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This paper is focused on the investigation of vortex rings evolving in a tube. A
new theoretical model for a confined axisymmetric vortex ring is developed. The
predictions of this model are shown to be in agreement with available experimental
data and numerical simulations. The model combines the viscous vortex ring model,
developed by Kaplanski & Rudi (Phys. Fluids, vol. 17, 2005, 087101), with Brasseur’s
(PhD thesis, Stanford University) approach to deriving a wall-induced streamfunction
correction. Using the power-law assumption for the time variation of the viscous
length of the vortex ring, the time variations of the main integral characteristics,
circulation, kinetic energy and translational velocity are obtained. Direct numerical
simulation (DNS) is used to test the range of applicability of the model and to
investigate new physical features of confined vortex rings recently reported in the
experimental study by Stewart et al. (Exp. Fluids, vol. 53, 2012, pp. 163–171). The
model is shown to lead to a very good approximation of the spatial distribution of the
Stokes streamfunction, obtained by DNS. The vortex signature and the time evolution
of the energy of the vortex are also accurately predicted by the model. A procedure
for fitting the model with realistic vortex rings, obtained by DNS, is suggested. This
opens the way to using the model for practical engineering applications.
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1. Introduction
The properties of vortex rings in unbounded domains have been studied for over a

century, both theoretically and experimentally (see the reviews by Shariff & Leonard
1992; Lim & Nickels 1995; Fukumoto 2010). Recently, vortex ring models were
used to predict the evolution of complex flows, such as those encountered in
biological propulsion (Mohseni 2006; Dabiri 2009) and during fuel injection in
internal combustion engines (Begg et al. 2009; Kaplanski et al. 2010; Sazhin 2014).
These and other applications led to growing interest in developing simplified analytical
models of vortex rings, the predictions of which are close to those inferred from the
numerical analysis and experimental observations.

The mathematical theory of inviscid axisymmetric vortex rings was developed in
the 1970s and early 1980s, mainly in connection with Hill’s spherical vortex ring
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(Hill 1894), which is a fundamental solution of the Euler system of equations (see
also Batchelor 1988; Saffman 1992). The existence and uniqueness of the solutions to
these equations were studied by Fraenkel & Berger (1974), Ni (1980), and Amick &
Fraenkel (1988) for the general case and by Norbury (1972), and Amick & Fraenkel
(1986) for vortex rings bifurcating from Hill’s vortex. Based on this theory, Norbury
(1973) calculated numerically, using finite difference methods, a family of inviscid
vortex rings identified by a single geometric parameter. Vortex ring solutions were
given in the form of tabulated Fourier series coefficients which allowed him to
reconstruct vortex ring geometry, vorticity and streamline distributions. This restricted
the applicability of this approach to the analysis of the observed vortex rings. Also,
the model was based on the assumption that the vorticity distribution in the vortex
core is linear, i.e. proportional to the distance to the axis of symmetry (as in Hill’s
spherical vortex model), while the Gaussian vorticity distribution has been observed
in experiments (e.g. Weigand & Gharib 1997; Cater, Soria & Lim 2004). Despite
this non-realistic assumption, the Norbury model proved useful in estimating integral
characteristics and global properties of vortex rings, such as the formation number
(Mohseni & Gharib 1998; Shusser & Gharib 2000; Linden & Turner 2001).

Much effort has been focused on the development of more realistic modelling of
vortex rings, taking into account the effects of viscosity. Tung & Ting (1967) and
Saffman (1992) developed asymptotic theories for the initial stage of the motion of
an axisymmetric vortex ring, when the core radius L was small compared to the
initial outer radius R0. Using these theories, a formula for the translational velocity
of such a ring was derived by Saffman (1992) based on the assumption of the
Gaussian distribution of vorticity and using the Helmholtz–Lamb formula (Lamb
1932; Helmholtz 1958). Saffman’s formula was generalised by Fukumoto & Moffatt
(2000, 2008) for rings at very large Reynolds numbers. On the other hand, Rott
& Cantwell (1993a,b) studied viscous vortex ring behaviour at large times. Using
Phillips’ self-similar solution to the Stokes equation for a dipole flow (Phillips 1956)
and the Helmholtz–Lamb formula, these authors obtained an expression for the
asymptotic drift velocity of a ‘fat’ vortex at the decaying stage for L � R0. Later,
Saffman suggested a second formula for the translational velocity of a vortex ring for
the intermediate stage when L ≈ R0, which predicted results close to those obtained
by Rott and Cantwell in the long-time limit (see also Weigand & Gharib 1997).

Recently, Kaplanski & Rudi (2005) developed an unconfined vortex ring model based
on a linear first-order solution to the Navier–Stokes equation for the axisymmetric
geometry and arbitrary times (see also Kaplanski & Rudi 1999). The vorticity in the
vortex core was predicted to be Gaussian, which makes the model more attractive
for realistic applications. This class of vortex rings was described using a single
geometric parameter, which allows us to consider them as the viscous analogue
to Norbury’s vortices. The model is valid not only in the limit of small Reynolds
numbers Re = Γ0/ν, where Γ0 is the circulation of the vortex ring and ν the fluid
kinematic viscosity, but also for large Re at short times t (Fukumoto & Kaplanski
2008). The translational velocity of the vortex ring, obtained via the substitution
of this solution into the Helmholtz–Lamb formula, was presented in a closed form
in terms of the generalised hypergeometric functions. This velocity was shown to
coincide with the one predicted by Saffman’s formula (Fukumoto & Kaplanski 2008)
in the short-time limit and with the one predicted by Rott and Cantwell’s formula
in the long-time limit. In a number of papers, including those by Danaila & Helie
(2008), Fukumoto & Kaplanski (2008), and Kaplanski et al. (2010), it was shown
that the integral characteristics predicted by the model, such as translational velocity
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U and energy E, are very weak functions of the Reynolds number for all times.
This opened the way of applying the model to fit numerically generated vortex rings
(Danaila & Helie 2008) or experimentally observed vortex ring flows including those
observed in internal combustion engines (Begg et al. 2009; Kaplanski et al. 2010).

Radially confined vortex ring flows have been far less studied compared with
unconfined vortex rings, despite their importance for many practical applications,
ranging from vortex ring-like structures in petrol (gasoline) engines (Begg et al.
2009) to transient flow fields in biological complex systems (Gharib et al. 2006). A
recent experimental study by Stewart et al. (2012) demonstrated important differences
between the evolution of a vortex ring confined in a tube and its evolution in an
unbounded domain. For example, higher decay rates of circulation were observed for
vortex rings confined in a tube, compared with unconfined ones. The first attempt, and
the only one to the best of our knowledge, to perform theoretical analysis of confined
vortex rings was made by Brasseur (1979). This author considered an axisymmetric
vortex ring confined in an infinitely long tube and assumed that the flow field in the
outer region (far from the core) depends on the ring’s total circulation, but not on the
details of the vorticity distribution in the vortex core. This hypothesis allowed him
to model the streamfunction of the confined vortex ring as the sum of an unconfined
streamfunction for a circular vortex filament (CVF) (Lamb 1932) and the one induced
by the tube. One of the limitations of the model suggested by Brasseur (1979) is that
it is based on a rather simplistic theoretical model for a vortex ring, the predictions
of which cannot be easily matched with realistic results of numerical simulations or
experimental observations.

The main goal of the present paper is to suggest a new model for a viscous
vortex ring placed into a radially confined domain. This model will be based on the
generalisation of the analytical developments by Brasseur (1979), using the recent
viscous vortex ring model suggested by Kaplanski & Rudi (2005). Direct numerical
simulation (DNS) will be used to assess the quality of the model predictions, with
particular emphasis on the confinement effects.

In § 2 we present basic equations for a radially confined vortex ring and derivation
of their approximate analytical solution, combining Brasseur’s approach and the vortex
ring model suggested by Kaplanski & Rudi (2005). Results of numerical simulations
of the vortex ring evolution in a tube are presented in § 3. These will be used to
describe the physics of the flow, using flow parameters inferred from experimental
data provided by Stewart et al. (2012). Extensive comparisons between theoretical
predictions of the model and DNS data are presented in § 4. The main contributions
of the paper are summarised in § 5.

2. A model for a viscous vortex ring in a tube
2.1. Governing equations

We consider an axisymmetric vortex ring of radius R0 placed in an infinitely long rigid
tube of radius Rw (see figure 1), moving in an incompressible fluid with translational
velocity U along the axis of symmetry (x). The governing equations for the vorticity
(ω) and streamfunction (Ψ ) can be presented as (Batchelor 1988)
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FIGURE 1. Schematic of a vortex ring in a tube.

where x, r are the axes of a cylindrical coordinate system and t is time. Note that
L is a linear, self-adjoint elliptic operator. We consider the following boundary
conditions: symmetry at the axis,

ω=Ψ = 0, for r= 0, (2.3)

vanishing vorticity and streamfunction in the far field of the vortex,

ω, Ψ → 0 when (x2 + r2)1/2→∞, for r< Rw, (2.4)

and no flow through the tube wall,

ω→ 0,
1
r
∂Ψ

∂x
= 0, for r= Rw. (2.5a,b)

Our vortex ring model will be developed using (2.1) and (2.2) with boundary
conditions (2.3)–(2.5). Note that boundary condition (2.5) can be used for vortex
rings in a tube as long as the viscous interaction of the rings with the tube wall
remains weak and can be ignored (see also Brasseur 1979). For longer time instants,
when this assumption is not valid, the boundary condition (2.5) should be replaced
with a no-slip wall condition. Note also that DNS in § 3 will use a velocity–pressure
formulation of the Navier–Stokes equations, with no-slip boundary conditions at the
tube wall.

2.2. Brasseur’s approach to modelling a confined vortex ring
Brasseur (1979) modelled a confined vortex ring of circulation Γ0 and radius R0 (see
figure 1) assuming that in the region r> R0 the velocity potential Φc is equal to the
sum Φc =Φ +Φ0, where Φ is the potential of a CVF in an unbounded flow,

Φ =−Γ0R0

2

∫ ∞
0

exp(−xµ)J1(R0µ)J0(rµ) dµ, (2.6)

and Φ0 is the velocity potential added to Φ to satisfy the boundary condition (2.5)
of no flow through the tube wall. The velocity potential Φ for a CVF corresponds to
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the streamfunction (Lamb 1932)

Ψ = Γ0R0r
2

∫ ∞
0

exp (−xµ)J1(R0µ)J1(rµ) dµ, (2.7)

where J1 is the Bessel function of the first kind. Note that formula (2.7) is valid for
x> 0 and the sign of Ψ is opposite to the one given in Lamb (1932).

Potential (2.6) can be expanded into a series of harmonic poles at the origin
(Brasseur 1979):

Φ(r̃, x̃)= εΓ0
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The parameter 0< ε < 1 quantifies the confinement of the vortex ring. When ε→ 0,
the first harmonic can be simplified as∫ ∞

0
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The first harmonic (2.10) shows that at infinity the vortex ring looks like a point
dipole; the contributions of other terms in (2.11) are found as the derivatives with
respect to x̃.

Brasseur (1979) replaced the expression of the first harmonic (2.10) with a
monopole at the origin in a tube and then derived the velocity potential Φ0 and
the corresponding streamfunction Ψ0 induced by the presence of the tube:

Φ0 =−Γ0R0

π

∫ ∞
0

K1(µRw)

I1(µRw)
I1(R0µ)I0(rµ) sin(xµ) dµ, (2.12)

Ψ0 =Γ0R0r
π

∫ ∞
0

K1(µRw)

I1(µRw)
I1(R0µ)I1(rµ) cos(xµ) dµ, (2.13)

where K1 is the modified Bessel function of the second kind.
Finally, the streamfunction corresponding to a confined vortex ring can be expressed

as
Ψc =Ψ −Ψ0, (2.14)

where Ψ is the streamfunction (2.7) of a CVF in an unbounded flow and Ψ0 is the
streamfunction (2.13) induced by the presence of the tube.
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2.3. A new model for a confined vortex ring
Brasseur (1979) modelled a vortex ring as a CVF in a bounded flow. In a new model,
described in this section, we apply Brasseur’s approach but replace the vortex filament
with the more realistic vortex ring model suggested by Kaplanski & Rudi (2005).

We start by recalling the main features of the vortex ring model developed in
Kaplanski & Rudi (1999, 2005). Introducing local coordinates (see figure 1)

σ = r/L, η= (x− Xc)/L, θ = R0/L, (2.15a−c)

where Xc is the axial coordinate of the vortex centre and L is the diffusivity scale of
the ring’s core, the following expressions were obtained: for vorticity,
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and streamfunction,

ΨVR = Γ0R0σ

4
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exp(ηµ)erfc
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µ+ η√
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)
+ exp(−ηµ)erfc
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J1(θµ)J1(σµ) dµ, (2.20)

where

erfc(x)= 2√
π

∫ ∞
x

exp(−t2) dt, (2.21)

J1 is the Bessel function of the first kind, I1 is the modified Bessel function of the
first kind and 2F2 is the generalised hypergeometric function.

Equations (2.16)–(2.19) were originally derived for L=√2νt, i.e. a laminar vortex
ring. Later it was shown that they remain valid in a more general case, when L is
approximated as atb, where a and b are constants (1/4 6 b 6 1/2) (Kaplanski et al.
2009). This generalised vortex ring model was successfully applied to the analysis
of vortex rings observed in petrol internal combustion engines (Begg et al. 2009;
Kaplanski et al. 2010).
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At the initial stage when the core is very thin νt � R0
2(θ � 1), the model

describes Saffman’s early-time vortex ring with outer radius R0 (Saffman 1970). At
this stage the Gaussian form of the vorticity field is strongly compressed and the
vorticity isocontours ω/ωmax are circular (Kaplanski, Fukumoto & Rudi 2012). At the
decaying stage νt� R0

2(θ � 1), the model predicts the Stokes-dipole solution (Rott
& Cantwell 1993a). For these cases, all characteristics of vortex rings, including
kinetic energy (2.18) and translational velocity (2.19), at short and long times are
given by the closed-form asymptotic expressions and are identical to the well-known
Saffman and Rott–Cantwell formulae, respectively. The Gaussian distribution of
vorticity predicted by (2.16) at short times agrees with experimental observations of
vortex rings (Weigand & Gharib 1997; Cater et al. 2004), although this distribution
does not follow from a rigorous solution to the nonlinear Navier–Stokes equation.

To apply the same approach as Brasseur (1979), we need to rescale the vortex ring
model using the following variables instead of those in (2.15):

x1 = x− Xc

R0
= η
θ
, r1 = r

R0
= σ
θ
. (2.22a,b)

In this case the dimensionless vorticity and streamfunction are defined as

ω∗ = ωR2
0

Γ0
, Ψ ∗VR =

ΨVR

Γ0R0
. (2.23a,b)

We recall that the Reynolds number of the flow was introduced as Re=Γ0/ν and the
parameter ε = R0/Rw < 1 quantifies the confinement of the vortex ring. The wall is
located at r1w = 1/ε.

We restrict our analysis to the time interval in which a vortex ring has a well-
defined maximum in its vorticity distribution, and is located far from the wall of
the tube (small ε). The parameter θ (depending on the diffusivity length) is then
defined by

θ = R0√
2νt

. (2.24)

Thus, the non-dimensional time can be expressed as

t∗ = νt
R2

0
= 1

2θ 2
. (2.25)

Having substituted (2.22) and (2.24) into (2.16), we obtain the following expression
for the non-dimensional vorticity (see Fukumoto & Kaplanski 2008):
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The expression for the non-dimensional streamfunction follows from (2.20):
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J1(r1θµ)J1(θµ) dµ. (2.27)
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Using the leading term of the expansion for z1= θ
√

x2
1 + r2

1→∞, we can obtain an
approximation of the streamfunction (2.27) at a large distance from the ring’s core:

Ψ ∗VR ≈
r1θ

4
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0

[
2 exp(−|x1|θµ)+ exp(−z1

2/2)O
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1
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)]
J1(r1θµ)J1(θµ) dµ

≈ r1θ

2
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0

exp(−|x1|θµ)J1(θµ)J1(r1θµ) dµ

= r
2

∫ ∞
0

exp(−|x|µ)J1(R0µ)J1(rµ) dµ. (2.28)

Note that the approximation of the streamfunction by (2.28) is valid for positive and
negative values of x1 and is identical to (2.7). Thus (2.28) describes the streamfunction
of a circular filament of vorticity. Therefore, it is expected that the vortex structure,
which diffuses with time and transforms into a ‘fat’ vortex ring, has the same large-
distance asymptotics as a circular line vortex, identical to Brasseur’s CVF.

Based on this observation, we can find the streamfunction describing the flow
generated by a vortex ring in a tube, following the approach suggested by Brasseur
(1979) (see (2.14)). The dimensionless streamfunction satisfying the boundary
conditions (2.3)–(2.5) is presented as

Ψ ∗c (x1, r1)=Ψ ∗VR(x1, r1)− r1

π

∫ ∞
0

K1(µ/ε)

I1(µ/ε)
I1(µ)I1(r1µ) cos(x1µ) dµ, (2.29)

where Ψ ∗VR is given by (2.27).
Expression (2.29) shows that at large distances, (2.27) transforms into Brasseur’s

CVF. Thus at even larger distances this expression will have the same asymptotics
as Brasseur’s CVF in the form of the first term of (2.8) (asymptotics for a dipole).
Brasseur used this feature and changed asymptotics at large distances to satisfy
boundary condition (1/r)∂Ψ/∂x = 0 at r = Rw. As our solution at large distances is
identical to Brasseur’s CVF, we expect that the additional streamfunction (2.13)
induced by the presence of the tube will act on the combined streamfunction
in the same way as described by Brasseur. To illustrate the deformation of the
streamlines in the vicinity of the wall, in figure 2 we plot the contours of Ψ ∗c given
by (2.29) and compare them with the streamlines Ψ ∗VR (given by (2.27)) for the
vortex ring in an unbounded domain. Recalling that in the region r1 < 1/ε there are
no discontinuities, (2.29) was calculated using the software package Mathematica,
Version 6 (Mathematica 2007). It was assumed that θ = 3 and ε = 1/3. As one
can clearly see from figure 2(b,c) displaying streamfunction profiles along the wall
boundary (r1 = r1w = 1/ε), Ψ ∗c remains close to zero (and thus satisfies the boundary
condition (2.5)) within machine-precision error. Ψ ∗VR reaches the maximum value
at x1 = 0, which is one order of magnitude below (Ψ ∗c )max; consequently, the wall
correction at this point takes its largest value to bring Ψ ∗c to zero.

To assess the range of applicability of our model, we estimate below the accuracy
of the approximation (2.28) by computing the maximum error at the tube wall.
Following figure 2(b,c), the most important correction occurs at r = Rw (r1 = 1/ε)
for x1 = 0 (corresponding to the vortex centre). This can be theoretically justified by
using symmetry considerations (Esteban 1983) and the maximum principle (Fraenkel
& Berger 1974). We therefore define the maximum relative error of the model as

error= Ψ
∗

c (x1 = 0, r1 = 1/ε)
(Ψ ∗c )max

= Ψ
∗

c (x1 = 0, r1 = 1/ε)
Ψ ∗c (x1 = 0, r1 = 1)

, (2.30)
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FIGURE 2. (Colour online) (a) Isocontours of the normalised streamfunctions Ψ ∗c /(Ψ
∗

c )max
for a confined ring, predicted by (2.29) for ε= 1/3, θ = 3 (solid curves), and Ψ ∗VR/(Ψ

∗
VR)max

for an unbounded ring with θ = 3 (see (2.27)) (dashed curves). Contours are shown for
Ψ ∗c /(Ψ

∗
c )max from 0.1 to 0.9 with an increment of 0.1. The vertical line at r1=3 represents

the tube wall for the confined ring. Profiles along the tube wall line (r1 = 3) for Ψ ∗VR (b)
and |Ψ ∗c | (c).

where we have used the fact that the maximum value of the streamfunction occurs at
the centre of the vortex (x1 = 0, r1 = 1).

Figure 3 shows the maximum relative error of the model for various confinement
parameters ε and for a range of the parameter θ relative to the values obtained from
DNS (see the next sections). We recall that parameter θ , defined by (2.24), is a
measure of the thickness of the vortex ring (see figure 1). The considered values
(2.5 6 θ 6 4.5) correspond to thin vortex rings and are typical of experimentally or
numerically generated vortex rings. The maximum error does not exceed 10 % for
the strongest confinement (ε = 1/(1.75)) and the thickest vortex ring (θ = 2.5). For
ε > 1/2, the errors are negligible for the whole range of parameter θ . For typical
values most relevant to practical applications (Danaila & Helie 2008; Fukumoto 2010),
36 θ 6 4.5, and our confined vortex ring model can be applied with negligible errors
for all confinement parameters.

3. Direct numerical simulations of a viscous vortex ring in a tube
In this section we investigate some features of the flow in confined vortex rings

using the numerical code developed by Danaila et al. (see Danaila & Helie 2008;
Danaila, Vadean & Danaila 2009) for simulation of axisymmetric vortex rings. Some
of these features, not observed in previous studies of unconfined vortex rings, were
identified in recent experiments by Stewart et al. (2012).

As in the previous section, we consider an axisymmetric vortex ring placed in
an infinitely long rigid tube of radius Rw (see figure 1), moving along the axis
of symmetry (x-axis) in an incompressible fluid. The incompressible Navier–Stokes
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FIGURE 3. (Colour online) Maximum relative error of the model defined as the ratio
Ψ ∗c (x1 = 0, r1 = 1/ε)/(Ψ ∗c )max, as a function of the parameter θ characterising the vortex
thickness (see (2.15)). The values of this error were computed for various confinement
parameters ε using the confined vortex ring model (2.29).

equations at cylindrical coordinates (r, θ, x) were solved using the numerical method
suggested by Rai & Moin (1991) and modified by Verzicco & Orlandi (1996). The
method is described in detail by Orlandi (1999) (see also Ruith, Chen & Meiburg
2004). The equations were written in primitive variables (r vr, vθ , vx) and solved on
a staggered grid to avoid the problem of singularities at the axis r= 0. Second-order
finite differences were used for the spatial discretisation. For time advancement we
used the fractional-step method described by Kim & Moin (1985). This method
is based on a combination of a low-storage third-order Runge–Kutta scheme for
the convective terms and the semi-implicit Crank–Nicolson scheme for the viscous
terms. At each substep of the Runge–Kutta scheme, the momentum equations were
solved by an approximate factorisation technique (see Kim & Moin 1985) and the
Poisson equation was solved for the pressure correction. The Poisson solver uses
a fast Fourier transform following the azimuthal direction θ and an effective cyclic
reduction method (FISHPACK subroutines) for solving the remaining two-dimensional
system following (r, x) directions. The method is globally second-order accurate in
space and time.

3.1. Numerical model for a vortex ring generator
Laminar vortex rings are usually produced in laboratories by pushing a column of
fluid (by a piston/cylinder mechanism, e.g. Gharib, Rambod & Shariff 1998, or a
piston gun, e.g. Sullivan et al. 2008) through a long pipe of diameter D. In what
follows, all parameters are normalised using D as the length scale and the maximum
piston velocity U0 as the velocity scale. The main physical parameter of the flow is
the Reynolds number based on the pipe diameter:

ReD = U0 D
ν
. (3.1)
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Using the time scale t0=D/U0, the non-dimensional time in simulations is defined by

τ = tU0

D
= ReD

(
R0

D

)2

t∗, (3.2)

where t∗ is the non-dimensional time defined by (2.25) (the same time was used in
the theoretical model).

The vortex ring is generated numerically by prescribing an appropriate axial
velocity profile at the outlet section of the pipe, corresponding to the inlet section of
the computational domain. For this purpose, we used the specified discharge velocity
(SDV) model suggested by Danaila et al. (2009):

USDV(r, τ )=U0 Up(τ )UCL(τ )Ub(r, τ ), (3.3)

where Up(τ ) is the piston velocity program (normalised by its maximum value U0),
UCL(τ ) takes into account the time evolution of the centreline velocity, and Ub(r, τ )
describes the radial dependence of the profile.

The SDV model is based on the analysis of the Stokes flow evolution inside a long
axisymmetric pipe with unitary constant velocity profile at the entry section. At the
exit of the pipe, the centreline velocity evolves in time as

UCL(τ )= 1

1− 8√
πReD

√
τ + 8

ReD
τ

. (3.4)

The time evolution of the momentum thickness Θ and discharge jet radius Rjet are
given by

Θ(τ)=
√

2− 1√
π

B(τ ), Rjet(τ )= 1
2
− 0.477 B(τ ), (3.5a,b)

where

B(τ )= 2√
ReD

√
τ . (3.6)

To describe the radial dependence of the axial velocity profile, the hyperbolic
tangent velocity profile (e.g. Michalke 1984) commonly used in jet-flow simulations,
was modified to account for the time evolution of its main characteristics:

Ub(r, τ )= 1
2

{
1+ tanh

[
1

4Θ(τ)

(
1− r

Rjet(τ )

)]}
. (3.7)

Note that in most numerical simulations (e.g. James & Madnia 1996; Zhao, Steven
& Mongeau 2000), the parameters of the discharge velocity profile are assumed
to be constant: UCL = 1, Rjet = 0.5 and Θ = Θ0 is specified (to prescribe a fixed
vorticity layer thickness). This SDV model proved to be very accurate in simulating
the laminar vortex ring evolution (see Danaila et al. 2009), when compared to the
available experimental data.

For the piston velocity program we used the model suggested by Zhao et al. (2000):

Up(τ )=


1
2

[
1− cos

(
π
τ

τ1

)]
τ 6 τ1,

1
2

[
1+ cos

(
π
τ − τ1

τ2 − τ1

)]
τ1 < τ 6 τ2.

(3.8)
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FIGURE 4. (Colour online) Piston velocity Up(τ ) used for numerical simulations (solid
curve) and experimentally observed piston velocity reported by Stewart et al. (2012)
(symbols).

Using the results of recent experiments described by Stewart et al. (2012), the
following fitting constants were obtained (see figure 4): τ1 = 1.57 and τ2 = 2.26.

The main integral characteristics of the vortex generator can be approximately
estimated by the so-called slug model (Shariff & Leonard 1992; Lim & Nickels
1995). This model assumes that at the exit plane of the vortex generator the flow is
parallel to the axis and the rate of change of the circulation is determined by the
vorticity flux across this plane. Thus, the stroke length (Lp), circulation (Γp), impulse
(Ip) and kinetic energy (Ep) of the discharged fluid at the cylinder tip are calculated
as

Lp =
∫ τoff

0
UCL(τ ) dτ , Γp = 1

2

∫ τoff

0
U2

CL(τ ) dτ , (3.9a,b)

Ip = πD2

4

∫ τoff

0
U2

CL(τ ) dτ , Ep = πD2

8

∫ τoff

0
U3

CL(τ ) dτ . (3.10a,b)

Taking ReD = 1770 and τoff = 2.26, as in the experiments by Stewart et al. (2012),
we obtain from (3.4) and (3.10) the following values: Lp= 1.28, Γp= 0.55, Ip= 0.86,
Ep = 0.41.

Note that the stroke ratio (Lp = 1.28) is lower than the so-called formation number
of the vortex ring, reported to be in the range 3.6–4.5 (Gharib et al. 1998; Krueger &
Gharib 2003; Dabiri & Gharib 2005). This implies that all the vorticity produced by
the vortex generator is expected to be engulfed by the vortex ring, i.e. the separation
(pinch-off) between the vortex ring and its tail, observed for stroke ratios exceeding
4, is not expected to be present for this case.

3.2. Numerical results
We use the same computational setting as in Danaila & Helie (2008) and in Danaila
et al. (2009), since the long time evolution of a laminar vortex ring was accurately
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FIGURE 5. Contours of vorticity ω at the early stage of formation of the vortex ring in
a tube. Dashed curves show contours of negative vorticity. Times: (a) τ = 2, (b) τ = 3,
(c) τ = 4, (d) τ = 5; ReD = 1700, Dw/D= 1.75.

captured in these studies. The length of the computational domain was taken as
Ld = 10, which allowed us to avoid the vortex ring coming close to the downstream
boundary, where we apply the convective boundary condition (Orlanski 1976),
enforced by the global mass conservation procedure suggested by Ruith et al. (2004).
At r = Rw a no-slip boundary condition is imposed through a ghost-cell procedure.
The grid was uniform in both the axial and radial directions with a refined grid
size δr = δx = 0.01, which ensures grid convergence of the results. Tests with a
stretched grid in the radial direction, such that at least 30 grid points are clustered
in the vorticity layer at the inflow, showed identical results. The timestep was set to
δτ = 0.001, which is largely below the admissible value imposed by the stability of
the numerical scheme. Timestep refinement tests showed negligible differences in the
results obtained for lower δτ .

To investigate the physics of a confined vortex ring, we first fix the confinement
parameter and assume that Dw/D= 1.75, as inferred from the experiments by Stewart
et al. (2012). Note that this confinement parameter is more appropriate for describing
experiments or numerical simulations than the parameter ε = D0/Dw defined in the
theoretical analysis. Indeed, the value of the diameter of the vortex ring D0 (see
figure 1) cannot be specified after prescribing the injection parameters. The two
parameters are related by the formula Dw/D=D0/(εD); a very rough approximation
of the latter relation leads to the following expression: Dw/D≈ 1/ε.

The early stages of the vortex ring formation are illustrated by contours of vorticity
in figure 5. Due to a very small piston stroke ratio, a vortex forms rapidly near
the inlet section. The vortex ring evolves near the lateral wall, generating a negative
vorticity layer that interacts with the stopping vortex, which is produced at the inlet
section after the injection stops (τ > τoff = 2.26). Note that we did not model the
termination of the injection process, since our analysis referred to the cases when
injections stopped suddenly. The stopping vortex normally travels back into the vortex
generator and does not interact with the vortex ring (see the discussion by Krueger
2008).

The influence of the confinement parameter Dw/D on the vortex ring evolution is
illustrated in figure 6. During the injection phase (τ 6 τoff = 2.26) the formation of
the vortex ring is not affected by the proximity of the wall. This was also observed
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FIGURE 7. (Colour online) Time evolution of maximum vorticity ωmax and streamwise
position of the vorticity centre Xc corresponding to the maximum vorticity; ReD = 1700.

in the experimental study by Stewart et al. (2012). After the injection stops, the
vortex ring moves faster when Dw/D increases, i.e. the confinement is reduced (see
figure 6 for τ = 5 and τ = 10). This is attributed to the interaction of the vortex
ring with the vorticity layer (of the opposite sign) induced at the wall (the details
of the wall vorticity are visible in figure 5 for τ = 5). Also, one can observe from
figure 6 that the influence of confinement becomes negligible for large Dw/D. Our
simulations showed that for Dw/D> 3, the lateral wall does not produce a significant
impact on the vortex ring evolution. This observation is also supported by the analysis
of the time evolution of the parameters characterising the vortex ring strength and
trajectory: the maximum value of the vorticity ωmax (figure 7a) and the streamwise
position Xc (figure 7b) of the vortex centre corresponding to the maximum vorticity.
As expected, the value of ωmax for the vortex ring becomes larger and the ring travels
faster when the confinement is reduced (Dw/D is increased). For Dw/D> 3 the results
are very close to the case Dw/D = 8, which can represent the asymptotic regime of
an unconfined vortex ring. We can conclude that the influence of the lateral wall is
negligible for Dw/D > 3, which is consistent with previously reported experimental
findings (Stewart et al. 2012).

The main finding by Stewart et al. (2012) was that the circulation of the vortex ring
during the post-formation phase rapidly decreases in the presence of the lateral wall.
To compute vortex ring circulation, the vortex core must be properly separated from
the background flow. Usually the centre C of the vortex is first located as the point
of the maximum vorticity ωmax; the vortex core is then defined as the inner domain
bounded by the vorticity contour ω/ωmax= 0.05 that encircles the centre C. The cutoff
level is set based on trial and error, to the best satisfaction of the authors. Threshold
values ranged from 2 % (Mohseni 2001) and 5 % (Rosenfeld, Rambod & Gharib 1998;
Zhao et al. 2000; Sau & Mahesh 2007) in numerical studies, to approximately 10 %
(Dabiri & Gharib 2004) in experiments.

The presence of the lateral wall makes the separation of the vortex core rather
delicate, since intense vorticity layers develop near this wall and at the inflow
section after the injection stops. A special post-processing program, based on the
free finite element solver FreeFem++ (Hecht et al. 2007; Hecht 2012), was designed
to properly separate the vortex ring core and compute flow integrals. The program
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FIGURE 8. (Colour online) (a) Contours of the normalised vorticity ω/ωmax for the vortex
ring at τ = 8; ReD = 1700, Dw/D = 1.75. Dashed curves show contours of negative
vorticity. (b) Illustration of the post-processing procedure using finite elements: the contour
ω/ωmax = 0.05 is identified and then the inside area is remeshed using triangular finite
elements (this close-up of the finite element mesh using larger triangles is shown for
clarity).

identifies all closed contours for the prescribed threshold of ω/ωmax (see figure 8),
selects the unique contour around the vortex ring centre and then meshes this
domain with triangles. All flow characteristics are then represented on the finite
element mesh using quadratic P2 triangular elements. The interpolation between the
finite difference grid (used for DNS computations) and the finite element mesh is
also quadratic, which is consistent with the spatial accuracy of the Navier–Stokes
solver. The advantage of this finite element post-processing is that it enables us
to represent accurately and smoothly the boundary of the vortex core and, then,
to use high-order (up to seventh-order) Gaussian methods to compute the integral
characteristics (circulation, impulse, energy) presented in the following section. Also,
this post-processing toolbox can be easily used to post-process experimental results
(obtained from PIV measurements), since FreeFem++ is an integrated product
with its own high-level programming language with a syntax close to mathematical
formulations.

The time evolution of circulation corresponding to vortex ring cores separated using
this method is shown in figure 9(a). After rapid increase during the injection phase
(τ 6 τoff = 2.26), the circulation attains a small plateau (2.26 6 τ 6 6) and then starts
to decrease in the post-formation phase. Assuming that the vortex ring is completely
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FIGURE 9. (Colour online) (a) Time evolution of the vortex ring circulation for
four values of the confinement parameter Dw/D. (b) Close-up corresponding to the
post-formation phase of the vortex ring evolution. Dashed curves show the results inferred
from (3.11) suggested by Stewart et al. (2012). ReD = 1700.

formed when the contour line ω/ωmax = 0.05 defines a convex set (see figure 8), the
post-formation phase starts at τ = 8. A close-up of the time evolution of circulation
during this phase is shown in figure 9(b). A higher rate of decrease of the circulation
is observed when the confinement is increased (the ratio Dw/D is decreased). This is
consistent with experimental observations by Stewart et al. (2012), who suggested that
the time evolution of the circulation Γ (τ) can be described by the ordinary differential
equation dΓ/dτ =−βΓ 2 with the solution

Γ (τ)= Γf

Γfβ(τ − τf )+ 1
, (3.11)

where Γf refers to the (fitted) circulation at τ = τf (Γf was taken as the peak
circulation in the experiments). The predictions of (3.11), taking τf = 8, and shown
in figure 9(b) are in good agreement with DNS results. The fitting coefficient β,
which is related to the production of vorticity at the confinement wall, decreases with
increasing Dw/D, although not exponentially, as reported by Stewart et al. (2012).
This could be related to the fact that our fit refers to a long time evolution during
the post-formation phase, while Stewart et al. (2012) considered a very short time
interval after the injection stopped. We can conclude that the model equation (3.11)
can be used to describe the decrease in circulation even during the post-formation
phase.

The influence of the viscous diffusion on the flow physics was investigated
by performing the simulations for three Reynolds numbers. Figure 10 shows the
vorticity and streamfunction distributions for the time instant τ = 15, confinement
parameter Dw/D = 2 and 3 values of ReD. For ReD = 500, the vortex ring diffuses
rapidly and generates large regions of opposite vorticity at the confinement wall; the
post-formation phase is not clearly defined in this case, since the vortex ring almost
fills the tube. For larger Reynolds numbers (ReD = 3400), the vorticity distribution
looks more compact than for ReD = 1700, used in previous plots and in experiments
by Stewart et al. (2012). This suggests that to test our analytical model using DNS
data we need to use not only the reference value ReD = 1700, but also the more
challenging case of higher Reynolds number ReD = 3400.
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FIGURE 10. (Colour online) Contours of (a–c) normalised vorticity ω/ωmax and (d–f )
the corresponding normalised streamfunction ψ/ψmax, for the time instant τ = 15 and
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The values of ω/ωmax and ψ/ψmax are shown from 0.1 to 0.9 with increments of 0.1.

4. Comparison between DNS data and predictions of the model

One of the attractive features of the model described in § 2 is that the closed
formulae for the vorticity and streamfunction allow us to easily calculate the integral
characteristics which are important in the characterisation of the flow. Since the
vorticity defined by (2.26) depends on parameter θ , which is a function of time (see
(2.24)), (4.3)–(4.5) can predict time evolution of integral characteristics. This allows
us to trace time evolution of circulation, energy and translational velocity for a given
time interval and compare model predictions with DNS data.



Modelling of vortex rings 285

4.1. Comparison algorithm
To enable us to compare the predictions of the model and DNS results, we assume
that the pinch-off (Gharib et al. 1998; Mohseni 2001), i.e. the separation between the
vortex ring and the vorticity tail, has taken place and the vortex ring is completely
formed. Thus, we consider the vortex ring evolution over large time intervals during
the post-formation phase.

The comparison of the predictions of the model with DNS data starts with fitting the
vortex rings, obtained by DNS and the model at a given time instant τ = τf . We use
(2.16) for the vorticity distribution, with the approximation I1(σθ)≈ exp(σθ)/

√
2πσθ ,

valid for large θ . For the cases shown below θ > 4, which makes this approximation
possible. Thus, we fit the DNS vorticity field with the expression

ωf = Γf

π

(
Rf

r

)1/2 1
2L2

f
exp

(
− 1

2L2
f
(r− R0f )

2 − 1
2L2

f
(x− Xcf )

2

)
. (4.1)

Parameters Γf ,R0f ,Xcf ,Lf are found using a nonlinear fit (BFGS minimisation method)
integrated in the finite-element post-processing algorithm. We compute θf = R0f /Lf to
complete the definition of the corresponding theoretical vortex ring. Formula (2.16)
is then used to reconstruct the theoretical vorticity field ω(r, x) and compute integral
characteristics in the same way as in DNS (taking into account only the vorticity of
the vortex core for which ω/ωmax > 0.05).

After fitting the DNS vortex with the prediction of the model at τ = τf , we can
predict the time evolution of integral characteristics assuming (see (2.25)) that

L(τ )= Lf

(
τ

τf

)1/2

, τ > τf . (4.2)

The non-dimensional circulation (Γ ∗), energy (E∗) and translational velocity (U∗)
predicted by the model are then calculated using ω∗ given by (2.26) and Ψ ∗c by
(2.29):

Γ ∗ = Γ

Γf
= 1
Γf

∫ ∞
−∞

∫ Rw

0
ω dr dx=

∫ ∞
−∞

∫ 1/ε

0
ω∗ dr1 dx1, (4.3)

E∗ = E
Γ 2

f R0f
= π

Γ 2
f R0f

∫ ∞
−∞

∫ Rw

0
ωΨc dr dx=π

∫ ∞
−∞

∫ 1/ε

0
ω∗Ψ ∗c dr1 dx1, (4.4)

U∗ = UR0f

Γf
= R0f

Γf

∫ ∞
−∞

∫ Rw

0

(
Ψc − 6x

∂Ψc

∂x

)
ω dr dx

/(
2
∫ ∞
−∞

∫ Rw

0
r2ω dr dx

)
= 1

2

(∫ ∞
−∞

∫ 1/ε

0

(
Ψ ∗c − 6x1

∂Ψ ∗c
∂x1

)
ω∗ dr1 dx1

/∫ ∞
−∞

∫ 1/ε

0
r2

1ω
∗ dr1 dx1

)
. (4.5)

The links between non-dimensional characteristics used for the model (starred
variables) and corresponding characteristics used in DNS computations (we recall
that tDNS = τ ) are given by the following expressions:

t∗ = 1
ReD

(
D

R0f

)2

τ , Γ ∗ = ReD

Re
ΓDNS, Re= Γf

ν
, (4.6a−c)

Ψ ∗ = ReD

Re

(
D

R0f

)
ΨDNS, E∗ =

(
ReD

Re

)2 ( D
R0f

)
EDNS, U∗ = ReD

Re

(
R0f

D

)
UDNS.

(4.7a−c)
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FIGURE 11. (Colour online) Contours of normalised streamfunction ψ/ψmax obtained by
solving (2.2) numerically with the right-hand side term corresponding to the full DNS
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(b, DNS). Streamfunction profiles through the centre of the vortex: (c) along the r-axis
(x= Xc), (d) along the x-axis (r= R0). ReD = 1700, Dw/D= 1.75, τ = 8.

In what follows, all the characteristics are referred to using DNS (non-starred)
variables.

Finally, the translational velocity of the vortex ring is computed from DNS data as

UDNS = dXωc

dτ
, Xωc =

∫ ∞
−∞

∫ Rw

0
r2xω dx dr

/∫ ∞
−∞

∫ Rw

0
r2ω dx dr, (4.8a,b)

where Xωc is the streamwise coordinate of the vorticity centroid (Hill 1894; Krieg &
Mohseni 2013). This will be compared to that given by (4.5).

4.2. Streamfunction field of the confined vortex ring for ReD = 1700
First we consider the case ReD = 1700, Dw/D= 1.75 studied in the previous section
and used in the experiments described by Stewart et al. (2012). We focus on the post-
formation phase (τ >8) characterised by a decay in circulation with time (see figure 9).
We recall that for DNS data, streamfunction ψ is computed by solving numerically
(2.2) with the vorticity corresponding to the vortex ring core (ω/ωmax > 0.05). The
vorticity layer generated at the wall is thus ignored, to allow comparison with the
theoretical model which does not take into account such effects. From figure 8 it can
be seen that the negative vorticity at the lateral wall is rather small (|ω/ωmax|6 0.01).
Its influence on the spatial distribution of the streamfunction is thus expected to
be limited to the downstream part of the vortex ring. Figure 11 illustrates this
statement by displaying streamfunction fields calculated using the full vorticity field
(DNS-F, figure 11a) and the vorticity of the vortex ring core only (DNS, figure 11b).
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FIGURE 12. (Colour online) Comparison between the DNS data (blue solid curves
or squares) and predictions of the vortex ring model (red dashed curves or circles).
(a) Contours of normalised vorticity ω/ωmax; (b) corresponding contours of normalised
streamfunction ψ/ψmax; (c) scatter plot {ψp, ωp/rp} (non-dimensional values) for points p
inside the vortex ring core. Values of ω/ωmax and ψ/ψmax from 0.1 to 0.9 with increments
of 0.1 are shown in (a) and (b). ReD = 1700, Dw/D= 1.75, τ = 8.

Streamfunction profiles through the centre of the vortex, along the r-axis (figure 11c)
and x-axis (figure 11d) show that differences between the two cases are negligible
inside the vortex ring core. Therefore, we will use DNS streamfunction fields
corresponding to the vorticity truncated to zero outside the vortex ring core.

In figure 12 the results of comparison of the DNS data with the predictions of
the vortex ring model for τ = 8 are shown. As expected, the vortex ring model
(see (2.16) and its approximation (4.1) with an isotropic two-dimensional Gaussian)
predicts quasi-circular contours for vorticity, compared to the prolate shape contours
for the DNS vortex. Nevertheless, the nonlinear fit provides accurate localisation of the
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Model/DNS parameters Computed integrals
τf = 8 R0f Xcf L θ Γf Ef

(a) Dw/D= 1.75 VR model 0.503 1.409 0.132 3.794 0.687 0.0888
DNS data 0.503 1.415 — — 0.667 0.0888

(b) Dw/D= 2.00 VR model 0.535 1.678 0.130 4.099 0.714 0.1190
DNS data 0.545 1.675 — — 0.695 0.1169

(c) Dw/D= 3.00 VR model 0.549 2.126 0.129 4.241 0.742 0.1581
DNS data 0.555 2.125 — — 0.721 0.1495

(d) Dw/D= 8.00 VR model 0.546 2.264 0.130 4.204 0.753 0.1700
DNS data 0.555 2.265 — — 0.731 0.1583

TABLE 1. Parameters of the vortex ring model obtained by a nonlinear fit of (4.1) using
DNS data and that computed from the original DNS for various confinement ratios Dw/D.
The results of comparison are presented for the vortex centre position (R0f ,Xcf ), circulation
Γf and energy Ef . ReD = 1700, τf = 8.

vortex centre (R0f , Xcf ), as indicated in table 1(a). Also, the circulation predicted by
the vortex ring model is very close to that obtained for the DNS vortex. Note that the
model for a confined vortex ring is based on the assumption that the space distribution
of the vorticity is not very important in deriving (2.29) for the streamfunction. This
is confirmed by the results shown in figure 12(b) demonstrating very good agreement
between DNS data and predictions of the model for the normalised streamfunction
contours. Streamlines predicted by the model are almost circular close to the vortex
centre, but deform near the wall to accommodate the wall boundary condition, as
in the case of DNS results. The lateral wall located at Rw = 0.875 is captured as a
streamline in both cases.

Figure 12(a,b) also suggests that the DNS vortex ring could not be accurately
described by models derived as steady solutions to Euler equations (e.g. the Norbury
model). For inviscid and steady flows, the vorticity equation (2.1) reduces to
ω/r = F(Ψ ), with F being an arbitrary function, i.e. ω/r propagates without change
of shape along streamlines. For such models, a good theoretical representation of the
streamfunction field would also guarantee an accurate representation of the vorticity
field, which is not the case in figure 12(a,b). In order to explore this feature, we
present in figure 12(c) a scatter plot of ω/r as a function of Ψ for points inside the
vortex ring core. We have plotted normalised values of vorticity and streamfunction,
as in Sullivan (1973), using the vortex ring radius R0 and the translation velocity U
as reference scales. As one can see from this figure, ω/r cannot be represented as
a simple function of ψ , either for the model, or for the DNS vortex. Similar scatter
plots were reported in experimental studies of unconfined vortex rings (Sullivan 1973;
Akhmetov 2009). The fact that our model is based on the Kaplanski–Rudi model,
including viscous and unsteady effects (see § 2.3 and (2.24)), allows us to obtain a
scatter plot which is very close to that obtained by DNS.

To explore the accuracy of our model, we showed in figures 13 and 14 vorticity
and streamline profiles through the centre of the vortex. Profiles along the r-axis are
the most representative, since the presence of the wall at r = Rw must be taken into
account. Two confinement ratios are considered: Dw/D= 1.75 and Dw/D= 3. Vorticity
profiles (figure 13a,c) are well approximated by the model, even though the theoretical
vorticity (see (2.16) and its approximation (4.1) by an isotropic two-dimensional
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FIGURE 13. (Colour online) Comparison between the DNS data (blue solid curves) and
predictions of the vortex ring model (red dashed curves). Profiles are shown along the r-
axis through the centre of the vortex (at x=Xc). Vorticity ω and streamfunction ψ profiles
are shown for two confinements Dw/D= 1.75 (a,b) and Dw/D= 3 (c,d). Streamfunction
profiles (ΨVR) of the unconfined vortex ring (2.20) are shown (green dash-dot curves) for
reference in figures (b) and (d). Vertical lines indicate the lateral wall. ReD= 1700, τ = 8.

Gaussian) does not reproduce the asymmetry of the DNS vorticity profile with
respect to the centre of the vortex. We recall that the Gaussian approximation (4.1)
stands for relatively thin vortex rings, with small diffusive scales L. The asymmetry
of vorticity profiles is less important along the longitudinal x-axis (figure 14a,c),
making the theoretical predictions very accurate. In figure 13(b,d), in addition to
the streamline profile (Ψc) of the confined vortex ring (see (2.29)) we also plot the
streamline profile (ΨVR) of the unconfined vortex ring (see (2.27)). It can be clearly
seen from these figures that the correction Ψ0 added in (2.29) plays an important role
in bringing Ψc to zero at the wall. We recall that LΨ0= 0 and thus it does not affect
the vorticity distribution of the vortex ring. The correction is most visible in the
vicinity of the wall (R0 < r< Rw) and allows us to obtain a very good approximation
of the DNS profiles. We also note that, as expected, the correction is most important
for the low confinement ratio (Dw/D) since in this case the wall is at its closest to
the vortex centre. In the longitudinal x-direction (figure 14b,d), the correction due
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FIGURE 14. (Colour online) The same as in figure 13, but for the profiles along the x-axis
through the centre of the vortex (at r= R0). Dw/D= 1.75 (a,b) and Dw/D= 3 (c,d).

to the wall is less important since the unconfined vortex ring model already gives a
good approximation (ΨVR ≈Ψc).

Note that the quasi-superposition of streamlines implies that the DNS and theoretical
vortex rings have similar signatures. The signature of a vortex ring without swirl is a
topological invariant, defined by Moffatt (1988) as the volume inside the torus ψ =
const. (see also Danaila & Helie 2008).

Table 1 shows the comparison between the predictions of DNS and modelling for
three other confinement parameters Dw/D = 2, 3, 8. For small confinements (large
Dw/D) the model tends to overestimate the circulation of the vortex ring, but by
no more than 3 %. The values of the energy Ef , computed from (4.4) using the
fitted vorticity distribution, are in very good agreement with the DNS results for all
confinement ratios. This implies that the theoretical model for the streamfunction Ψc
is not only qualitatively accurate (as shown in figure 12), but can also be used for
quantitative characteristics of vortex rings.

4.3. Evolution of integral characteristics for ReD = 1700
In the next step, the time evolutions of integral characteristics (circulation, energy
and translational velocity), predicted by the model with viscous length given by (4.2),
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FIGURE 16. (Colour online) Time evolution of the circulation Γ (a) and energy E (b)
of the vortex ring obtained by DNS and the model for three confinement parameters
Dw/D. ReD = 1700.

are compared with those obtained by DNS. The vorticity field was truncated so that
only values ω/ωmax > 0.05, representing the vortex core, were considered. Using the
fitted vortex ring at τ = 8 (with parameters displayed in table 1) we computed model
predictions corresponding to the time evolution of the viscous scale given by (2.24)
for a long time interval 8 6 τ 6 20. To check whether this case lies inside the range
of applicability of the model (see § 2.3 and figure 3), we plotted in figure 15 the time
evolution of parameter θ and the corresponding maximum relative errors of the model
(see (2.30)). As follows from figure 15, the model offers a very good approximation,
despite the strong confinement (corresponding to ε≈ 1/(1.75) in figure 3).

The time evolution of circulation and energy, predicted by the model and DNS for
confinement parameters Dw/D= 1.75, 2 and 3, are shown in figure 16. For the sake
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FIGURE 17. (Colour online) Time evolution of the translational velocity U of the vortex
ring. Comparison between DNS data and the model predictions (4.5) for three confinement
parameters Dw/D. ReD = 1700.

of clarity, the plots for Dw/D = 8, which were very close to the plots for the case
Dw/D= 3, are not shown in the figure. Remembering equation (2.17), one can expect
that the circulation predicted by the model is close to Γf considered at the fitting time
τ = τf . Figure 16(a) shows that the rate of decrease of circulation inferred from DNS
data is higher than the one predicted by the model. However, theoretical values of Γ
are very close to DNS values, especially if smaller time intervals are considered. This
explains why the time evolutions of energies, inferred from DNS data and predicted
by the model (see figure 16b), are close. The idea behind this comparison was to
challenge our model to predict the time evolution of integral characteristics for long
time intervals. Strictly speaking, this is beyond the capabilities of the model, since
the original Kaplanski–Rudi vortex ring model is valid for small time intervals when
the Reynolds number is large (Fukumoto & Kaplanski 2008). However, figure 16
shows that the model could also be applied for large time evolutions, with fairly
good accuracy. This opens the way to using the model for realistic configurations of
practical interest.

Finally, we compare the theoretical prediction (4.5) for the translational velocity
of the vortex ring with the DNS values computed from the time evolution of the
vorticity centroid (4.8) (see figure 17). We recover two of the characteristic features
of the vortex ring motion discussed in § 2: the translational velocity U is larger for
low confinements (large Dw/D ratios) and U decreases faster when the confinement
is low. These are two consequences of the interaction of the vortex ring with the
vorticity created near the lateral wall (with the sign opposite to the vorticity of the
vortex ring). Our model accounts for these features of the confined vortex ring motion,
but the values of U are underestimated compared to those obtained by DNS. The
origin of these discrepancies is the role of the streamwise gradient ∂Ψ ∗c /∂x1 present in
(4.5); theoretical streamfunction Ψ ∗c displays larger gradients near the wall than those
inferred from the DNS field, resulting in lower values of the translational velocity
predicted by the model. The model, however, is able to predict well the main features
of the variation of the translational velocity of the confined vortex ring.
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FIGURE 18. (Colour online) Contours of normalised vorticity ω/ωmax (a) and
corresponding normalised streamfunction ψ/ψmax (b), obtained by DNS (blue solid
curves) and the vortex ring model (red dashed curves). The values of ω/ωmax and
ψ/ψmax are shown from 0.1 to 0.9 with increments of 0.1. ReD = 3400, Dw/D = 2,
τ = 15.

4.4. Evolution of integral characteristics for higher Reynolds numbers
In an attempt to further challenge our model, we considered the case of a higher
Reynolds number (ReD = 3400) and long time evolution of the vortex ring during
the post-formation phase. We kept the same injection program (see figure 4) with
τoff = 2.26 and focused on 15 6 τ 6 60. DNS computations were performed on a
larger domain (Ld = 20) to account for the long time evolution. We used the same
spatial resolution and the same timestep as for previous simulations to ensure mesh
convergence of the results. Confinement parameters Dw/D > 2 were considered in
order to avoid the situation where the vortex ring touches the lateral wall during long
time evolutions. Figure 18 shows a comparison between the values of normalised
vorticity and streamfunction predicted by the model and DNS at τ = 15 and Dw/D= 2.
As one can see in this figure, the time evolution trends for both parameters, predicted
by the model and obtained by DNS, are rather similar. This means that the two
vortex rings have the same signature, despite rather different spatial distributions of
the vorticity. Table 2 summarises the predictions of the main parameters defining
the vortex rings for various confinement parameters Dw/D. The spatial positions of
the vortex are accurately captured by the model, whilst it slightly overestimates the
initial circulation. The time evolutions of the vortex ring circulation and energy are
compared in figure 19. We notice in this figure the same trends as for ReD = 1700:
the theoretical rate of circulation decay is lower than inferred from DNS data, while
the energy predictions made by the model are very close to numerical results.

5. Summary and discussion
A new theoretical model for a confined axisymmetric vortex ring is suggested. This

model allows us, for the first time to the best of our knowledge, to provide a good fit
with realistic vortex rings generated in experiments and those obtained by DNS. The
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FIGURE 19. (Colour online) Time evolution of the circulation Γ (a) and energy E (b)
of the vortex ring, as inferred from DNS data and predicted by the model for three
confinement parameters Dw/D. ReD = 3400.

Model/DNS parameters Computed integrals
τf = 15 R0f Xcf L θ Γf Ef

(a) Dw/D= 2 VR model 0.527 3.006 0.1275 4.135 0.6619 0.102
DNS data 0.535 3.005 — — 0.6443 0.101

(b) Dw/D= 3 VR model 0.556 3.937 0.125 4.438 0.693 0.1452
DNS data 0.565 3.935 — — 0.674 0.1387

(c) Dw/D= 4 VR model 0.556 4.157 0.125 4.435 0.700 0.1532
DNS data 0.565 4.155 — — 0.681 0.1450

TABLE 2. Parameters of the vortex ring model obtained by a nonlinear fit of (4.1) using
DNS data and that computed from the original DNS for various confinement ratios Dw/D.
The results of comparison are presented for the vortex centre position (R0f ,Xcf ), circulation
Γf and energy Ef . ReD = 3400, τf = 15.

latter were used to test the capabilities of the model and to investigate new features
of the confined vortex rings reported in the experimental study conducted by Stewart
et al. (2012).

The model combines the viscous vortex ring model by Kaplanski & Rudi (2005)
with Brasseur’s (Brasseur 1979) approach to deriving a wall-induced streamfunction
correction. A closed relationship for the streamfunction of the confined vortex ring
is obtained. The vorticity field ω(r, x) predicted by the model is shown to have
the same trends as the one obtained by DNS, while the spatial distribution of the
streamfunction ψ(r, x) predicted by the model is shown to be very close to the one
obtained by DNS. This allows us to estimate accurately two important characteristics
of the confined vortex ring depending only on the streamfunction: its signature
V(ψ) = {the volume inside the torus ψ = const.}, defined by Moffatt (1988) as a
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topological invariant which enables us to identify the vortex ring, and the vortex ring
energy

E=π

∫∫
ωψ dr dx=π

∫∫
1
r
[(∂ψ/∂r)2 + (∂ψ/∂x)2] dr dx. (5.1)

Making the assumption that there is a power-law variation in the viscous length
of the vortex ring (see (4.2)), the time variations of the main integral characteristics,
circulation Γ , kinetic energy E and translational velocity U, are obtained. The
predictions of the model have been compared with DNS data for various Reynolds
numbers and confinement parameters. Even for high Reynolds numbers and long
time evolutions of the confined vortex ring in the post-formation phase (the most
unfavourable conditions), the model offered good approximation of the DNS data. For
example, variations in energy over time were accurately captured, while circulation
decay and the evolution of the translational velocity were predicted fairly well, which
enables us to recommend the model for practical engineering applications. The fit
with DNS data could be further improved if a power different to 1/2 were chosen
in (4.2); it was shown earlier that the Kaplanski–Rudi model for viscous vortex
ring could be generalised for power-laws with exponents between 0.25 and 0.5 (see
Kaplanski et al. 2009). The main aim of this paper, however, is not to find the best
fit with DNS data but to assess the general capabilities of the model to reproduce
realistic confined vortex rings.

It is shown that another way to improve the model is to consider a vortex ring
taking into account the ellipticity (deformation) of the vorticity field (as shown in
figures 16 and 18). This would allow us to describe more accurately the circulation
decay of the confined vortex ring, since its rate of decay strongly depends on
its confinement, as can be inferred from our DNS results and was observed in
experiments by Stewart et al. (2012). Such an improved model could be used for the
estimate of the formation number (Gharib et al. 1998) of a confined vortex ring, using
the criteria introduced by Shusser & Gharib (2000) or Mohseni & Gharib (1998).
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