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We address the question of constructing simple inviscid vortex models which optimally

approximate realistic �ows as solutions of an inverse problem. Assuming the model to

be incompressible, inviscid and stationary in the frame of reference moving with the

vortex, the "structure" of the vortex is uniquely characterized by the functional relation

between the streamfunction and vorticity. It is demonstrated how the inverse problem

of reconstructing this functional relation from data can be framed as an optimization

problem which can be e�ciently solved using variational techniques. In contrast to

earlier studies, the vorticity function de�ning the streamfunction-vorticity relation is

reconstructed in the continuous setting subject to a minimum number of assumptions.

To focus attention, we consider �ows in 3D axisymmetric geometry with vortex rings.

To validate our approach, a test case involving Hill's vortex is presented in which a very

good reconstruction is obtained. In the second example we construct an optimal inviscid

vortex model for a realistic �ow in which a more accurate vorticity function is obtained

than produced through an empirical �t. When compared to available theoretical vortex-

ring models, our approach has the advantage of o�ering a good representation of both

the vortex structure and its integral characteristics.
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1. Introduction

In this investigation we study the problem of constructing simple inviscid models
for �ows of realistic incompressible �uids. More speci�cally, we are interested in
situations where such �ows can be approximately represented by localized vortices
which are steady in a suitable frame of reference. As an example of this type of �ow
phenomena, vortex rings are ubiquitous in many important applications ranging
from biological propulsion [1, 2] to the fuel injection in internal combustion engines
[3, 4]. We will thus focus on constructing steady inviscid incompressible �ows
which in some mathematically precise sense provide an optimal representation of
the original �ow �eld. Such Euler �ows are described by equations of the type
Lψ= F (ψ), where L is a second-order self-adjoint elliptic operator speci�c to
the particular �ow con�guration and ψ represents the streamfunction in two
dimensions (2D) and the Stokes streamfunction in three dimensions (3D). The
nonlinear source function F (ψ) encodes information about the structure of the
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inviscid vortex. Therefore, the question of identifying an inviscid vortex best
matching a given velocity �eld leads to an inverse problem for the reconstruction
of the source function F (ψ). While there have been numerous attempts to model
realistic �ows in terms of localized vortices, especially vortex rings [5, 6, 7], the
idea of framing this as an inverse problem has received rather little attention with
earlier approaches relying on the representation of the unknown source function
in terms of a small number of parameters [8]. In the present study we propose
and validate a fundamentally di�erent approach which will allow us to reconstruct
the source function F (ψ) in a very general form as a continuous function subject
to minimal assumptions. This approach is an adaptation of the method for an
optimal reconstruction of constitutive relations developed in [9, 10] which was
recently also used to study a number of other problems in �uid mechanics [11, 12].
Given that inverse problems for partial di�erential equations (PDEs) are often ill-
posed [13], another objective of the present study is to assess to what extent
such reconstruction is actually possible for selected problems and identify its
limitations. This will also provide insights about physical aspects of the problem
which are captured by the reconstruction approach.

To �x attention, but without the loss of generality, hereafter we will focus on
axisymmetric �ows in 3D geometry with vortex rings (Figure 1). A very similar
approach can be developed for 2D �ows. For convenience, in the following we use
the cylindrical coordinates (z, r, θ) with z the longitudinal (propagation) direction
of the �ow. We denote the velocity �eld by v = (vz, vr, 0)T and by ω =∇× v =

(0, 0, ωθ)
T the corresponding vorticity. Thus, given our assumption that the �ow is

axisymmetric, the only nonzero vorticity component is the azimuthal one, denoted
by ω := ωθ.

A vortex ring is then de�ned as the axisymmetric region Ωb of R3 such that
ω 6= 0 in Ωb and ω= 0 elsewhere (see Figure 1). The domain Ωb, also called vortex
bubble, is delimited by the streamline corresponding to ψ= 0, where ψ(z, r) is the
Stokes streamfunction in the frame of reference moving with the vortex ring.

Classical vortex ring models are stationary solutions of Euler equations. The
key feature of such models is that the vorticity transport equation reduces to (e. g.
[15, 16])

ω

r
=

{
f(ψ) in Ωb,
0 elsewhere, (1.1)

with f : R→R called the vorticity function (it is related to the source function
introduced above as F (ψ) =−rf(ψ)). In other words, ω propagates with a time-
invariant pro�le f(ψ) along streamlines in the frame of reference moving with the
vortex. As described in detail in the next section, the associated mathematical
problem consists in solving an elliptic PDE for ψ with a right-hand-side term
depending on the solution itself. The main di�culty in solving this PDE comes
from the fact that the boundary ∂Ωb of the vortex bubble is not known in advance,
which makes it a free boundary problem.

The only known analytical solution of this problem considers f(ψ) = const
within Ωb which has the shape of a sphere, and is known as Hill's spherical vortex
[17] (see also [15, 16]). The mathematical theory of inviscid axisymmetric vortex
rings was developed in the '70s and in the early '80s [18] around Hill's vortex, by
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Figure 1: Direct numerical simulation of the incompressible Navier-Stokes
equations representing a physical vortex ring with axial symmetry [14]. Velocity
vectors (a) and corresponding streamlines (b) in the frame of reference travelling
with the vortex ring.

considering the following particular form of the vorticity function

f(ψ) = const, ∀ψ > k, and f(ψ) = 0, ∀ψ≤ k, (1.2)

with k > 0 de�ning the vortex-ring core as Ωc =
{

(z, r, θ)∈R3, ψ(z, r)>k
}
⊂Ωb

(see Figure 1b). Existence and uniqueness results for the inviscid vortex ring
problem are presented in [18, 19, 20] for the general case and in [21, 22] for
vortex rings bifurcating from Hill's vortex. Numerical solutions of the vortex-ring
problem, using (1.2) as the vorticity function, were obtained by Norbury [23] and
Fraenkel [24], and are hereafter referred to as NF vortices. These models were
also extended to allow for vortex rings with swirl (i.e., with nonzero azimuthal
velocity); analytical closed-form solutions for Hill's spherical vortex with swirl
were obtained in [25] and numerical solutions using vorticity functions generalizing
(1.2) for swirling �ows were presented in [26].

From the practical point of view, vortex-ring models are useful as inviscid
approximations to actual vortex structures observed in experiments or generated
by the Direct Numerical Simulation (DNS) of the Navier-Stokes equations. For
the purposes of �tting such models to DNS data, the NF inviscid vortex-ring
model [24, 23] was widely adopted and proved very useful in estimating integral
quantities and global properties of actual vortex rings [27, 28, 29]. This is quite
remarkable, since the vorticity function (1.2) gives a linear vorticity distribution
in the vortex core, i. e. proportional to the distance from the axis of symmetry,
which is in fact quite di�erent from the Gaussian vorticity distribution typically
observed in experiments (e. g. [30, 31]). The main feature of the inviscid vortex-
ring models is that the vorticity function f(ψ) is prescribed by (1.1) as a
hypothesis of the model. While experimental studies [32, 33] reported some scatter
in the plots of ω/r versus ψ, this data was rather well �tted by an empirical
formula for the vorticity function in the exponential form f(ψ) = a exp(bψ) with
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a and b representing two constants adjusted during the �tting procedure [33].
This supports the idea that steady inviscid models could be used as good
approximations of unsteady viscous vortex rings arising in real �ows if the vorticity
function f(ψ) is accurately determined.

In the present contribution we formulate the problem of identifying an optimal
vorticity function f(ψ) as an inverse problem. It will be solved using a variational
optimization approach in which optimality of the reconstruction implies that
the obtained inviscid vortex-ring model best matches, in a suitably de�ned
sense, the available measurements. A natural question in the formulation of
such an inverse problem is how much measurement data is required to ensure
a reliable reconstruction The solution method we have developed can assimilate
measurements available in 3D regions or on 2D surfaces with in principle arbitrary
shapes. While modern experimental techniques such as particle-image velocimetry
(PIV) and advanced DNS can provide snapshots of the velocity �eld in a large part
of the �ow domain, for benchmarking purposes in our computational examples we
will consider an arguably harder problem where only incomplete measurements
are available. More speci�cally, we will assume the reconstructions to be based
on measurements of the tangential velocity component on ∂Ωb, the boundary of
the vortex bubble. A practical application in which this situation occurs is the
experimental study of fuel injection in automobile engines [3, 4, 8]: measurements
in the injected two-phase spray do not always provide reliable velocity �elds in
the vortex bubble Ωb because of the high density of seeding particles [34]. It is
then necessary to theoretically reconstruct parts of the �ow �eld not accessible to
measurements. As demonstrated by the results of our test problem concerning
Hill's vortex, even in such a restricted setting, the vorticity function can be
accurately reconstructed with our approach. In our second example based on
actual DNS data, we will show how the proposed approach can improve the
accuracy of an inviscid vortex model derived from a purely empirical �t for
the vorticity function. The predictions of our model will also be compared to
classical reconstruction methods based on �tting theoretical vortex-ring models
to the entire velocity �eld inside the vortex-ring bubble. We will show that our
approach o�ers a good approximation of both the structure of the vorticity �eld
and its integral characteristics, which is not the case with classical reconstruction
methods. This is quite remarkable, since only partial information about the
velocity �eld is used in our method.

The structure of the paper is as follows: in the next two sections we introduce
the equations satis�ed by the steady inviscid vortex rings and formulate the
reconstruction problem in terms of an optimization approach. In Section 4
we propose a gradient-based solution method and derive the gradient formula.
The computational algorithm is described in Section 5, together with the tests
validating the method used for the computation of the gradients. The proposed
method is �rst validated against a known analytical solution (Hill's vortex) in
Section 6. The approach is then applied to a challenging problem of reconstructing
an optimal vorticity function from realistic DNS data in Section 7. Discussion and
�nal conclusion are deferred to Section 8.
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2. Physical Problem and Governing Equations

In this section we present the equations satis�ed by our vortex model. We consider
incompressible axisymmetric vortex rings without swirl and add that formally a
very similar description also holds for 2D inviscid �ows. If a stationary solution is
sought, it is more convenient to describe the �ow in the frame of reference moving
with the translation velocity Wez (assumed constant) of the vortex ring (see
Figure 1). A divergence-free velocity �eld is constructed by de�ning the Stokes
streamfunction ψ [15, 16] such that

vz =
1

r

∂ψ

∂r
, vr =−1

r

∂ψ

∂z
, vθ = 0. (2.1)

The azimuthal component of the vorticity vector is then given by

ω=
∂vr
∂z
− ∂vz

∂r
. (2.2)

Combining (2.1) and (2.2) results in an elliptic partial di�erential equation for
the streamfunction

Lψ=−ω in Π =
{

(z, r)∈R2, r > 0
}
, (2.3)

where L is de�ned as

L :=
∂

∂z

(
1

r

∂

∂z

)
+

∂

∂r

(
1

r

∂

∂r

)
= ∇ ·

(
1

r
∇
)
, where ∇ :=

(
∂

∂z
,
∂

∂r

)T
.

(2.4)
The boundary condition required for equation (2.3) accounts for an external �ow
around the vortex which is uniform at in�nity with velocity −Wez (see Figure 1)

Ψ :=ψ +
1

2
Wr2→ 0 as |x| :=

√
z2 + r2→∞. (2.5)

We note that Ψ is the Stokes streamfunction in the laboratory frame of reference;
Ψ also satis�es the PDE (2.3), since L(k + 1

2Wr2) = 0 for any constants W and
k.

We recall that for inviscid and steady �ows in the frame of reference moving
with the vortex ring, the transport equation for the vorticity reduces to (1.1).
Problem (2.3) can be reduced to a semi-linear elliptic system by considering
a particular form of the vorticity function as given, for example, in (1.2) [18].
A di�erent reformulation of the problem, namely, as a semi-linear Dirichlet
boundary-value problem for the Laplacian operator in cylindrical coordinates in
R5, was introduced in [19]. This made possible the use of variational techniques
to prove existence results [19, 35], symmetry [36] and asymptotic behaviour [37]
of solutions.

In the present study, we formulate the vortex-ring problem in the domain Ω⊂
R2 de�ned as the cross-section of the vortex bubble Ωb in the meridian half plane
r > 0 (see Figure 1b). The domain Ω is then bounded by the dividing streamline
(ψ= 0) containing the front (A) and rear (B) stagnation points. On the axis
of symmetry (r= 0) the radial velocity vr vanishes which is consistent with the
relation ψ= 0 holding there. These two parts of the boundary of the vortex bubble
will be denoted γb and γz, respectively. Thus, the governing system for vortex rings
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takes the �nal form

Lψ=−r f(ψ) in Ω, (2.6a)

ψ= 0 on γ := γz ∪ γb. (2.6b)

Although the fore-and-aft symmetry is not enforced in solving system (2.6), most
(albeit not all) solutions of this system obtained in our study will have this
property. Hereafter we will use as diagnostic quantities the following integral
characteristics of the vortex rings: circulation Γ, impulse (in the horizontal
direction z) I, and energy E. Using the vorticity function f(ψ), they can be
expressed [16] in terms of the following integrals over domain Ω (�gure 1b)

Γ :=

∫
Ω
rf(ψ(z, r)) drdz, (2.7a)

I := π

∫
Ω
r3f(ψ(z, r)) drdz, (2.7b)

E := π

∫
Ω
rf(ψ(z, r))ψ(z, r) drdz. (2.7c)

3. Formulation of the Reconstruction Problem

In this section we formulate the reconstruction problem as an inverse problem
of source identi�cation amenable to solution using variational optimization
techniques. Before we can precisely state this formulation, we need to characterize
the admissible vorticity functions f . Their domain of de�nition will be restricted
to the interval I := [0, ψmax], where ψmax >maxx∈Ω ψ(x) is chosen arbitrarily, so
that f : I →R. We will refer to I as the �identi�ability interval� [9]. Next, we
note that in order to guarantee the existence of nontrivial solutions to nonlinear
elliptic boundary-value problems of the type (2.6), the vorticity function f(ψ)
must be positive (we refer the reader to the monographs [38, 39] for a more
detailed discussion of this issue). Regarding the regularity of the vorticity function,
we will restrict our attention to continuous and di�erentiable functions f which
is required due to certain technical aspects of the reconstruction algorithm (see
Section 4b). While this assumption does exclude vortex-ring models with vorticity
support compact in Ωb, such as the NF model, cf. relation (1.2), such continuous
vorticity functions are more appropriate for practical applications motivating this
study. More speci�cally, we will assume that f belongs to the Sobolev spaceH1(I)
of continuous functions de�ned on I with square-integrable gradients. The inner
product de�ned in this space is

∀z1,z2∈H1(I)

〈
z1, z2

〉
H1(I)

=

∫ψmax
0

z1z2 + `2
∂z1

∂s

∂z2

∂s
ds, (3.1)

where `∈R+ is a parameter with the meaning of a �length scale� (the signi�cance
of this parameter will be discussed further in Section 4c). We can now state the
reconstruction problem as follows
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Problem 1. Given the measurements m : γb ∪ γz→R of the velocity
component tangential to the boundaries γb and γz, �nd a vorticity function
f̂ ∈H1(I), such that the corresponding solution of (2.6) matches data m as well
as possible in the least-squares sense.

For the purpose of the numerical solution, we will recast Problem 1 as a
variational optimization problem which can be solved using a suitable gradient-
based method. Since the tangential velocity at the boundary is v · n⊥ = 1

r
∂ψ
∂n , we

de�ne a cost functional J : H1(I)→R as

J (f) :=
αb
2

∫
γb

(
1

r

∂ψ

∂n

∣∣∣∣
γb

−m

)2

dσ +
αz
2

∫
γz

(
1

r

∂ψ

∂n

∣∣∣∣
γz

−m

)2

dσ, (3.2)

where αb and αz assume the values {0, 1} depending on which part(s) of the
domain boundary the measurements are available on. At this point we remark
that measurement data distributed over some �nite-area region R∈Ω can also be
used and in such case the line integrals in (3.2) will be replaced with suitable area
integrals over R. The optimal reconstruction f̂ will thus be obtained via solution
of the following minimization problem

f̂ := argminf∈H1(I) J (f), (3.3)

where �argmin� denotes the argument minimizing the objective function. In some
situations it may be necessary to enforce the nonnegativity f(ψ)≥ 0 of the
vorticity function (functions obtained by imposing this property will be denoted
f+). Rather than including an inequality constraint in optimization problem (3.3),
this can be achieved in a straightforward manner by expressing f+ = (1/2)g2,
where g is a real-valued function de�ned on I, and then recasting problem (3.3)
in terms of the new function g as the control variable.

Problem 1 is an example of an inverse problem of source identi�cation.
However, in contrast to the most common problems of this type [13], in which the
source function depends on the independent variables (e.g., on x), in Problem 1
the source f is sought as a function of the state variable ψ. As will be shown in
the following section, to address this aspect of the problem, a specialized version
of the adjoint-based gradient approach will be developed.

4. Gradient-Based Solution Approach

In this section we �rst describe the general optimization formulation which is
followed by the derivation of a convenient expression for the cost functional
gradient. Finally, we discuss the calculation of smoothed Sobolev gradients.

(a)Minimization Algorithm

For simplicity, the solution approach to Problem 1 we present below will not
address the positivity constraint which can be accounted for in a straightforward
manner using the substitution mentioned at the end of the previous section.
Solutions to problem (3.3) are characterized by the following �rst-order optimality
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condition
∀f ′∈H1(I) J ′(f̂ ; f ′) = 0, (4.1)

where the Gâteaux di�erential J ′(f ; f ′) := limε→0 ε
−1 [J (f + εf ′)− J (f)] of

functional (3.2) is

J ′(f ; f ′) = αb

∫
γb

(
1

r

∂ψ

∂n

∣∣∣∣
γb

−m

)
1

r

∂ψ′

∂n

∣∣∣∣
γb

dσ + αz

∫
γz

(
1

r

∂ψ

∂n

∣∣∣∣
γz

−m

)
1

r

∂ψ′

∂n

∣∣∣∣
γz

dσ,

(4.2)
in which the variable ψ′ satis�es the linear perturbation equation

∇ ·
(

1

r
∇ψ′

)
+ rfψ(ψ)ψ′ =−r f ′ in Ω, (4.3a)

ψ′ = 0 on γ, (4.3b)

where fψ :=
df

dψ
and f ′ is the �direction� in which the di�erential is computed

in (4.2). The presence of the derivative fψ in (4.3a) is the reason explaining the
regularity requirements imposed on f (cf. Section 4).

The optimal reconstruction can be obtained as f̂ = limk→∞ f
(k), where the

approximations f (k) can be computed with the following gradient descent
algorithm

f (k+1) = f (k) − τk∇J (f (k)), k= 1, 2, . . .

f (1) = f0,
(4.4)

in which f0 is the initial guess and τk represents the length of the step along the
descent direction at the k-th iteration. For the sake of simplicity, formulation (4.4)
corresponds to the steepest-descent algorithm, however, in actual computations
we shall prefer more advanced minimization techniques, such as the conjugate
gradient method [40] (see Section 5). We note that optimality condition (4.1)
and the associated gradient descent (4.4) characterize only local minimizers and
establishing a priori whether a given minimizer is global is not possible. This is a
consequence of the nonconvexity of Problem 1 resulting from the nonlinearity of
governing system (2.6). Global maximizers are sought by solving problem (4.4)
repeatedly using a range of di�erent initial guesses f0.

(b)Derivation of the Gradient Expression

A key element of descent algorithm (4.4) is the cost functional gradient∇J (f).
Assuming that Gâteaux di�erential (4.2) is a bounded linear functional de�ned
on a Hilbert space X (e.g., X =L2(I) or X =H1(I)), i.e., J ′(f ; ·) : X →R, an
expression for the gradient ∇XJ (f) can be obtained from (4.2) employing the
Riesz representation theorem [41]

J ′(f ; f ′) =
〈
∇XJ (f), f ′

〉
X
, (4.5)

with 〈., .〉X denoting the inner product in the space X . We note that representation
(4.2) is not yet consistent with (4.5), since the perturbation f ′ is not explicitly
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present in it, but is instead hidden in the source term of perturbation equation
(4.3a). In order to identify an expression for the gradient consistent with (4.5),
we introduce the adjoint variable ψ∗ : Ω→R. Integrating (4.3a) against ψ∗ over
Ω and then integrating by parts twice we obtain

0 =

∫
Ω
ψ∗
[
∇ ·

(
1

r
∇ψ′

)
+ rfψ(ψ)ψ′

]
dΩ +

∫
Ω
ψ∗ r f ′dΩ

=

∫
Ω
ψ′
[
∇ ·

(
1

r
∇ψ∗

)
+ rfψ(ψ)ψ∗

]
dΩ +

∫
Ω
ψ∗ r f ′dΩ

+

∫
γb∪γz

1

r

(
ψ∗
∂ψ′

∂n
− ψ′∂ψ

∗

∂n

)
dσ.

(4.6)

Using boundary condition (4.3b) and de�ning the adjoint system as follows

∇ ·
(

1

r
∇ψ∗

)
+ rfψ(ψ)ψ∗ = 0 in Ω, (4.7a)

ψ∗ = αb

(
1

r

∂ψ

∂n

∣∣∣∣
γb

−m

)
on γb, (4.7b)

ψ∗ = αz

(
1

r

∂ψ

∂n

∣∣∣∣
γz

−m

)
on γz, (4.7c)

identity (4.6) simpli�es to

J ′(f ; f ′) =−
∫

Ω
ψ∗ r f ′dΩ. (4.8)

Although perturbation f ′ appears explicitly in (4.8), this expression still is not
in a form consistent with Riesz representation (4.5), because the latter requires
an inner product with s (equivalently, ψ) as the integration variable. We address
this issue by expressing f ′(ψ) in terms of the following integral transform

f ′(ψ(x)) =

∫ψmax

0
δ(ψ(x)− s)f ′(s) ds, x∈Ω, (4.9)

where δ(·) is the Dirac delta distribution. Plugging (4.9) into (4.8) and then using
Fubini's theorem to exchange the order of integration, we obtain

J ′(f ; f ′) =−
∫

Ω
ψ∗ r

[∫ψmax

0
δ(ψ(x)− s)f ′(s) ds

]
dΩ

=−
∫ψmax

0
f ′(s)

[∫
Ω
ψ∗ r δ(ψ(x)− s) dΩ

]
ds

(4.10)

which is already consistent with Riesz representation (4.5). Although this is not
the gradient used in our actual calculations, we �rst identify the L2 gradient of J
and then obtain from it the required Sobolev gradient ∇H1J as shown in Section
4c. Thus, setting X =L2(I), relation (4.5) becomes J ′(f ; f ′) =

∫
I ∇J (s)f ′(s) ds
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which, together with (4.10), yields

∇L2J (s) =−
∫

Ω
ψ∗ r δ(ψ(x)− s) dΩ =−

∫
γs

ψ∗ r

(
∂ψ

∂n

)−1

dσ, s∈ [0, ψmax].

(4.11)
The expression on the right-hand side (RHS) of (4.11) shows that, for a given
s∈ I, the gradient ∇L2J (s) can be evaluated as a contour integral on the level
set

γs := {x∈Ω : ψ(x) = s}. (4.12)

We add that an essentially identical approach will remain applicable when the
measurements are available over a �nite-area regionR rather than on the contours
γb and γz. The only di�erence is that the adjoint system will be �forced� through
a source term (with the support equal to R) on the RHS of (4.7a), instead of
through boundary conditions (4.7b)�(4.7c) as discussed above.

(c) Sobolev Gradients

We now proceed to discuss how Sobolev gradients ∇J =∇H1J employed in
gradient-descent approach (4.4) can be derived from the L2 gradients obtained in
(4.11). We remark that this additional regularity is required for the consistency
of the entire approach, since the reconstruction with L2 gradients would not
guarantee (weak) di�erentiability of the vorticity function f(ψ), thus rendering
adjoint system (4.7) ill-posed (because of the term fψ in (4.7a)). This will be
done using inner product (3.1) in Riesz identity (4.5). In addition to enforcing
smoothness of the reconstructed vorticity functions, this formulation also allows
us to impose the desired behavior at the endpoints of interval I via suitable
boundary conditions (we refer the reader to [9] for a more in-depth discussion of
these issues). As regards the behavior of the gradients ∇H1J at the endpoints of
interval I, we can require the vanishing of either the gradient itself or its derivative
with respect to s. In the present study we prescribe the homogeneous Neumann
boundary condition at the right endpoint of the identi�ability interval I

d

ds
(∇H1J ) = 0 at s=ψmax (4.13)

which implies that, with respect to the initial guess f0, at s=ψmax iterations (4.4)
can modify the values, but not the slope, of the reconstructed functions f (k). As
regards the behavior of the Sobolev gradients at the left endpoint, we will consider
either Dirichlet or Neumann boundary conditions

∇H1J = 0 at s= 0, (4.14a)

d

ds
(∇H1J ) = 0 at s= 0 (4.14b)

which will preserve, respectively, the value or the slope of the initial guess f0

at s= 0. We refer the reader to [11] for a discussion of other possible choices
of boundary conditions imposed on the Sobolev gradients in an identi�cation
problem with a similar structure. We emphasize that the choice of the boundary
behavior of the Sobolev gradients plays in fact a signi�cant role from the
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physical point of view. Together with the behaviour of the initial guess f0 in
the neighbourhood of s= 0 and s=ψmax, it expresses our hypotheses on the
properties of the optimal reconstruction f̂(ψ) for the limiting values of ψ where
no measurement data is available. The need to supplement measurement data with
some auxiliary information about the solution is quite typical for inverse problems
[42]. Additional comments about the speci�c physical meaning of the boundary
conditions imposed on the Sobolev gradients will be provided in Sections 6 and
7.

Identifying expression (4.5) in which X =H1(I) with the inner product given
in (3.1), integrating by parts and using boundary conditions (4.13)�(4.14) we
obtain the following elliptic boundary-value problem on I de�ning the Sobolev
gradient ∇H1J (

I − `2 d
2

ds2

)
∇H1J =∇L2J in I, (4.15a)

∇H1J

d

ds
∇H1J

= 0 at s= 0, (4.15b)

d

ds
∇H1J = 0 at s=ψmax, (4.15c)

where the expression for ∇L2J is given in (4.11). A slightly di�erent way of
obtaining Sobolev gradients in identi�cation problems with analogous structure
is discussed in [9].

It is well known [43] that extraction of cost functional gradients in the space
H1 with the inner product de�ned as in (3.1) can be regarded as low-pass �ltering
of L2 gradients with the cut-o� wavenumber given by `−1. The quantity ` admits
a clear physical meaning as the smallest �length-scale� (with the magnitude of
the streamfunction ψ playing the role of �length�) which is retained when the
Sobolev gradient is extracted according to (4.15). In other words, features of
the L2 sensitivity (4.11) with characteristic length scales smaller than ` are
removed during gradient preconditioning. Therefore, by choosing ` to represent the
characteristic variation of the streamfunction ψ in the problem, this mechanism
allows us to eliminate in a controlled manner undesired small-scale components
which may be present in the L2 gradients due to noise in the measurements,
numerical approximation errors, etc. One approach which has been found to work
particularly well [43] is to start with a relatively large value of `, which gives
smooth gradients suitable for reconstructing large-scale features of the solution,
and then decrease it with iterations, which allows one to zoom in on progressively
smaller features of the solution. This is the approach we adopt here by setting
`(k), the value of the length-scale used in (4.15) at the k-th iteration, as

`(k) = ζk `(0), k > 0, (4.16)

where `(0) is some initial value and 0< ζ < 1 the decrement factor.
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5. Computational Algorithm

As is evident from Section 3, the reconstruction algorithm requires the solution
of several linear and nonlinear elliptic boundary-value problems in one or two
spatial dimensions, namely, the governing system (2.6), the adjoint system (4.7)
and the preconditioning system for the Sobolev gradients (4.15). In addition,
evaluation for the L2 gradients is somewhat involved, because the integrals in
(4.11) are evaluated on the level sets γs which have to be identi�ed, cf. de�nition
(4.12). All of these technical issues were easily handled using the freely available
�nite-element software FreeFem++ [44, 45]. This generic PDE solver o�ers the
possibility of using a large variety of triangular �nite elements with an integrated
grid generator in two or three dimensions. FreeFem++ is equipped with its own
high-level programming language with syntax close to mathematical formulations.
It was recently used to solve di�erent types of partial di�erential equations, e. g.
Schrödinger and Gross-Pitaevskii equations [46, 47], incompressible Navier-Stokes
equations [10], Poisson equations with nonlinear source terms [48] and Navier-
Stokes-Boussinesq equations [49]. The main advantage of employing FreeFem++

for the present problem is the simplicity in using di�erent �nite-element meshes
for each sub-problem making the interpolation or computation of integrals very
easy and accurate. Below we brie�y describe the implementation of key elements
of the computational algorithm which are then validated in the following section.

(a)Main Computational Modules

The computational algorithm consists of the following main modules:
• [De�nition of the mesh and the associated �nite-element spaces] We de�ne

here the boundaries γb and γz and build a triangular mesh covering the vortex
domain Ω (see Figure 2). The mesh density is characterized byNx representing the
number of segments per unit length in the discretization of the domain boundaries.
The �nite element space Vh is de�ned such that all dependent variables are
represented using piecewise quadratic P 2 �nite elements. Cost function (3.2) is
computed with a 6-th order Gauss quadrature formula.
• [One-dimensional interpolation] The vorticity function f(s) is tabulated at

Nf discrete values si ∈ [0, ψmax], i= 1, . . . , Nf . The value ψmax (cf. Section 3) is
set depending on a particular reconstruction case. To obtain values of f and its
derivative fψ for non-tabulated values of ψ we use cubic spline interpolation.
• [Solution of direct problem (2.6)] Given the nonlinearity of this problem,

we use Newton's method with p-th iteration consisting in computing the solution
q := (ψp − ψp+1) of the following variational problem∫

Ω

1

r
∇q ·∇v dΩ−

∫
Ω
rfψ(ψp)qv dΩ =

∫
Ω

1

r
∇ψp ·∇v dΩ−

∫
Ω
rf(ψp)v dΩ, ∀v ∈ Vh.

(5.1)
This problem is solved e�ciently in FreeFem++ by building the corresponding
matrices (spline interpolation is used to evaluate f(ψ(x)) and fψ(ψ(x))). Newton's
iterations are stopped when ‖q‖2 ≤ εN with εN = 10−6.
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Figure 2: Schematic of the calculation of the L2 gradient of the cost functional
based on formula (4.11). The level set γs corresponding to s= 0.1 is marked with a
thick line, whereas the inset represents the mesh discretizing the domain bounded
by γs.

• [Solution of adjoint problem (4.7)] Given the linearity of this problem, this
consists in solving the weak formulation∫

Ω
−1

r
∇ψ∗∇v dΩ +

∫
Ω
rfψ(ψ)ψ∗v dΩ = 0, ∀v ∈ Vh, (5.2)

with Dirichlet boundary conditions (4.7b)-(4.7c), which takes two lines of code in
FreeFem++.
• [Computation of L2 gradient] To use formula (4.11) for the L2 gradient

∇L2J (s), for each value si, i= 1, . . . , Nf , in the table de�ning the discretized
vorticity function f(si), we construct the corresponding level set γsi and mesh
its interior (see Figure 2). The values of ψ∗ and ψ are P 2 interpolated on the
new mesh and the integral in (4.11) is then computed with a 6-th order Gauss
quadrature formula.
• [Computation ofH1 gradient] To obtain theH1 gradient from the L2 gradient

we solve the one-dimensional boundary-value problem (4.15) with either (4.15b)
or (4.15c) as the boundary condition. This is a standard problem which can be
solved in a straightforward manner using P 1 piecewise linear �nite elements or
second-order accurate centered �nite di�erences.
• [Minimization algorithm] With the cost functional gradient evaluated as

described above, we approximate the optimal vorticity function f̂ using the Polak-
Ribiere variant of the conjugate gradients algorithm [40] which is an improved
version of descent algorithm (4.4). The length of the step τk at every iteration k
is determined by solving a line minimization problem

τk = argmin
τ>0

J (f (k) − τ∇J (f (k))) (5.3)

using Brent's method [50].
Clearly, accurate evaluation of the cost functional gradients ∇J (f) is a

key element of the proposed reconstruction approach and these calculations are
thoroughly validated in the following section.
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Figure 3: Dependence of the diagnostic quantity κ(ε) de�ned in (5.4) on ε for (a)
di�erent discretizations of the identi�ability interval I given by Nf = 100, 150, 200
with Nx = 150 �xed, and (b) di�erent discretizations of the domain Ω given by
Nx = 75, 150, 300 with Nf = 200 �xed.

(b)Validation of Cost Functional Gradients

In this section we analyze the consistency of the gradient ∇J evaluated based
on formula (4.11) with respect to re�nement of the two key numerical parameters
in the problem, namely, Nx and Nf (see the previous section for de�nitions). A
standard test [51] consists in computing the Gâteaux di�erential J ′(f ; f ′) in some
arbitrary direction f ′ using relations (4.10)�(4.11) and comparing it to the result
obtained with a forward �nite�di�erence formula. Thus, deviation of the quantity

κ(ε) :=
ε−1 [J (ψb + εψ′b)− J (ψb)]∫ψmax

0 f ′(s)∇J (s) ds
(5.4)

from the unity is a measure of the error in computing J ′(f ; f ′) (we note that, in
the light of identity (4.5), expression in the denominator of (5.4) may be based
on the L2 gradients).

The dependence of the quantity log |κ(ε)− 1|, which captures the number of
signi�cant digits of accuracy achieved in the evaluation of (5.4), on ε is shown in
Figures 3a and 3b, respectively, for increasing Nf and Nx while keeping the other
parameter �xed. These results were obtained in a con�guration representing Hill's
vortex in which C = 1/2 and Ω is a half-circle of radius a= 2 (see Section 6 for
a precise de�nition of this test problem), and some generic forms of the reference
vorticity function f and its perturbation f ′ were used. As is evident from Figures
3a and 3b, the values of κ(ε) approach the unity for ε ranging over approximately
7 orders of magnitude as the discretization is re�ned (i.e., as Nf and Nx increase).
We emphasize that, since we are using the �di�erentiate�then�discretize� rather
than �discretize�then�di�erentiate� approach, the gradient should not be expected
to be accurate up to the machine precision [52]. This is because of the presence
of small, but nonzero, errors in the approximation of the di�erent PDEs and the
gradient expression (4.11). The deviation of κ(ε) from the unity for very small
values of ε is due to the arithmetic round�o� errors, whereas for the large values
of ε it is due to the truncation errors, both of which are well known e�ects [51].
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In particular, the former e�ect is typical of all �nite-di�erence techniques and
as such is an artifact of formula (5.4) usually employed to test the accuracy of
adjoint-based gradient expressions. These results thus demonstrate high accuracy
of the computed gradients and con�rm that this accuracy can be systematically
improved by re�ning the discretization.

The computational results presented in next two sections were obtained
with the numerical resolution Nx = 75, corresponding to Ne =O(104 − 105) �nite
elements discretizing domain Ω (the exact number varied depending on the
speci�c test problem), and Nf = 100. Solution of optimization problem (3.2)�
(3.3) typically requires O(1)�O(10) iterations terminated when ‖∇H1J ‖L2(I)

drops below 10−5. The costliest element of each iteration is solution of the line
minimization problem (5.3) which on average necessitates O(10) solutions of Euler
system (4.3). Overall, the computational time required for a single iteration using
the resolutions mentioned above on a workstation with Intel i7 processors is O(1)
minutes with a rather modest memory footprint.

6. Reconstruction of Inviscid Vortex Rings � Hill's Spherical Vortex

In this section we employ algorithm (4.4) to reconstruct the vorticity function
f in a test case involving Hill's spherical vortex in which the exact form of f is
known. Then, in Section 7, we will use our approach to reconstruct the vorticity
function f(ψ) in a steady Euler �ow assumed to model an actual high-Reynolds
number �ow with concentrated vortex rings. Data for this reconstruction will be
obtained from a DNS of such a �ow.

Hill's spherical vortex is a well known [15, 16] closed-form solution for which
the vortex bubble Ω is a sphere of radius a and the vorticity function is constant
everywhere in Ω, i.e.,

f(ψ) =C, C > 0, ∀ψ(x), x∈Ω. (6.1)

The �ow outside the bubble approaches the uniform �ow Wez as |x| →∞. By
matching the solution inside the bubble with the exterior solution, the continuity
of ψ and ∇ψ on γ gives the compatibility relationship

W =
2

15
Ca2. (6.2)

The complete expression for the streamfunction in Hill's vortex can be found
for example in [53, 15, 16]. The circulation, impulse and energy then take the
following values, cf. (2.7),

ΓHill =
2

3
Ca3, IHill =

4

15
Ca5π, EHill =

4

525
C2a7π. (6.3)

It is interesting to note that Hill's vortex is not only an Euler solution,
but also satis�es the Navier-Stokes equation (in this sense, it is related to the
�controllable �ows� introduced by Truesdell [54]). Indeed, if an additional pressure
−2Cµz is included inside the bubble to balance the viscous term µ∆v =−2Cµez,
the Navier-Stokes equation is satis�ed both inside and outside the vortex [16].
However, at the boundary of the vortex ring, only the continuity of the velocity
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Figure 4: [Hill's vortex] Decrease of cost functional J (f (k)) with k for iterations
starting with initial guess f0 (a) underestimating and (b) overestimating the exact
vorticity function (6.1). Di�erent lines correspond to the values of `(0) and ζ,
cf. equation (4.16), indicated in the �gure legends.

is satis�ed. The normal and tangential stresses are not continuous across the
boundary, therefore Hill's vortex is not an exact solution of the complete Navier-
Stokes system.

In the test problem analyzed here we consider Hill's vortex in which without the
loss of generality we set a= 2 and C = 1/2. We assume that the measurements
m of the tangential velocity component are available on the entire separatrix
streamline with ψ= 0, i.e., γb ∪ γz = γ0, cf. (4.12), in cost functional (3.2). Since
contour γ0 is closed, by Stokes' theorem, measurements m of the tangential
velocity determine the total circulation Γ contained in the region Ω. Thus, the
reconstruction problem formulated in this way is quite complete.

In order to assess the e�ect of the initial guess f0 on the convergence of gradient
algorithm (4.4), we analyze iterations staring from two distinct initial guesses
f0, one underestimating and one overestimating the exact vorticity function
(6.1) (since these initial guesses are representative of a broad range of functions
with similar structure, the exact formulas are not important). The Sobolev
gradients are computed using Neumann boundary condition (4.14b) at the left
endpoint (s= 0) of the identi�ability interval I. The reason is that using instead
homogeneous Dirichlet boundary condition (4.14a) together with f0(0) =C = 1/2
would make the reconstruction problem too easy, whereas imposing f0(0) 6= 1/2
would be inconsistent with measurements m. In the present problem uniformly
positive reconstructions f̂ were obtained for the vorticity function without any
positivity enforcement.

The histories of cost functional J (f (k)) with iterations corresponding to the
two initial guesses are shown in Figures 4a and 4b, where we consider cases with
di�erent `(0) and ζ (cf. formula (4.16)). As discussed in Section 4c, the values of
the length-scale parameter `(0) ∈ [10−2, 10−1] are selected to lie within the range
of variation of the streamfunction ψ which in this problem is [0, 0.2]. We note that
in most cases the cost functional decreases by about �ve orders of magnitude over
a few iterations. Reducing the length-scale `(k) with iterations has an e�ect on the
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rate of convergence when one initial guess is used, but appears to play little role
when the other initial guess is employed. Hence, in this problem, we will adopt
the values `(0) = 10−1 and ζ = 10−1/5. This choice of ζ ensures that `(k) decreases
by an order of magnitude every �ve iterations, cf. (4.16).

In Figures 5a and 5b we show the optimal reconstructions f̂ obtained in the
two cases together with the corresponding initial guesses. We observe that in both
cases the reconstructed vorticity function f̂ is very close to the exact solution
C = 1/2 on the interval [0, ψmax], where ψmax = 0.2. In Figure 5b we note a slight
deviation of the reconstructed vorticity function from the exact pro�le f(ψ) =
C = 1/2 for values of ψ close to ψmax. Given that the corresponding value of cost
functional (3.2) is O(10−7), this provides evidence for a degree of ill-posedness of
Problem 1, in the sense that �nite modi�cations of the vorticity function f have
only a vanishing e�ect on the measurements appearing in (3.2). From the physical
point of view, this behavior can be attributed to the fact that streamfunction
values close to ψmax are attained on a small part of the domain Ω which is close
to the centre of the vortex and therefore removed from the contour γ0 where
the measurements are acquired. If the goal is to maximize the reconstruction
accuracy for values of ψ close to ψmax, this issue can be remedied by including
additional measurements acquired within the vortex bubble Ωb in cost functional
J (f). As discussed in Section 4a, the reconstruction method does allow for such
a possibility.

The convergence of circulation Γ, impulse I and energy E with iterations k to
the values characterizing the exact solution is shown in Figures 6a and 6b for the
two cases. In these �gures we plot the relative error

ε(k)(Γ) :=

∣∣∣∣∣Γ(f (k))

ΓHill
− 1

∣∣∣∣∣ (6.4)

for the vortex circulation and analogous expressions for the impulse and energy
using logarithmic scale to determine the number of signi�cant digits captured
in the reconstruction. In the �gures we note a fast, though nonmonotonous,
convergence of the three diagnostic quantities to the corresponding exact values.
We obtain approximately two digits of accuracy for the energy and three or more
for the circulation and impulse.

7. Reconstruction of Vorticity from DNS Data

In this section we describe a more challenging task of reconstructing the vorticity
function characterizing a realistic vortex ring. In the following we use a high-
resolution DNS of the axisymmetric Navier-Stokes equations to generate a realistic
evolution of a viscous vortex ring. The numerical approach is described in [14],
although the data used in the present study corresponds to a higher Reynolds
number and injection parameters chosen to reproduce the experiments reported
in [55], see also [56]. The computational domain (z, r)∈ [0, 10]× [0, 2] is discretized
with 3200× 800 grid points ensuring convergence of the results. The vortex ring is
generated by prescribing an appropriate axial velocity pro�le at the inlet section of
the computational domain. We used the speci�ed discharge velocity (SDV) model



18

ψ

f(
ψ

)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.25

0.5

0.75

1
initial guess
final solution
exact solution

(a)

ψmax
ψ

f(
ψ

)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.25

0.5

0.75

1
initial guess
final solution
exact solution

(b)

ψmax

Figure 5: [Hill's vortex] Reconstructed source functions f̂ (blue solid lines) and the
corresponding initial guesses (red dashed lines) when f0 (a) underestimates and
(b) overestimates the exact vorticity function (6.1). The black horizontal dotted
line represents exact solution (6.1) with a= 2 and C = 1/2, whereas the vertical
dotted lines mark the maximum value ψmax = 0.2 achieved by the streamfunction
in exact solution.
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Figure 6: [Hill's vortex] Evolution of the relative error ε(k)(Γ) for the circulation,
cf. (6.4), and of analogously de�ned expressions for the impulse I and energy
E showing convergence to the corresponding values ΓHill, IHill and EHill

characterizing the exact solution, cf. (6.3). Iterations starting with initial guess f0

underestimating and overestimating the exact vorticity function (6.1) are shown
in panels (a) and (b), respectively.
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proposed in [56] to mimic the �ow generated by a piston/cylinder mechanism
pushing a column of �uid through a long pipe of diameter D. In the following,
all presented quantities will be normalized using D as the length scale and the
maximum (piston) velocity U0 at the entry of the pipe as the velocity scale.
The corresponding reference time is thus D/U0. The main physical parameter
of the �ow is the Reynolds number based on the characteristic velocity ReD =
U0D/ν = 17, 000, with ν the viscosity of the �uid. Even at this elevated Reynolds
number, the simulated vortex ring remains laminar and axisymmetric. Laminar
vortex rings were reported in jet experiments with Reynolds numbers up to 20000
[33]. The injection is characterized by the stroke length (Lp) of the piston. We
prescribed a piston velocity program used in actual experiments with Lp/D= 1.28
[55].

For the reconstruction problem, we consider the vortex ring data obtained
from the DNS at the nondimensional time t= 10. This time instant corresponds
to the post-formation phase, since the injection stopped at toff = 2.26. The DNS
streamfunction ψDNS(z, r) in the frame of reference moving with the vortex is
computed by solving the general equation (2.3) within the rectangular domain
used for the DNS together with the corresponding boundary conditions. We then
use the level set ψDNS = 0 to de�ne the reconstruction domain Ω (see Figure 1b)
and from this data extract the measurements m=m(z, r) on γb and γz, which
serve as the target data in optimization problem (3.2)�(3.3). In the following,
the velocity �eld is scaled by the translation velocity W and distances are scaled
by the vortex radius. The vortex centre is thus located at (z, r) = (0, 1) and 0≤
ψDNS ≤ 0.791.

(a)Results of our reconstruction method

As a starting point, the empirical relation {ω(zp, rp)/rp, ψ(zp, rp)}p between
the vorticity and the streamfunction, cf. (1.1), at the points (zp, rp) discretizing the
�ow domain Ω is shown as a scatter plot in Figures 7a,b. While these points tend
to cluster along a rather well-de�ned curve, their local scattering is a manifestation
of the fact that the original Navier-Stokes �ow is viscous and not strictly steady in
the chosen frame of reference. This scatter tends to increase for vortex rings with
smaller Reynolds numbers. We now consider two approaches to reconstructing the
vorticity function f on the RHS in (2.6a) so that the inviscid vortex-ring model
provides an accurate representation of the DNS data as quanti�ed by the cost
functional (3.2).

As the �rst approach we examine a least-squares �t of an empirical power-law
relation for the vorticity function which yields

fDNS(ψ) = 56.337ψ2.520. (7.1)

We note that this relation has the property fDNS(0) = 0 ensuring that the vorticity
support in the inviscid vortex-ring model coincides with Ω. As is evident from
Figure 7a, the �t captures the main trends exhibited by the data, except in the
neighbourhood of the origin where the data reveals a larger scatter. On the other
hand, due to its functional form the �t fDNS(ψ) approaches zero monotonously as
ψ→ 0 (cf. Figure 7b). In addition, the empirical �t (7.1) also slightly misrepresents
the slope df/dψ. From the point of view of our reconstruction problem, the region
characterized by small values of ψ is particularly important, because it involves
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Figure 7: [DNS] Vorticity function f(ψ) for (a) ψ ∈ I and (b) ψ ∈ [0, 0.2]
(magni�cation of the region near the origin): (scatter plot with dots) relation
{ω(zp, rp)/rp, ψ(zp, rp)}p corresponding to discrete Navier-Stokes DNS data; (blue
dotted line) least-squares �t fDNS given by (7.1) and (red solid line) the optimal
reconstruction f̂ .

many data points in close proximity to the contour γ0 on which the measurements
are de�ned (this is re�ected by a larger density of data points near the origin
in Figures 7a,b). The values of the cost functional and the normalized errors
in the reconstruction of the circulation, impulse and energy, cf. (2.7a)�(2.7c),
corresponding to the empirical �t (7.1) are collected in Table 1.

J (f) Γ I E ωmax

DNS 4.670 13.393 7.444 34.07
fDNS 0.03263 4.212 13.002 7.470 32.17

f̂ 0.00315 4.607 13.385 6.900 29.19

Norbury-Fraenkel model 0.00864 4.671 13.974 7.448 14.45

Kaplanski-Rudi model 0.07939 3.898 12.288 6.647 30.43

Table 1: [DNS] Values of the cost functional (3.2), the diagnostic quantities
(2.7) and the vorticity maximum ωmax obtained for the empirical �t fDNS of
the vorticity function, cf. (7.1), the optimally reconstructed vorticity function f̂
and the �ts with the Norbury-Fraenkel and Kaplanski-Rudi vortex-ring models
(cf. Section 7b).

As the second approach, we reconstruct the vorticity function optimally by
solving Problem 1 as described above, with the least-squares �t (7.1) used as
the initial guess in algorithm (4.4), i.e., f0 = fDNS. As discussed in Section 4c, in
the absence of other relevant information, this �t will also be used to determine
the behavior of the optimal reconstruction f̂(ψ) for limiting values of ψ. More
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precisely, in the reconstruction process we use the Sobolev gradients determined
subject to the homogeneous Dirichlet boundary condition at ψ= 0, cf. (4.15b),
which together with our choice of the initial guess ensures that f̂(0) = 0. As regards
large values ψ >maxx∈Ω ψ(x), we will assume that the slope of f̂(ψ) will be given
by the slope of the �t (7.1) which is ensured by the use of the homogeneous
Neumann boundary condition (4.15c) at ψ=ψmax. The characteristic length-scale
in the inner product (3.1) was chosen as `= 10−3/2 ≈ 0.0316 and the decrement,
cf. (4.16), as ζ = 101/5. The optimal vorticity function f̂(ψ) reconstructed in
this way is shown in Figures 7a,b, whereas the corresponding values of the cost
functional (3.2) and the diagnostic quantities (2.7) are indicated in Table 1.
First of all, we observe that the reconstruction error as measured by the cost
functional is reduced by an order of magnitude. This is achieved with an optimal
vorticity function f̂(ψ) exhibiting a local maximum around ψ= 0.03 which allows
it to better match data points (more scattered for small ψ) and at the same
time satisfy the constraint f̂(0) = 0. This is facilitated by our choice of the cost
functional which is more sensitive to points in Ω characterized by small values
of ψ as they are located close to the boundary γ0, cf. Figure 1. On the other
hand, for larger values (ψ≈ 0.8), the optimal reconstruction reveals only a small
improvement with respect to the empirical �t fDNS. This is a consequence of the
fact that parts of the �ow domain with large values of ψ are rather far from the
contour γ0 where the measurements are acquired. Given that the reconstruction
errors represented by the cost functional J (f) are already very small, cf. Table
1, this e�ect can be attributed to the ill-posedness of the underlying inverse
problem. As already discussed in Section 6, further improvements can be obtained
using measurements distributed inside the vortex. As documented in Table 1, the
optimal reconstruction improves the relative accuracy of both circulation and
impulse by about one order of magnitude with respect to the model based on the
empirical �t (7.1). On the other hand, the latter approach captures the energy
and maximum vorticity (which are both nonlinear functions of the �ow variables)
more accurately than the optimal reconstruction.

(b)Comparison with reconstruction methods based on analytical models

In this section we compare our results with more classical reconstruction
approaches based on �ts with analytical vortex-ring models. The approach directly
related to our method relies on the Norbury-Fraenkel (NF) model for the steady
inviscid vortex ring. It considers a constant vorticity function given by (1.2)
and, once the vortex bubble was �xed, there are two parameters de�ning the
vortex ring in this model: the vorticity intensity C (i. e. f(ψ) =C) and the �ux
constant k (2πk represents the �ow rate between the axis 0z and the boundary
∂Ωc, see Figure 1b). It was shown in [48] that, for a �xed vortex bubble, vortex-
ring solutions exist if C/k≥ δmax, with δmax estimated as a function of the �rst
eigenvalue of the operator L on the bubble domain Ω. If the vortex ring circulation
is imposed, the solution is then unique and can be numerically calculated by
an iterative algorithm suggested in [48]. In our case, corresponding to Figure 1,
the �tting procedure gives the following values of the parameters: C = 13.39 and
k= 0.333.
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In the NF model, the vorticity distribution in the vortex core is linear, i. e.
proportional to the distance from the symmetry axis (as in Hill's spherical vortex
model). This is not realistic, since a Gaussian vorticity distribution was reported
in experimentally generated vortex rings [e. g. 30, 31]. This is remedied in the
Kaplanski-Rudi (KR) vortex-ring model [6] which was derived as a linear �rst-
order solution to the Navier-Stokes equation in the axisymmetric geometry and
arbitrary times (see also [5]). The vorticity in the vortex core was predicted to be
quasi-Gaussian, expressed by

ω(z, r) =
Γ0√
2π

θ3

R2
0

exp

[
−1

2

(( r
L

)2
+
( z
L

)2
+ θ2

)]
I1
( r
L
θ
)
, (7.2)

where I1 is the modi�ed Bessel function of the �rst kind, L the e�ective viscous
length scale of the vortex ring, Γ0 the circulation of the vortex ring, R0 its radius
(OC in Figure 1b) and θ=R0/L a (viscous) parameter identifying the vortex.
To use the KR model, we �t the DNS vorticity �eld with distribution (7.2) using
the approximation I1(η)≈ exp(η)/

√
2πη for large η. Under this approximation

relation (7.2) becomes an isotropic 2D Gaussian. Using a non-linear �t with
the BFGS minimization method we obtain the following values of the model
parameters: Γ0 = 3.925, R0 = 1.0047, L= 0.142, and θ= 7.03. We note that the
�tted radius of the vortex ring is very close to the DNS value RDNS

0 = 1 imposed
by the adopted scaling (see Figure 1).

In our analysis we will focus on the vorticity �elds of the di�erent models
as they exhibit more signi�cant variation than the corresponding streamfunction
�elds. Vorticity contours for the DNS vortex ring and corresponding reconstructed
�elds are shown in Figure 8. For our optimal reconstruction, at each point (z, r)

the vorticity is computed as ω(z, r) = rf̂(ψ(z, r)) using cubic spline interpolation,
cf. Section 5a, with ψ computed as part of the reconstruction problem by solving
the direct problem (2.6) with f = f̂ . . The maximum values of the reconstructed
vorticity ωmax := max(z,r)∈Ω ω(z, r) are given in table 1. They correspond to
the vorticity at the centre of the vortex ring, except for the NF model in
which ω(z, r) =Cr. One can see that our model and the viscous KR model well
approximate ωmax from the DNS �eld. In Figure 8 it is also interesting to note
that the prolate isocontour shapes in the DNS vorticity �eld are reproduced in our
model. This is neither the case for the NF model (in which the vorticity isolines
are described by r= const), nor for the viscous KR model (which features quasi-
circular vorticity contours, as expected from formula (7.2) and its approximation
by an isotropic Gaussian). As regards the KR model, we remark that this
issue is remedied in its generalization proposed in [57], although it cannot be
derived directly from the Navier-Stokes equation. The above observations are
also corroborated by Figure 9 comparing the streamfunction and vorticity pro�les
along di�erent directions in the DNS data and in the di�erent vortex models. We
note, in particular, that the vorticity pro�les corresponding to the NF model are
unrealistic.

Integral characteristics of the di�erent vortex-ring models are collected in Table
1. It is interesting to note that the NF model, which is less physical in terms of
its vorticity distribution, approximates the DNS values better than the other
models. This explains why the NF model is often used to represent the integral
characteristics of experimentally or numerically generated vortex rings (e. g. [27,
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Figure 8: [DNS] Vorticity distribution inside the vortex ring bubble Ω: (a)
DNS, (b) ω(z, r) = rf̂(ψ(z, r)) with the optimal reconstruction f̂ of the vorticity
function and ψ(z, r) obtained as the corresponding solution to problem (4.3),
(c) �t with the Norbury-Fraenkel inviscid vortex-ring model, (d) �t with the
Kaplanski-Rudi viscous vortex-ring model (7.2). Vorticity isocontours correspond
to the values ω= 2, 4, . . . , 32.

1]). The KR model gives the largest errors in the integral diagnostics because the
�t used only the distribution of the vorticity, without imposing the circulation as
in the case of the NF model.

The �nal comparison of the di�erent models concerns the initial objective of
the reconstruction procedure, namely, the representation of the tangential velocity
Vt =−(1/r)∂ψ/∂n on the boundary of the vortex bubble. These results are shown
in Figure 10 which reveals a good agreement between the DNS data and the
predictions of our approach and the NF model. While the vortex model based on
the optimal reconstruction of f is more accurate along the boundary γb of the
vortex bubble, the NF model performs better on the axis Oz. In both cases the
KR model underestimates the tangential velocity which is also re�ected in the
low circulation value it predicts (table 1).

We conclude that, while one of the analytic models may perform better
with respect to a particular criterion (especially the ones used to determine its
parameters), the proposed approach provides the most balanced and consistent
representation with respect to all considered criteria. It must also be emphasized
that our optimal reconstruction method uses information on the boundary γb ∪ γz
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Figure 9: [DNS] Pro�les of the streamfunction ψ and vorticity ω through the
centre of the vortex ring: (a,b) along the z-axis (r= 1, z > 0; note that the pro�les
are symmetric with respect to z = 0) and (c, d) along the r-axis (z = 0; see Figure
1b). Comparison between the DNS data (solid lines), our optimal reconstruction
(dashed lines) and the �ts with the inviscid Norbury-Fraenkel model (dash-dotted
lines) and with the viscous Kaplanski-Rudi model (dotted lines).

of the vortex ring (see Figure 1b) only, while the reconstruction methods based
on �ts with the analytic vortex models used information in the entire domain Ω.

8. Discussion, Conclusions and Outlook

In this study we have formulated and validated a novel solution approach to an
inverse problem in vortex dynamics concerning the reconstruction of the vorticity
function in 3D axisymmetric Euler �ows. Solutions of such problems allow us to
construct optimal inviscid vortex models for realistic �ows. More generally, this
is an example of the reconstruction of a nonlinear source term in an elliptic PDE
and as such has many applications in �uid mechanics and beyond (more on this
below). It also has some similarities to the �Calderon problem� which is one of the
classical inverse problems studied in the context of elliptic PDEs. In particular,
many questions concerning the uniqueness of the reconstructions remain open.
In contrast to a number of earlier approaches which relied on �nite-, and usually
low-dimensional, parameterizations of the reconstructed vorticity function (e.g.,
[8]), the method proposed here is non-parametric and allows us to reconstruct
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Figure 10: [DNS] Tangential velocity on the boundary segment (a) γb (vortex
bubble) and (b) γz (along the z-axis) as a function of the arc-length coordinate s
along the boundary (see also Figure 1b for the de�nition of γb and γz). Comparison
between DNS data (solid lines), our optimal reconstruction (dashed lines), the �t
with the inviscid Norbury-Fraenkel vortex ring model (dash-dot lines) and the �t
with the Kaplanski-Rudi viscous vortex ring model (dotted lines).

the vorticity function in a very general form in which only the smoothness and
boundary behavior are prescribed. A key element of the computational approach
is a suitable reformulation of the adjoint-based optimization which was developed
for the reconstruction of constitutive relations in [9, 10] and was already applied
to other estimation problems in �uid mechanics in [11, 12].

In addition to standard tests on the accuracy of the adjoint gradients presented
in Section 5b, our approach was validated by reconstructing the vorticity functions
in a classical problem involving Hill's vortex. For benchmarking purposes, the
inverse problem was set up using a smaller amount of measurement data
than typically available in practice making the reconstruction more challenging.
However, its accuracy was very good in terms of the terminal value of the cost
functional (3.2), the optimal vorticity function f̂ and the diagnostic quantities
(2.7). The results obtained for the case with the actual DNS data in Section 7
demonstrated that the proposed approach can signi�cantly improve the accuracy
of the inviscid model as compared to a simple empirical �t. This is achieved by
obtaining a more precise representation of the vorticity function for small values
of ψ, made possible by the nonparametric form of the reconstruction approach.

A thorough comparison was also made between the vortex models developed
here and the classical models of Norbury-Fraenkel and Kaplanski-Rudi. Although
it is more costly from the computational point of view, the approach based on
the optimal reconstruction of the vorticity function was shown to be superior in
the sense that in addition to o�ering an accurate representation of the vorticity
�eld inside the core and of the velocity on the boundary of the vortex bubble, it
also captured the integral diagnostics with good accuracy. None of the analytic
models was able to simultaneously achieve all of these objectives. It ought to be
emphasized that our approach also required signi�cantly less measurement data
than the NF and KR models. This good performance is a result of an optimization
formulation central to the proposed approach.
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With encouraging results of the benchmark tests presented here, a natural
research direction is to apply the proposed approach to DNS data and datasets
obtained experimentally with techniques such as PIV over a broad range
of Reynolds numbers. Measurement data available over larger parts of the
�ow domain should improve the robustness of reconstructions. The optimal
reconstruction approach developed here will allow us to address the basic question
how accurately actual viscous �ows can be represented in terms of inviscid
models of the type (2.6). In particular, one is interested in the fundamental
limitations on the accuracy of such representations in terms of �ow unsteadiness
and �nite viscosity e�ects. An aspect of the reconstruction problem which has
not been addressed here, but which is likely to arise when using experimental
data, is dealing with noisy measurements. This problem is however relatively well
understood in the context of inverse problems [42].
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