buoyancy terms.

4.2. Natural convection of water

Pure water exhibits a nonlinear density variation for T < 10.2 ◦C with a maximum at Tm = 4.0293 ◦C. We use below the 
following density–temperature relationship proposed in [45]:

ρ(T ) = ρm
(
1 − w|T − Tm|q), (24)

with ρm = 999.972 [kg/m3], w = 9.2793 · 10−6 [(◦C)−q], and q = 1.894816. Choosing the fusion temperature T f = 0 ◦C as 
reference, the buoyancy term f B = g(ρref − ρ)/ρref appearing in (11) becomes after scaling:

f B(θ) = Ra

Pr Re2

1

β(Th − Tc)

ρ(θ f ) − ρ(θ)

ρ(θ f )
, (25)

where β = (1/ρm)(dρ/dT ) is the thermal expansion coefficient with the value [46] β = 6.91 · 10−5 [(K)−1]. Note that (25)
compared to the classical linear form (3) not only introduces a new nonlinear term, but also the coefficient in front of this 
term is very large, since it is proportional to Ra/(β(Th − Tc)).
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Fig. 4. Natural convection of water in a differentially heated cavity. Problem definition and streamlines of the steady flow.

Fig. 5. Natural convection of water in a differentially heated cavity. (a) Mesh corresponding to the final steady state of the computation. The mesh is 
refined following the line T = Tm , with Tm = 4.0293 ◦C corresponding to the maximum of the water density nonlinear variation. (b) Zoom inside the mesh 
corresponding to the small square in (a) (the level line T = Tm is also displayed).

The Newton algorithm (17), with the nonlinear f B term given by (25) is solved for the natural convection test case 
investigated experimentally and numerically in [25,47,48]. It represents (see Fig. 4) a differentially heated cavity filled with 
pure distilled water. The hot temperature wall is maintained at Th = 10 ◦C, while the cold wall is held at Tc = T f = 0 ◦C. 
The non-dimensional parameters describing the flow are (see [48] for physical details): Ra = 2.518084 · 106, Pr = 6.99.

The streamlines of the computed steady state are displayed in Fig. 4 and depicts a flow structure very similar to that 
observed in experiments (to be compared with Fig. 4 from [47]). Due to the anomalous thermal variation of water density, 
two recirculating zones are formed in the flow: a lower (abnormal) recirculation in the vicinity of the cold wall where 
T < Tm and an upper (normal) one where the density decreases with temperature (T > Tm).

Since the two recirculating zones are separated by the line T = Tm we have used the mesh adaptivity capability of 
the method to refine the grid along this line. The metrics used for adaptivity are computed from the two components of 
the velocity and a P1 function φ(T ) “tracking” the value Tm , defined by the general regularization expression (7) with 
fl = 0, f s = 1 and F (θ; 1, Tm + 0.01, 0.02). To reduce the impact of the interpolation on the global accuracy (see also [14]), 
we use both φ(T n) and φ(T n+1) in the adaptivity procedure. The final mesh is displayed in Fig. 5, clearly showing that the 
mesh is refined along the line T = Tm . This allows to accurately capture the structure and the extent of the two recirculating 
zones, features that are difficult to obtain with fixed meshes (see discrepancies described in [25,47,48]).

The corresponding temperature field of the steady state is presented in Fig. 6. The line of maximum density corresponds 
to θ = θm = 0.4. The temperature profile θ(x) along the horizontal symmetry line of the cavity is in good agreement with the 
numerical results of Michalek and Kowalewski [48] obtained with FV and FD codes (FLUENT and FRECONV3V), commonly 
used in the heat transfer community. Differences are visible in the vicinity of the maximum density line, region where our 
mesh is well refined to capture the separation line between the two recirculation zones. It should be noted that the FLUENT 
simulations in [48] are performed with a fixed uniform grid with 380 × 380 nodes, while our adapted grid (see Fig. 5) has 
only 8751 vertices (17 257 triangles).

4.3. Melting of phase change material (PCM)

After the validation of the Navier–Stokes–Boussinesq solver, we test in this subsection the numerical system solving the 
model (19) for a phase-change system with convection. We consider the test case of the melting of an octadecane PCM 



836 I. Danaila et al. / Journal of Computational Physics 274 (2014) 826–840
Fig. 6. Natural convection of water in a differentially heated cavity. Non-dimensional temperature θ at steady state. (a) Two-dimensional temperature field. 
(b) Temperature profile along the horizontal symmetry line. Comparison with the numerical results of Michalek and Kowalewski, 2003 [48].

Fig. 7. Melting of a (PCM) phase change material (octadecane). Problem definition and streamlines of the flow developing in the liquid part at t = 71. The 
solid–liquid interface (θ = 0) is also represented (in blue). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

in a square cavity. For this case both experimental and numerical results are available [7,8,49]. The material characteris-
tics (specific heat C and conductivity K ) are considered constant, as in the previous numerical studies [7,8]. The physical 
configuration is sketched in Fig. 7. The material is initially solid (θ0 = −0.01) and melts progressively starting from the 
left boundary, maintained at the hot temperature θh = 1. The right boundary is also isothermal with cold temperature 
θc = −0.01, while horizontal boundaries are adiabatic. Fig. 7 also offers an image of the system evolution by showing the 
configuration of the PCM at t = 78.7, with the streamlines of the flow developing in the liquid phase and the liquid–solid 
interface (isoline θ = 0).

Two new non-linearities are introduced in the system (19): the variable viscosity μsl and the enthalpy source term S . 
The former is regularized using the function (7), as shown in Fig. 1(a), following a definition of the mushy region [θ f − ε1,

θ f +ε2] according to [7]: θ f = 0 and ε1 = ε2 = ε = 0.01. The S term is regularized using the same function (7), with Ss = 0, 
Sl = 1/Ste, where Ste denotes the Stefan number. The physical parameters describing the test case are: Ra = 3.27 · 105, 
Pr = 56.2 and Ste = 0.045.

The computation starts from a refined mesh near the hot boundary and then uses mesh adaptivity at each time step. 
The mesh is refined using metrics computed from three variables: the two fluid velocities and the enthalpy source term S . 
Again, to reduce the impact of the interpolation on the global accuracy, we use both two successive fields (Sn) and (Sn+1)

in the adaptivity procedure. This allows to well refine the fluid part of the domain and the mushy region around the 
liquid–solid interface. A picture of the mesh and the corresponding temperature field is presented in Fig. 8. We notice the 
smooth appearance of iso-lines for the temperature at the interface, which is not the case in the previous simulations [7,8]
using a fixed mesh and a velocity correction for grid points undergoing phase change.

A more quantitative assessment of the capabilities of our method is offered by comparing the position of the liquid–solid 
interface at t = 78.7. We compare in Fig. 9 our results with the experimental data by Okada [49] and previously published 
numerical results by Wang, Faghri and Bergman [7]. The obtained shape and position of the liquid–solid interface is closer to 
experimental results than numerical results reported in [7]. This is a direct consequence of the mesh adaptivity capabilities 
of our method.
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Fig. 8. Melting of a (PCM) phase change material (octadecane). Configuration at t = 78.7: (a) adapted finite-element mesh and (b) temperature iso-lines in 
the liquid phase.

Fig. 9. Melting of a (PCM) phase change material (octadecane). Solid–liquid interface at t = 78.7: comparison with numerical results of Wang, Faghri and 
Bergman [7] and experimental data of Okada [49].

4.4. Water freezing

For the last validation of the numerical system, we consider the difficult case of water freezing in a square cavity. 
This problem was investigated experimentally and numerically in [25,47,48]. The configuration is the same as described 
in Section 4.2 for the natural convection of water. After the convection steady pattern is obtained in the cavity, freezing 
starts by dropping the temperature of the cold wall from Tc = 0 ◦C to Tc = −10 ◦C. The physical parameters describing the 
problem are: Ra = 2.518084 · 106, Pr = 6.99, Ste = 0.125.

This case brings together all the non-linearities previously described: nonlinear buoyancy term (25), variable viscosity 
and enthalpy source term. In the system (19) we took into account the variation of the thermal conductivity K , using the 
same type of regularization (7). The simulation starts, as in experiment, from the steady state obtained for the natural 
convection (see Fig. 4). The new boundary condition on the right cold wall is imposed by setting a very thin layer of 
δx = 0.01 with constant temperature θ = θc and zero velocity.

Since in previous numerical contributions [25,47,48], important discrepancies between computed and experimental con-
figurations were obtained, we directly superimpose in Fig. 10 the experimental image from [25] with our numerical results 
for the same physical time τ = 2340 [s]. Although the experimental image might not be perfectly fitted in the square [0, 1]2, 
we can nevertheless notice the remarkable agreement for the shape and position of the solid–liquid interface computed 
with the present numerical system. The flow pattern in the liquid phase also corresponds very well to the experimental 
image. Since a good agreement with the experiment was sought, the simulation was performed with very small time steps 
(δt = 10−4 ≈ 0.15 [s]), but still reasonable grids (less that 7000 nodes) due to the efficiency of the adaptivity algorithm.

The refined mesh is displayed in Fig. 11(a), clearly showing the anisotropic mesh refinement along the two lines of 
interest: the solid–liquid interface (T = 0 ◦C) and the line of maximum water density (T = 4 ◦C). As a consequence, the 
temperature level lines in Fig. 11(b) are smooth and clearly define the two interfaces in the system: the liquid–solid interface 
(θ = 0) and the density inversion interface (θ = 0.4) separating the two recirculating liquid regions.
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Fig. 10. Freezing of pure water. Configuration at (physical time) τ = 2340 [s]: (a) experimental image from [25]; the thick red line represents the solid–liquid 
interface computed with the present method (b) computed streamlines showing the two recirculating zones in the fluid phase. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Freezing of pure water. Computed configuration at (physical time) τ = 2340 [s]: (a) finite-element mesh refined along the solid–liquid interface 
(T = 0 ◦C) and also along the line of maximum water density (T = 4 ◦C) (b) temperature iso-lines.

The water freezing case is computationally very challenging and detailed physical models are needed in order to obtain 
a good agreement with experiments. Some models to take into account realistic boundary conditions were proposed and 
tested in [25,47,48]. They could be implemented very easily with the present numerical system and a detailed investigation 
of the water freezing case will be reported in a future contribution.

5. Conclusions

A new single domain numerical approach was derived and validated for phase-change systems. The key ingredients of 
the method are the use of an adaptive finite element method with a well chosen regularization of the functions representing 
the variation of thermodynamic properties at the solid–liquid interface, and a fully linearized Newton algorithm for the time 
integration of the system of equations. The advantage of the adaptivity method by metric control is to allow accurate and 
simultaneous tracking of different interfaces in the system (the liquid–solid interface but also the density inversion interface 
for water flows).

The advantage of the Newton global formulation is to easily permit the implementation of different types of non-
linearities in the system of equations and, consequently, to explore numerically different physical models. This feature was 
illustrated by considering four test cases with increasing complexity:

(i) natural convection of air in a differentially heated cavity,
(ii) natural convection of water in a differentially heated cavity,

(iii) melting of a phase-change material,
(iv) water freezing.

For all considered test cases, a very good agreement with experimental data or previously published numerical results is 
obtained, proving the capability of the method to tackle a large range of problems, from natural convection to melting and 
solidification.
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The method derived in this contribution was implemented using FreeFem++ software, using a programming syntax close 
to the mathematical formulation. Since FreeFem++ is a free software, the method could be easily implemented and tested 
by anyone interested in simulating phase-change problems (the general adaptivity procedure is now the standard function 
adaptmesh in FreeFem++). This offers the possibility to address other computational challenges related to different physical 
or mathematical models in this field, including complex phenomena (e.g. magnetohydrodynamics [50]) or inverse problems 
(e.g. reconstruction of material properties [30]). A further development of the method will include the extension of the 
method for three-dimensional cases. This ongoing work showed that a careful investigation of several algorithmic issues 
is necessary, as also pointed out in [15]: change from direct to efficient iterative solvers, improve the robustness of the 
anisotropic mesh adaptivity algorithms, etc. Three-dimensional simulations are beyond the scope of the present contribution 
and will be reported in a forthcoming paper.
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