
Computer Physics Communications 209 (2016) 144–162
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A finite-element toolbox for the stationary Gross–Pitaevskii equation
with rotation✩

Guillaume Vergez a,b, Ionut Danaila a,∗, Sylvain Auliac b, Frédéric Hecht b
a Université de Rouen Normandie, Laboratoire de Mathématiques Raphaël Salem, CNRS UMR 6085, Avenue de l’Université, BP 12, F-76801
Saint-Étienne-du-Rouvray, France
b UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4 Place Jussieu, F-75005 Paris, France

a r t i c l e i n f o

Article history:
Received 31 January 2016
Received in revised form
27 June 2016
Accepted 20 July 2016
Available online 13 September 2016

Keywords:
FreeFem++
Ipopt
Gross–Pitaevskii
Bose–Einstein
Finite element
Mesh adaptivity
Sobolev gradient

a b s t r a c t

We present a new numerical system using classical finite elements with mesh adaptivity for computing
stationary solutions of theGross–Pitaevskii equation. The programs arewritten as a toolbox for FreeFem++
(www.freefem.org), a free finite-element software available for all existing operating systems. This offers
the advantage to hide all technical issues related to the implementation of the finite element method,
allowing to easily code various numerical algorithms. Two robust and optimized numerical methods
were implemented tominimize the Gross–Pitaevskii energy: a steepest descentmethod based on Sobolev
gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For
both methods, mesh adaptivity strategies are used to reduce the computational time and increase the
local spatial accuracy when vortices are present. Different run cases are made available for 2D and
3D configurations of Bose–Einstein condensates in rotation. An optional graphical user interface is also
provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide
several post-processing tools (like the identification of quantized vortices) that could help in extracting
physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to
deal with different physical models.

Program summary
Program title: GPFEM
Catalogue identifier: AFBD_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFBD_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Apache 2.0
No. of lines in distributed program, including test data, etc.: 49149
No. of bytes in distributed program, including test data, etc.: 407572
Distribution format: tar.gz
Programming language: FreeFem++ (free software, www.freefem.org).
Computer: PC, Mac, Super-computer.
Operating system: Windows, Mac OS, Linux.
Classification: 2.7, 4.9, 7.7.
Nature of problem:
The software computes 2D or 3D stationary solutions of the Gross–Pitaevskii equation with rotation. The
main application is the computation of different types of vortex states (Abrikosov vortex lattice, giant
vortex) in rotating Bose Einstein condensates. The software can be easily modified to take into account
different related physical models.
Solution method:
The user has the choice between two robust and optimizednumericalmethods for the directminimization
of the Gross–Pitaevskii energy: a steepest descentmethod based on Sobolev gradients and aminimization

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author. Fax: +33 2 32 95 52 86.

E-mail addresses: vergez@ann.jussieu.fr (G. Vergez), ionut.danaila@univ-rouen.fr (I. Danaila), auliac@ann.jussieu.fr (S. Auliac), hecht@ann.jussieu.fr (F. Hecht).
http://dx.doi.org/10.1016/j.cpc.2016.07.034
0010-4655/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2016.07.034
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.07.034&domain=pdf
http://www.freefem.org
http://cpc.cs.qub.ac.uk/summaries/AFBD_v1_0.html
http://www.freefem.org
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:vergez@ann.jussieu.fr
mailto:ionut.danaila@univ-rouen.fr
mailto:auliac@ann.jussieu.fr
mailto:hecht@ann.jussieu.fr
http://dx.doi.org/10.1016/j.cpc.2016.07.034

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 145

algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity
strategies are implemented to reduce the computational time and increase the local spatial accuracywhen
vortices are present.
Running time:
Fromminutes for 2D configurations to hours for 3D cases (on a personal laptop). Complex 3D cases (with
hundreds of vortices) may require several days of computational time.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The Bose–Einstein condensate (BEC) is an ideal system to study
superfluidity at a macroscopic level: it is a highly controllable
quantum system which admits a simple theoretical description
using the Gross–Pitaevskii equation (GPE) [1]. A great deal of
attention has been lately devoted to the development of accurate
numerical schemes to solve different forms of the GPE, from the
classical (stationary or time-dependent) GPE, to systemsof coupled
GPEs (e. g. for two-component or spinor BEC) and more recent
formulations (e. g. with non-local interactions or fractional GPE).
For recent reviews of numerical methods for GPE, see [2–6].

Among all these formulations, the stationary GPE is used either
to numerically generate an initial condition for the simulation
of real-time dynamics of BEC, or to directly investigate physical
features of experimentally observed BEC. In the former case, the
stationary (ground state) solution which is the global minimizer
of the GP energy is sought, while in the latter case, capturing
local minima of the GP energy could be of interest since they
represent excited (or metastable) states observed in experimental
BEC configurations. The most striking example of how numerical
solutions of the stationary GP equation were used to investigate
physics is the study of quantized vortices in rotating BEC. Since
superfluidity in BEC is closely related to the nucleation of
quantized vortices, this topic has focused the attention of physical
and mathematical communities during the last two decades.
Numerous experimental and theoretical studies were devoted
to the investigation of three-dimensional properties of single
(straight or bent) vortex lines, vortex rings or Abrikosov vortex
lattices (for a review of such physical systems, see the dedicated
volumes [7–10]). Numerical simulations of the stationary three-
dimensional (3D) GPE proved as a valuable investigation tool
for all these topics, revealing properties of quantized vortices
difficult to observe experimentally, suggesting new configurations,
or supporting newphysical ormathematical theories (e. g. [11–15];
for a review, see [16]).

The difficulty in computing solutions of the stationary GP
equationwith rotation comes from the presence in a condensate of
a large number of vortices, with large gradients of atomic density
in the vortex cores. This explains the use in the literature of
discretization methods with high order spatial accuracy: Fourier
spectral [17–19], sixth-order finite differences [13–15], sine-
spectral [20,21], Laguerre–Hermite pseudo-spectral [22], hybrid
discontinuous Galerkin discretizations based on polynomials and
plane waves [23], etc. Several software packages for the classical
stationary GPE were deposited in the CPC Program Library.
They use different numerical methods: iterative diagonalization
method [24], optimal damping algorithm [25,26], Crank–Nicolson
scheme [27], Newton-like method with an approximate line-
search strategy [28,29], fully-explicit fourth-order Runge–Kutta
scheme [30], semi-implicit backward Euler scheme [31], etc. The
spatial discretization is generally based on spectral [25,28,31] or
finite-difference [27,29,30,26] methods. Provided programs are
written in Fortran [25,27], C [29,30] or Matlab [28,30,31,26].
Numerical methods based on standard finite elements are
less represented in this field. Vortex states in rotating BEC were
computed using finite elementswith fixedmeshes [32,33,20,34] or
dynamically adapted meshes [35], but only for 2D configurations.
To the best of our knowledge, no finite-element programs exist
in the CPC Program Library for the GP equation with rotation.
The purpose of this paper is thus to distribute a finite-element
solver for computing steady solutions of the GPE with rotation,
in both 2D and 3D settings. The code was built as a toolbox for
FreeFem++ [36,37], which is a free software (under LGPL license)
using a large variety of triangular finite elements (linear and
quadratic Lagrangian elements, discontinuous P1, Raviart–Thomas
elements, etc.) to solve partial differential equations. FreeFem++
is an integrated product with its own high level programming
language and a syntax close tomathematical formulations, making
the implementation of numerical algorithms very easy. Among the
features making FreeFem++ an easy-to-use and highly adaptive
software we recall the advanced automatic mesh generator, mesh
adaptation, problem description by its variational formulation,
automatic interpolation of data, colour display on line, postscript
printouts, etc. FreeFem++ community is continuously growing,
with thousands of users all over the world.

The present FreeFem toolbox, called GPFEM, provides two
efficient numerical methods for computing stationary states with
vortices, with the following novelties:
(i) the steepest-descent algorithm based on Sobolev gradients
suggested in [38] and tested for 2D configurations in [35] was
improved by adding an optimized line-search algorithm for the
descent step and extended for 3D configurations;
(ii) a novelminimizationmethod for 2D and 3D configurationswas
implemented based on the state-of-the-art optimization library
Ipopt [39] using the direct minimization interior point method;
(iii) the mesh adaptivity algorithm suggested in [35] for 2D
configurations was extended in 3D and optimized by the use of
anisotropic mesh adaptivity functions provided by mshmet [40]
and mmg3d [41] softwares.
From the programming point of view, the toolbox presents the
following advantages:
(iv) the switch from different finite elements (from linear P1 to
quadratic P2 and high-order P3 or P4 finite elements) implies the
modification of a single instruction (the definition of the finite-
element space);
(v) the scripts are easy to adapt to different mathematical or
physical settings (two different scalings are implemented);
(vi) a graphical interface allows to run predefined 2D or 3D
examples.

The paper is organized as follows. In Section 2, we present
different mathematical formulations of the GP equation and
energy. Two different scalings are introduced. Numerical methods
are presented in Section 3 and the important issue of setting the
initial condition for the computation is described in Section 4. The
details of the derivation of closed formulae for the Thomas–Fermi

146 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
approximation (generally used as initial condition) is deferred to
Appendix. The structure of the provided software is described in
great detail in Section 5. Various test cases for computing 2D and
3D configurations with vortices are presented in Section 6. The
optional user interface is also described in Section 6. The main
features of the software and possible extensions are summarized
in Section 7.

2. Mathematical model: the Gross–Pitaevskii energy

2.1. The Gross–Pitaevskii energy for the rotating condensate

We consider in this paper numerical methods for the direct
minimization of the Gross–Pitaevskii energy. For a pure BEC of
N atoms confined in a trapping potential Vtrap(x) rotating with
angular velocity Ω, the energy of the system in the rotating frame
is described by the functional:

E(ψ) =


R3


h̄2

2m
|∇ψ |

2
+ Vtrap |ψ |

2

+
1
2
g|ψ |

4
− ψ∗Ω · L(ψ)


dx (1)

where ψ(x) is the classical field complex wave function, ψ∗

denotes its complex conjugate,m is the atomicmass, h̄ the reduced
Planck constant and g the coupling constant

g = 4π h̄2as/m, with as the scattering length. (2)

The angular momentum L can be expressed as

L(ψ) = x × P(ψ), with the impulse P(ψ) = −ih̄∇ψ. (3)

We consider in the following rotations along the z-axis (i. e. Ω =

Ω k) and therefore only the z-component of the angular momen-
tum appears in (1) for the rotation term:

Ω · L(ψ) = ΩLzψ = ih̄Ω

y
∂ψ

∂x
− x

∂ψ

∂y


= ih̄Ω At

∇ψ,

with At
= (y,−x, 0). (4)

As a consequence, the form of the Gross–Pitaevskii energy consid-
ered in this paper is:

E(ψ) =


R3


h̄2

2m
|∇ψ |

2
+ Vtrap |ψ |

2
+

1
2
g|ψ |

4


dx −ΩLz, (5)

with Lz the total angular momentum:

Lz = ih̄

R3
ψ∗At

∇ψdx = i
h̄
2


R3


ψ∗At

∇ψ − ψAt
∇ψ∗


dx

= h̄

R3

ℜ

iψ∗At

∇ψ

dx. (6)

ℜdenotes the real part.We compute hereminimizers of the energy
(5) with the constraint
R3

|ψ(x)|2 dx = N, (7)

expressing the conservation of the number of atoms in the con-
densate. Among these minimizers, the ground state is defined as a
global minimum, i. e.ψg = minψ E(ψ). Local minimizers with en-
ergy larger than that of the ground state are called excited states
or meta-stable states.

Using (6), the energy (5) can be written in the following form
that will be useful in deriving numerical methods in the next
section:

E(ψ) =


R3


h̄2

2m

∇ψ + i
mΩ
h̄

Atψ

2
+ V eff
trap |ψ |

2
+

1
2
g|ψ |

4


dx, (8)

where the effective trapping potential is the original potential
diminished by the centrifugal term:

V eff
trap = Vtrap −

1
2
mΩ2r2, r2 = x2 + y2. (9)

Another useful form of the energy corresponds to the grand
potential of the system:

Ξ = E(ψ)− µN = E(ψ)− µ


R3

|ψ |
2 dx, (10)

where µ ∈ R is the chemical potential of the condensate, intro-
duced as a Lagrange multiplier for the constraint (7). The Euler–
Lagrange equation (δΞ = 0) corresponding to (10) leads to the
stationary (or time-independent) GP equation:

−
h̄2

2m
∇

2ψ + Vtrapψ + g|ψ |
2ψ − ih̄ΩAt

∇ψ = µψ. (11)

The ground state and excited states are therefore eigenfunctions of
the nonlinear eigenvalue problem (11).

We also consider in this paper two-dimensional (2D) config-
urations corresponding to disk-shape (or pancake) condensates.
The dimension reduction from 3D to 2D can be done by approx-
imating the 3D wave function by a factorized ansatz ψ(x, y, z) =

ψ2D(x, y)ψ3(z). For the precise form of the ansatz, the reader is re-
ferred to review papers [42,43]. For a mathematical justification of
the dimension reduction from 3D to 2D equations, see [4]. By in-
tegrating out the z-dependence, previous forms of energy and sta-
tionary GPE stand, with R3 replaced by R2, with the caution that
the non-linear interaction constant g expressed by (2) for the 3D
setting has to be replaced by its reduced form in 2D. This constant
will be prescribed as an input parameter of the computation.

2.2. Scaling and trapping potential

We consider in the following the Gross–Pitaevskii model set
on Rd, with d = 3 or 2. Various forms of scaling are used in the
literature [44–46]. To allow the switch between different scalings,
we introduce a parameter ε and define a general length scale as:

xs =
aho
√
ε
, aho =


h̄

mω⊥

, (12)

where aho is the harmonic oscillator length defined with respect to
a reference trapping frequency ω⊥. By setting x̃ = x/xs and

u =
ψ

√
N x−d/2

s
= ε−d/4 ψ

√
N a−d/2

ho

, (13)

the dimensionless GP energy (per particle) becomes:

E(u) =
E(ψ)

N h̄2
m a−2

ho

=
E(ψ)

Nh̄ω⊥

= ε


Rd


1
2
|∇u|2 + Ctrap |u|2

+
1
2
Cg |u|4 − iCΩ u∗At

∇u


dx̃, (14)

where

Ctrap(x̃, ỹ, z̃) =
1
ε2

Ṽ (x̃, ỹ, z̃),

Ṽ (x̃, ỹ, z̃) =
1

mω2
⊥
x2s

Vtrap(x, y, z),
(15)

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 147
Cg =
√
ε β, β =

4πNas
aho

(in 3D),

β = β2D (given in 2D),
(16)

CΩ =
1
ε


Ω

ω⊥


. (17)

From the conservation law (7) we obtain that the wave function u
is now normalized to unity:

∥u∥2
2 =


Rd

u(x̃)2 dx̃ = 1. (18)

The total angular momentum (6) is now scaled in units of h̄:

L̃z =
Lz
Nh̄

= i

Rd

u∗At
∇udx̃ =


Rd

ℜ

iu∗At

∇u

dx̃. (19)

In this non-dimensional setting, the energy (8) takes the form:
E(u)

= ε


Rd


1
2

∇u + iCΩ Atu
2 + Ceff

trap |u|2 +
1
2
Cg |u|4


dx̃, (20)

and the grand potential (10) becomes:

Ξ̃ = E(u)− µ̃


Rd

|u|2 dx̃, µ̃ =
µ

h̄ω⊥

. (21)

The non-dimensional effective trapping potential corresponding to
(9) is defined as:

Ceff
trap = Ctrap −

1
2
C2
Ω r̃2 =

1
ε2


Ṽ (x̃, ỹ, z̃)−

1
2


Ω

ω⊥

2

r̃2


=
1
ε2

Ṽ eff(x̃, ỹ, z̃). (22)

Finally, the dimensionless form of the stationary GP equation (11)
becomes with this scaling:

−
1
2
∇

2u + Ctrapu + Cg |u|2u − iCΩAt
∇u =

1
ε
µ̃ u, (23)

For the trapping potential, we consider in the following a
general quadratic + quartic form that allows to recover the
expressions used in most of the theoretical and experimental
studies of rotating BEC. Starting from the following physical formof
the trapping potential (harmonic potential + detuned laser beam,
see [47]):

Vtrap(x, y, z) =
m
2


ω2

xx
2
+ ω2

yy
2
+ ω2

z z
2

+ U2


r
w2

2

+U4


r
w4

4

, (24)

we obtain from (15) and (22) the dimensionless effective potential:

Ṽ eff(x̃, ỹ, z̃) =
1
2


axx̃2 + ayỹ2 + az z̃2 + a4 r̃4


. (25)

The non-dimensional coefficients are:

ax =


ωx

ω⊥

2

−


Ω

ω⊥

2

+ 2


U2

mω2
⊥
w2

2


,

ay =


ωy

ω⊥

2

−


Ω

ω⊥

2

+ 2


U2

mω2
⊥
w2

2


,

az =


ωz

ω⊥

2

,

a4 =
2
ε


U4 a2ho
mω2

⊥
w4

4


.

(26)
The classical scaling used in the physical literature is recovered
for ε = 1. In some mathematical studies [46,48] it was convenient
to define ε as:

ε =


aho

8πNas

2/5

. (27)

This second scaling, referred as the Aftalion–Rivière (AR) scaling, is
particularly appropriate for the Thomas–Fermi (TF) regime char-
acterized by strong interactions (the kinetic energy is negligible
compared to the interaction energy). This regime is attained when
Nas/aho ≫ 1, which is typically the case in experiments (e. g.
[49–51,47]). In this case, ε is a small parameter (ε ≈ 10−2 in ex-
periments). As a consequence, we notice from (16) that Cg =

1
2ε2

and the GP energy (20) becomes:

E(u) =


Rd


ε

2

∇u + iCΩ Atu
2 +

1
ε
Ṽ eff

|u|2 +
1
4ε

|u|4


dx̃, (28)

which is indeed dominated by the trapping and interaction terms.
The AR scaling was successfully used in numerical simulation of
2D [32] or 3D [13–15] BEC configurations with vortices.

3. Numerical methods: direct minimization of the GP energy

We present in this section two numerical methods to compute
minimizers u(x̃) of the non-dimensional GP energy (14) or (20),
with the constraint (18). The problem is set on a bounded domain
D ∈ Rd, and homogeneous Dirichlet boundary conditions u =

0 are imposed on ∂D . The size of D will be estimated from
the Thomas–Fermi approximation (see Appendix), in order to
ensure that the condensate lies inside D . The parameters of the
minimization problem are the angular velocity CΩ , the non-linear
interaction constant Cg and the trapping potential Ctrap(x̃). For the
sake of simplicity, the tilde notation for non-dimensional variables
will be dropped in the following.

3.1. A steepest descent method based on Sobolev gradients

The first method implemented in our toolbox is the steep-
est descent method using the Sobolev gradients suggested in
[38,35]. The algorithm starts from an initial state u0(x) and iterates
following

un+1 = un − αn Gn, (29)

where Gn represents the gradient of the energy functional at step n
and αn the descent step. The idea introduced in [38] was to define
a gradient related to the form (20) of the energy. A new Hilbert
space, denoted by HA(D,C), was defined and equipped with the
inner product:

⟨u, v⟩HA =


D

⟨u, v⟩ + ⟨∇Au,∇Av⟩, (30)

where ∇A = ∇ + iCΩAt and ⟨u, v⟩ = uv∗ denotes the complex
inner product. It was proved in [38] that the norm arising from the
metric ∥·∥HA is equivalent to the standard SobolevH1 norm. Hence
the completion of C1(D,C) with respect to this metric consists
of all members of H1. As a consequence, the Riesz representation
theorem in the Hilbert space HA = H1 allows to define the Sobolev
gradient ∇HAE(u) as the unique member of H1 such that, ∀v ∈

H1(D,C):

E ′(u)v = ℜ⟨∇L2E(u), v⟩L2 = ℜ⟨∇H1E(u), v⟩H1

= ℜ⟨∇HAE(u), v⟩HA . (31)

148 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
Since the L2 gradient of the GP energy can be easily derived from
(14):

∇L2E(u) = 2ε


−
1
2
∇

2u + Ctrapu + Cg |u|2u − iCΩAt
∇u

, (32)

the relationship (31) allows to compute the HA gradient. Before
using this gradient in the descent method (29), it will be projected
onto the tangent space of the constraint (18). An explicit projection
formula is derived in [38]. This technique is an alternative of the
usual approach that re-normalize the solution un+1 after each
descent step.

Compared to the descent method presented in [38,35], where
a fixed value of the descent step was used, the present method
introduces an efficient estimation of the optimal descent step.
Since general purpose line-search methods (Brent, Armijo, etc.)
proved to be very time consuming for this problem,we finally used
the particular line-minimization analysis specific to the GP energy.
The minimizer αn of the real function:

Jn(α) = E(un − α Gn), α > 0 (33)

is a root of the third order polynomial:

J ′n(α) = c3α3
+ c2α2

+ c1α + c0, (34)

with coefficients

c3 = 2Cg


D

|Gn|
4 , (35)

c2 = −6Cg


D

|Gn|
2

ℜ (⟨un,Gn⟩) , (36)

c1 =


D

|∇Gn|
2
+ 2Ctrap |Gn|

2
+ 2Cg |un|

2
|Gn|

2

+ 4Cgℜ (⟨un,Gn⟩)
2
− 2CΩℜ


iG∗

nA
t
∇Gn


, (37)

c0 = −


D

ℜ (⟨∇un,∇Gn⟩)+ 2ℜ (⟨un,Gn⟩)

Ctrap + Cg |un|

2
− 2CΩℜ


iG∗

nA
t
∇un


. (38)

In FreeFem++, we can use the function polycomplexsolve (from
GSL library) [52] to calculate the three roots of the polynomial J ′n(α)
and then select the root realizing theminimumof the energy Jn(α).

The algorithm for the descent method can be easily identified
in the FreeFem++ scripts, since appropriate macros were defined
for the mathematical operators (inner product, norms, etc.). All
variables are discretized using P1 finite elements; the non-linear
term is represented with P4 finite elements in 2D and P2 in 3D.
The following steps were programmed, with a syntax very close to
mathematical relationships:

1. Suppose that the solution un at iteration n was built. We com-
pute G = ∇HAE(un)/(2ε), solution of the variational problem
corresponding to (31) and (32):

∀v ∈ H1
0 (D,C),

D


1 + C2

Ω(x
2
+ y2)


Gv + ∇G∇v − 2iCΩAt

∇Gv

=


D

1
2
∇un∇v +


Ctrapun + Cg |un|

2un − iCΩAt
∇un


v. (39)

2. We compute the projection of G over the tangent space of the
unitary norm constraint (see [38]):

Pun,HAG = G −
ℜ

⟨un,G⟩L2


ℜ

⟨un, vHA⟩L2

vHA , (40)

where vHA is solution of the variational problem:

⟨vHA , v⟩HA = ⟨un, v⟩L2 , ∀v ∈ HA. (41)
3. We compute the optimal descent step:

χn = min
χ>0

E(un − χ Pun,HAG), (42)

by finding the roots of the third order polynomial (34) with co-
efficients (35)–(38) and choosing the one realizing the mini-
mum of the line energy. Note that the factor (2ε) appearing in
the expression of the gradient (32) was included in the expres-
sion of the optimal descent step χ = (2ε)α.

4. We build the solution un+1 at iteration n + 1:

un+1 = un − χn Pun,HAG.

5. Finally, we compute the relative error δEn+1 =
E(un+1)−E(un)

E(un+1)
and

call the mesh adaptivity algorithm suggested in [35] (see be-
low). Convergence to the stationary state is achieved if δEn+1 <
εc = 10−9.

3.2. Mesh adaptation

FreeFem++ includes a powerful mesh adaptivity tool (function
adaptmesh) usingmetric control algorithms suggested in [53–56].
The main idea is to define a metric based on the Hessian and use a
Delaunay procedure to build a new mesh such that all the edges
are close to the unit length with respect to this new metric. In
the steepest descent algorithm, we call this function after building
un+1 in the step 4 of the previous algorithm. Since our convergence
criterion is based on the relative change of energy of the solution
(δEn+1) we use the same indicator to trigger the mesh adaptive
procedure following the next algorithm (see also [35]):

1. choose a sequence of decreasing values εi ≥ εc , that represent
threshold values for the mesh adaptivity;

2. set i = 1;
3. if δEn+1 is decreasing and εi+1 < δEn+1 < εi and δEn > εc , call

the mesh adaptivity procedure; the solution u is interpolated
on the new mesh and normalized to satisfy the unitary norm
constraint;

4. if δEn+1 is increasing, i. e. large variations of the energy appear
(e. g. if new vortices enter the domain), reconsider the previous
bounds by setting i → i − 1;

5. if step 3 was performed Nad ≥ 1 times, increase i to i +

1. Limiting the number of mesh refinements for the same
threshold, is necessary since, at step 2, the interpolation on the
new refined mesh and the normalization of the solution could
lead to an increase of the value of δEn+1.

Fig. 1 illustrates the 2Dmesh adaptivity procedure. It represents
a test case where the initial field has an off-centred vortex and the
final (converged) solution is expected to present a centred vortex
(the details of the parameters for this case are given in Section 6).
We plot in Fig. 1(a) the initial state, built with the Thomas–Fermi
approximation. In Fig. 1(b)we plot the final solution corresponding
to the converged field obtained with the Sobolev gradient method.
A zoom in the vortex area is displayed in Fig. 1(a1) and (b1). Note
that the mesh adaptivity procedure generated a denser mesh near
the position of the vortex; the number of triangles was decreased
near the border, where the solution is smoother. However, the de-
refinement of themeshmust be usedwith caution for high rotation
rates, when new vortices can nucleate in the condensate near
the boundary. It was shown in [35] that this procedure decreases
the CPU time and the number of iterations when compared with
computation on fixed refined meshes.

For 3D computations, FreeFem++ uses the function msh-
met [40] to compute the metrics and the function mmg3d [41] to
build the newmesh corresponding to this metric. In Fig. 2, we plot

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 149
Fig. 1. Illustration of the mesh adaptivity in 2D. Test case with an initial state containing an off-centred vortex (a) and a final (stationary) state with a central vortex (b). The
mesh refinement follows the evolution of the vortex position (corresponding zoom in figures a1 and b1).
Fig. 2. Illustration of the mesh adaptivity in 3D. Test case computing the
equilibrium configuration with a single S-shape vortex line.

a 3D mesh adapted to the solution presenting a vortex line with
a ‘‘S’’ shape. We carried out the visualization with medit, a mesh
visualization software [57] interfaced with FreeFem++. Note that
the mesh adaptation follows precisely the vortex line by adding
tetrahedra for a better accuracy. Outside the vortex area, the mesh
adaptation allowed us to have fewer tetrahedra, with a bigger
size.
3.3. Minimization algorithm using the optimization library Ipopt

The optimization library Ipopt is based on an interior point
minimization method [39], a barrier functions tool [58] and a filter
line search [59]. This powerful state-of-the-art optimization library
is interfacedwith FreeFem++ [60] and offers the possibility to solve
constrained optimization problems of the general form:

find x0 = argmin
x∈Rn

(f (x)), (43)

such that

∀i ≤ n, xlbi ≤ xi ≤ xubi (simple bounds),
∀i ≤ m, c lbi ≤ ci(x) ≤ cubi (constraint functions),

(44)

where lb stands for lower bound and ub for upper bound. If for some
i ≤ m, c lbi = cubi we obtain an equality constraint.

For the minimization of the Gross–Pitaevskii energy, the use
of Ipopt is quite simple: the conservation constraint (18) is an
equality constraint and, consequently, we take m = 1 and c lb =

cub = 1 in the previous general form. Ipopt will then solve the
Euler–Lagrange equation associated to the problem (43)–(44):

∇f (x)+ λ∇c(x) = 0,
c(x) = 0, (45)

where λ ∈ R is a Lagrange multiplier and c(x) the constraint. Note
that, in our case, λ corresponds to the chemical potential. Let us
define

L(x, λ) := f (x)+ λ c(x). (46)

150 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
Ipopt first finds a descent direction (dx, dλ) by using the Newton
method. Indeed, at each iteration n it solves the system:

∇
2L(xn, λn) ∇c(xn)

∇c(xn) 0


dx
dλ


= −


∇L(xn, λn)

c(xn)


. (47)

Then it advances at the next step:
xn+1
λn+1


=


xn
λn


+ αn


dx
dλ


,

where αn ∈ (0, 1] is a descent step computed using the filter line-
search method suggested in [59]. The algorithm will stop when
either the error (εn = max (∥∇f (xn)+λn ∇c(xn)∥∞, ∥c(xn)∥∞))
or the number of iterations reaches a value defined by the user.

As Ipopt seeks for solutions in Rn, we have to separate in the
Gross–Pitaevskii energy functional the real and imaginary part. The
problem to solve becomes:

find [ur , ui] ∈ (H1
0 (D,R))

2 which minimizes

E(ur , ui) =


D


1
2

|∇ur |
2
+

1
2

|∇ui|
2
+ Ctrap (u2

r + u2
i)

+
1
2
Cg (u2

r + u2
i)

2


− CΩ Lz(ur , ui), (48)

with

Lz(ur , ui)

=


D


y

∂ur

∂x
ui −

∂ui

∂x
ur


− x


∂ur

∂y
ui −

∂ui

∂y
ur


. (49)

Then we can calculate the Fréchet derivative of E as:

E ′(ur , ui) · [vr , vi]

=


D


∇ur · ∇vr + ∇ui · ∇vi + 2 Ctrap (ur vr + ui vi)


+ 2 Cg


D

(u2
r + u2

i) (ur vr + ui vi)

− CΩL′

z(ur , ui) · [vr , vi], (50)

with

−L′

z(ur , ui) · [vr , vi]

=


D

y

−
∂ur

∂x
vi +

∂ui

∂x
vr −

∂vr

∂x
ui +

∂vi

∂x
ur


+


D

x

∂ur

∂y
vi −

∂ui

∂y
vr +

∂vr

∂y
ui −

∂vi

∂y
ur


. (51)

Finally, the second order Fréchet derivative of E is expressed as:

E ′′(ur , ui) · ([vr , vi], [wr , wi])

=


D


∇vr · ∇wr + ∇vi · ∇wi + 2 Ctrap (vr wr + viwi)


+ 2 Cg


D


(u2

r + u2
i) (vr wr + viwi)


+ 4 Cg


D

[(ur vr + ui vi) (ur wr + uiwi)]

− CΩL′′

z (ur , ui) · ([vr , vi], [wr , wi]), (52)

with

−L′′

z (ur , ui) · ([vr , vi], [wr , wi])

=


D

y

−
∂wr

∂x
vi +

∂wi

∂x
vr −

∂vr

∂x
wi +

∂vi

∂x
wr


+


D

x

∂wr

∂y
vi −

∂wi

∂y
vr +

∂vr

∂y
wi −

∂vi

∂y
wr


. (53)
The expression of the constraint functional is:

c(ur , ui) =


D

(u2
r + v2r)− 1, (54)

and its gradient:

∇c(ur , ui) · [vr , vi] = 2


D

(ur vr + ui vi). (55)

With Ipopt linked as an external library to FreeFem++, we
cannot directly use mesh adaptivity in its internal algorithm.
In exchange, we can couple the computation of the minimizer
with the mesh adaptivity procedure. The following algorithm was
implemented in the programs. Set nadapt, the total number of mesh
refinements to be done and ε0 and εlast, the first and the last
mesh adaptivity prescribed errors (parameters of the FreeFem++
function adaptmesh).
1. At step k ∈ [0, nadapt − 1], run Ipopt to find a solution [uk

r , u
k
i].

2. Build a new mesh adapted to [uk
r , u

k
i] with a prescribed mesh

adaptivity error

εk = ε0


εlast

ε0

k/(nadapt−1)

. (56)

3. Go to step k + 1.

Typical values used for 2D computations are nadapt = 4, ε0 =

0.1 and εlast = 0.005. For 3D cases, as the computation is more
difficult, it is more convenient to use a higher number of mesh
adaptations and a lower ratio εlast/ε0. Typical values are nadapt = 6,
ε0 = 0.01 and εlast = 0.005.

4. Building the initial approximation

In computing stationary states for rotating BEC, the initial
approximation used to start the iterative methods is of crucial
importance. It can not only affect the convergence speed, but
also the topology of the stationary solution, especially when local
minima (meta-stable) solutions are sought. We present in this
section three methods to build initial states for the computation
of stationary solutions: the Thomas–Fermi approximation, a
rapid calculation of the ground state with Ipopt for simplified
configurations (axisymmetric or non-rotating) and, finally, an
ansatz for a manufactured initial state with vortices.

4.1. Analytical solution based on the Thomas–Fermi approximation

The Thomas–Fermi regime is characterized by strong interac-
tions (the kinetic energy is negligible compared to the interaction
energy). This regime is attained when Nas/aho ≫ 1. If the heal-
ing length ξ = (8πasρ)−1/2, with ρ the atomic density, is defined
as the length for which the kinetic and interaction energies are
comparable, in the Thomas–Fermi regime the characteristic length
scales are larger than the healing length. We give below some typ-
ical values from experiments of BEC with vortices [49,61,62]:

as ≪ 1/ρ1/3 < ξ ≪ aho ≪ R
5 [nm] ≪ 0.2 [µm] < 0.3 [µm] ≪ 1 [µm] ≪ 5 [µm],

where 1/ρ1/3 approximates the distance between atoms and R is
the radius of the condensate.

The general form of the Thomas–Fermi approximation of the
atomic density (ρ = |u|2) is obtained by neglecting the first term in
the energy (20). The Euler–Lagrange equation of the corresponding
grand potential (21) gives:

ρTF =


µ̃/ε − Ceff

trap

Cg


+

=
1
ε2Cg


ε
µ

h̄ω⊥

− Ṽ eff


+

. (57)

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 151
Fig. 3. Initialization of a 2D calculation. Density profiles corresponding to the Thomas–Fermi approximation (solid line), the axisymmetric solution computed with Ipopt
(N) and the full 2D solution computed with Ipopt without rotation (�). Harmonic potential (a) and quartic potential (b).
We notice that this form is equivalent to the usual Thomas–Fermi
approximation for non-rotating condensates, but with a trapping
potential (22) corrected by the centrifugal term (see also [63]).
Following (9), for a harmonic trapping potential the radial trapping
frequency ω⊥ is thus replaced by (ω2

⊥
−Ω2)1/2.

It is also interesting to note from (13) and (57) that the atomic
density in numerical simulations using the AR scaling with typical
value ε = 10−2 is amplified by a factor of 104, when compared
to the classical scaling (ε = 1). This remark is important for
setting the numerical valuewhichwill serve to identify a quantized
vortex: since theoreticallyρ = 0 in the vortex centre, the lowvalue
ρmin of the iso-contour level used to represent vortices will depend
on the scaling.

We use in the following the Thomas–Fermi approximation to
estimate the size of the computational domain and also to set the
initial guess for the minimization algorithms. We derive in the
Appendix closed formulae for the Thomas Fermi approximation
corresponding to different types of potentials: harmonic, quartic+

quadratic , quartic − quadratic.

4.2. Numerical approximation with Ipopt for axisymmetric or non-
rotating cases

The main drawback of the Thomas–Fermi approximation,
which is generally a truncated parabola, is the discontinuity of
its first derivative on the border of the condensate where ρTF =

0. This could trigger oscillations of the solution, when high-
order (spectral) methods are used for the space discretization. A
smoother initial field can be obtained by directly computing with
Ipopt a minimizer of the GP energy. When simplified forms of the
energy (e. g. axisymmetric) are used, this preliminary computation
is very cheap in terms of computational time.

We present below the approach of computing axisymmetric
initial fields with Ipopt, corresponding to the ground state without
vortices (a central vortex of given winding number can be easily
added to the following expressions). We consider the cylindrical
coordinates (r, θ, z) and assume that the solution is axisymmetric
(∂u
∂θ

= 0) and symmetric in the z-direction (u(z) = u(−z)). This is
also the case of the Thomas–Fermi approximation if ax = ay in the
trapping potential (25).

Using that ∂u
∂θ

= x ∂u
∂y −y ∂u

∂x and assuming that Lz = 0 (no central
vortex), the energy becomes

E(u) = 4π
 Rmax

0

 zmax

0


1
2

∂u∂r
2 +

∂u∂z
2


+ Ceff
trap|u|

2
+

1
2
Cg |u|4


rdr dz. (58)

The 3D problem is now reduced to a 2D problem. In order to solve
this 2D problem with Ipopt, we need the Fréchet derivative of E
and its Hessian:

E ′(u).v = 4π
 Rmax

0

 zmax

0


∂u
∂r
∂v

∂r
+
∂u
∂z
∂v

∂z

+ 2Ceff
trapuv + 2Cg |u|2uv


rdr dz, (59)

E ′′(u)[v,w] = 4π
 Rmax

0

 zmax

0


∂v

∂r
∂w

∂r
+
∂v

∂z
∂w

∂z
+ 2Ceff

trapvw

+ 2Cg

vw|u|2 + 2uvℜ(uw)

 
rdrdz. (60)

In the case of a 2D simulation, the axisymmetry reduces the 2D
problem to a 1D problem. In this case, the integration and the
derivative with respect to z must be omitted in previous formu-
lations. Fig. 3 shows a comparison between the Thomas–Fermi ap-
proximation and the axisymmetric solution computed with Ipopt
for two trapping potentials (25): harmonic potential, with ax =

ay = 1, a4 = 0 and quartic potential, with ax = ay = 1, a4 = 0.5.
A third solution, obtained by using the full 2D formulation of theGP
energy without rotation in Ipopt, is also plotted for reference. We
notice the regularity of the axisymmetric solution in the vicinity of
ρTF = 0 and the good approximation it offers,when comparedwith
the full 2D computation. For anisotropic potentials, we can still use
the full (2D or 3D) formulation of the GP energywithout rotation to
compute with Ipopt an initial condition for the computations with
rotation.

4.3. Manufactured initial state with vortices

Sometimes it is necessary to manufacture initial states by arti-
ficially including vortices. This could be useful when local minima,
corresponding to meta-stable solutions, are sought. If u(x, y, z) is
the ground state without rotation (set by the TF approximation or
computedwith Ipopt), we can add vortices bymultiplying u in each
plane (x, y) by the following ansatz used in [14,15] for 3D simula-
tions:

uv(x, y) =


1
2


1 + tanh


4
εv
(rv − εv)


· eiθv , (61)

152 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
where rv =

(x − xc)2 + (y − yc)2 and θv = atan


y−yc
x−xc


are the

polar coordinates taken from the imposed centre (xc, yc)of the vor-
tex and εv the vortex radius. In order to obtain a particular 3D shape
of the vortex (U-shaped or S-shaped vortex, see Fig. 8), we can pre-
scribe the position of the vortex centre in each transverse plane
(x, y). For example, a S-vortex lying in the major (x, z) plane will
have yc = 0 and

xc(z) = −1 +

tanh

αv


1 +

z
βv


tanh(αv)

, if z < 0,

xc(z) = 1 +

tanh

αv


−1 +

z
βv


tanh(αv)

, if z ≥ 0,

(62)

where αv and βv respectively control the curvature and the length
of the vortex.

5. Description of the programs

The methods described previously were implemented in sepa-
rated 2D and 3D toolboxes based on the FreeFem++ software [37].
Using two input files, the toolbox offers to the user the choice be-
tween two scalings (classical or Aftalion–Rivière), three ways of
computing the initial approximation (Thomas–Fermi, axisymmet-
ric or non-rotating) and twomethods to compute the ground state
(Sobolev gradient or Ipopt). The main difference between the 2D
and 3D codes is in the post-processing part: we can automatically
count the number of vortices in 2D while it is more difficult in
3D. Also, the setting of input parameters is different: there are
several additional parameters in 3D to control the shape of the
vortex ansatz (I-shaped, S-shaped or U-shaped) and the shape of
the initial mesh (cylindrical or ellipsoidal). Moreover, the user can
choose to plot the evolution of the energy with Gnuplot [64] dur-
ing the computation and the evolution of the solution with either
the FreeFem++ plotting tool or usingMedit [57]. In this section we
first describe the architecture of the programs and the organiza-
tion of the files. Then we focus on the list of input parameters and
the structure of output files.

5.1. Program architecture

Fig. 4 gives a schematic overview of the content of the 3D
toolbox. The 2D toolbox has similar architecture.

All files are provided in a directory called
BEC_XD_ToolBox_FreeFem where X is the dimension 2 or 3. This
directory is organized as follows:

1. The BEC_XD_ToolBox.edp is the main script.
2. The Input directory contains two files allowing the user to

choose parameters:
• BEC_XD_physic_param.dat contains the parameters describ-

ing the physical case.
• BEC_XD_run_param.dat contains choices for the run.

3. The Include directory contains 9 files:
• BEC_XD_Macros.idp contains all the useful macros and

functions.
• BEC_XD_comput_param.idp reads the parameters files and

builds constants.
• BEC_XD_comput_init_condition.idp computes an initial ap-

proximation using either Thomas–Fermi or Ipopt.
• BEC_XD_Ipoptaxi_init.idp contains the script to be used with

Ipopt axisymmetric in dimension (X − 1) for the initial
condition.

• BEC_XD_Ipopt_init.idp contains the script to be used with
Ipopt in dimension X without rotation to build the initial
condition.
• BEC_XD_GradS_method.idp solves the main problem with
Sobolev gradient method.

• BEC_XD_Ipopt_method.idp solves the main problem with
Ipopt method.

• BEC_XD_plot_energ.idp builds a Gnuplot script and runs
Gnuplot in order to plot the energy and other relevant
quantities.

• BEC_2D_results.idp finds the number of vortices and gives
their positions in 2D.

4. The Examples directory. In 2D, this directory contains 8
examples of input files allowing the user to choose between
two cases of scaling, potential ormethod. To do so, in a terminal
window the user can write, for example, the command line:
FreeFem++ BEC_XD_ToolBox.edp
-run Examples/GradS_Harm_run_param.dat
-param Examples/AR_Harm_physic_param.dat.
This will run the program with an harmonic potential, the
Aftalion–Rivière scaling and Sobolev gradient method. In 3D,
this directory contains 6 files to run examples to compute a S-
shaped or a U-shaped vortex, using either the Sobolev gradient
method or Ipopt. A more precise description of these examples
is provided in Section 6.

5. GLUT directory contains a C++ script that must be compiled to
create a user interface with GLUT.

6. A makefile to compile the source code for the interface and a
README file are also provided.

5.2. Input parameters

We focus now on the description of the input parameters.
These are distributed in two files. In both files, comments are
preceded by the usual // symbol and key words by the @ symbol.
If the user wants to set a parameter, he has to enter its value
after the corresponding key word. If a key word is not present
in a file, a default value is given to the corresponding parameter.
Some parameters must be specified by the user, otherwise the
computation stops (see below). By default, the user has to use
the two files provided in the Input directory. However, any input
file can be used by entering the following command in a terminal
window:
FreeFem++ BEC_XD_ToolBox.edp -param name_physics -run
name_run.
Here, name_physics is the name of the input file containing the
physical parameters and name_run is the name of the input file
containing the parameters for the computation.
(1) The first file in the Input directory, BEC_XD_physic_param.dat ,
contains the physical parameters:

• @scaling, a string that can take the values AR or Classical
depending on which scaling is chosen. A value must be given
to this parameter.

• @kind, a boolean that takes the value 0 if one wants to set
constants already built from (16), (17) and (26), or the value 1
if one wants to set the corresponding physical parameters. A
value must be given to this parameter.

• If the 0 value was chosen for @kind the following parameters
must be set to a real value:
@beta (=β), the coefficient in front of the non linear part of the
equation (see (16)),
@Omop (= Ω

ω⊥
), the coefficient of the angular momentum (see

(17)),
@ax, @ay, @az and @a4 are the coefficients in the potential Vtrap
(see (26)).

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 153
Fig. 4. Program architecture of the 3D toolbox.
• If the value 1 was given to @kind the user has to assign a real
value to the following parameters:
@N, the number of atoms,
@m, the atomic mass,
@as, the scattering length,
@Omega (=Ω), the rotation speed,
@omegax (=ωx), @omegay (=ωy), omegaz (=ωz), @omega2
(=ω2), @omega4 (=ω4),
@U2 and @U4 are the coefficients in Vtrap (see (24)).

(2) The second file, BEC_XD_run_param.dat contains the
parameters for the run:

1. Here are the parameters that must be set,
• @method is a string to choose a method. The possible values

are Ipopt or GradS.
• @EPS0 is a real corresponding to the final error to reach.
• @init is a string with the name of the initial approximation

to use. The possible values are TF (Thomas–Fermi), Ipoptaxi
(axisymmetric approximation) or Ipoptnorot (no rotation).

All the parameters that follow are set by default:
• @GradSMaxIter is the maximum number of iterations in the

Sobolev gradient method. Default value: 8000.
• @IpoptMaxIter is the maximum number of iterations be-
tween each mesh adaptation in Ipopt method. Default value:
50.

2. The following parameters are used for the outputs:
• @dircase is a prefix of the name of the output directory.

The form of potential and the name of the method used for
computation are automatically added to this name. Default
value: BEC_3D.

• @scase is a prefix of the name of the output files. The values
of Ω

ω⊥
and Cg are automatically added to this name. Default

value: BEC_3D.
• @withplot is a boolean controlling the possibility of plotting

the solution during the run. Default value: 1.
• @savesol is a boolean controlling the possibility of saving the

solution during the run. Default value: 1.
• @IWAIT is a boolean controlling the possibility of waiting

after each plot. Default value: 0.
• @meditplot is a boolean controlling the possibility of plotting

the solution with medit. Default value: 0.
• @output is a string that takes the value vtk or tecplot for the

outputs format. Default value: tecplot.
• @ITERSAVE, @ITERNORM and @ITERPLOT are integers corre-

sponding to the frequency of iterations in Sobolev gradient

154 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
method to save, normalize or plot the solution. Default value:
100.

• @savenergy and @plotenergy are booleans to save and plot
the energy during the run. Default value: 1.

• @countvortices (only in 2D) is a boolean to count the number
of vortices and to give their position. Default value: 1.

3. One can control how to build the initial mesh by setting the
following parameters:
• @aRdom is a coefficient that multiply the Thomas–Fermi

radius in order to have a larger domain. Default value: 1.25.
• @nbseg is the number of segments on the border of themesh.

Default value: 50 in 3D and 200 in 2D.
• @meshkind (only in 3D) is a string that can take the values

cylindre or ellipsoid and allows the user to choose between a
cylindrical mesh or an ellipsoidal mesh in 3D. Default value:
ellipsoid.

• @hminsurf is the minimal size of the edge of a triangle on the
surface of the ellipsoidal mesh. Default value: 0.6.

• @hminvol is the minimal size of the edge of a tetrahedra
inside the ellipsoidal mesh. Default value: 0.3.

4. Theparameters for loading anold solution as an initial field are:
• @ifILrst is a boolean, with true value if the user wants to load

a restart file. Default value: 0. If ifILrst =1, the following 4
parameters have to be specified:

• @keepmesh is a boolean to choose to keep the loaded mesh
or not.

• @dirload is a string for the name of the directory containing
the restart mesh and solution.

• @dmesh is a string for the name of the file containing the
mesh to load.

• @dsol is a string for the name of the file containing the
solution to load.

5. The following parameters control how to build the initial field
for the wave function:
• @mod is an integer. If @mod> 0, a central vortex with wind-

ing number @mod is added in the axisymmetric approxima-
tion built with Ipopt. Default value: 0.

• @narray is the number of circles of vortices in the manufac-
tured initial field (see Section 4.3). Default value: 0.
If narray = 1, the following 8 parameters have to be speci-
fied:

• @Nv, the number of vortices on each circle.
• @Rarr, the radius of the first circle.
• @dRarr, the distance between two circles.
• @Tharr, the orientation of the first circle.
• @dTharr, a step between the orientation of each circle.
• @shape (only in 3D) is a string controlling the shape of the

ansatz vortex added in the initial condition (see Eq. (62)). It
can be I, Ux, Uy, Sx, Sy. The x or y indicates if the vortex is in
the plane (O, x, z) or (O, y, z). Default value: I.

• @curvature (=αv , only in 3D) is the parameter controlling the
curvature of the ansatz vortex (see (62)). Default value: 10.

• @length (=βv , only in 3D) is the parameter controlling the
length of the ansatz vortex (see (62)). Default value: 2.

6. The user can control the mesh adaptivity process:
• @ifIadapt is a boolean to choose to adapt the mesh of the

initial field. Default value: 1.
• @erradaptI is the error in the mesh adaptation of the

initial field. This parameter is used by the FreeFem function
adaptmesh in 2D or mshmet in 3D. Default value: 0.01 in 3D
and 0.1 in 2D.

• @ifRadapt is a boolean to choose to adapt the mesh during
the computation. Default value: 1.

• @hminad is the minimal size of an edge in the new mesh.
Default value: 0.001.
• @hmaxad is the maximal size of an edge in the new mesh.
Default value: 1.

• @erradapt is the error in the mesh adaptation. It does change
during a computation with Sobolev gradient method. If the
Ipopt method is used for the computation, it corresponds to
the parameter εlast in (56). Default value: 0.01 in 3D and 0.1
in 2D for Sobolev gradient method and 0.008 in 3D and 0.005
in 2D for Ipopt method.

• @anisoadapt is a real value. If @anisoadapt > 0, the mesh
adaptation will be anisotropic and the ratio between the size
of the smallest and the biggest edges of each triangle will be
bounded by @anisoadapt. Default value: 10.

7. The following parameters are needed for the mesh adaptation
in the Sobolev gradient method only:
• @EPSAD1 is the first value of the L2 relative error the user

wants to reach to make a mesh adaptation (=ε1 in 3.2).
Default value: 1e−2.

• @EPSADMIN is the last stage (=εc in 3.2). Default value:
1e−9.

• @IPASSAL is the number of times a mesh adaptation is
performed before changing the value of EPSAD1 (Nad in 3.2).
Default value: 2.

• @EPSADSTEP is a factor to change the value of EPSAD1.
Default value: 2.

• @ITERADAPT is the maximum number of iterations between
two mesh adaptations. If ITERADAPT = 0, we do not use this
criterion. Default value: 0.

8. The last parameters are for the mesh adaptation in Ipopt
method:
• @niadapt is the number of times a mesh adaptation is

performed with the same error εk (see (56)). Default value:
1.

• @nbadapt is the total number of mesh adaptations made
during the computation (nadapt in (56)). Default value: 6 in 3D
and 4 in 2D.

• @maerr1 is the initial error in mesh adaptation (ε0 in (56)).
Default value: 0.01.

5.3. Output files

When a computation starts, the Output directory is created.
It contains a directory, whose name includes the prefix (defined
by the parameter @dircase), the form of potential and the chosen
method. This directory will contain an .echo file with a summary of
themain parameters, informations on the run, names of the output
files, final energy and the CPU time. The plot.gp file will contain a
Gnuplot script that the user can run to plot the evolution of the
energy, the error, the angular momentum or the L2 norm of the
solution. The .mesh and .rst file contains the mesh and the solution
respectively. They can be used as a restart field. Finally, the .tec
or .vtk files contain the solution for a given iteration (defined by
the parameters ITERPLOT) in the format tecplot or vtk.

6. Examples and user interface

To simplify the understanding of parameter files, some
examples are provided in the directory Examples. A user interface
was implemented using the GLUT library [65] to run these
examples or to run the toolbox with predefined parameter files. In
this section, we first present the example files and some results of
computations. Then,we focus on the use of theGLUTuser interface.

6.1. 2D computations

The examples for 2D computations use two forms of the
trapping potential. For each case, the use of both scalings and

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 155
Fig. 5. Solution of the second example in 2D: (a) the initial state built by adding 11 manufactured vortices to the ground state computed with Ipopt (1D axisymmetric),
(b) converged solution with the Sobolev gradient method, (c) solution obtained with Ipopt.
Fig. 6. 2D solution obtained with the Sobolev gradient method for a quartic + quadratic potential with Ω/ω⊥ = 3.5 and different values of the non-linear interaction
constant: (a) β = 5000, (b) β = 10 000, (c) β = 15 000.
Fig. 7. 2D solution built with the Ipoptmethod for a quartic+quadratic potential with β = 500 and different values of the rotation frequency: (a)Ω/ω⊥ = 3, (b)Ω/ω⊥ =

4, (c)Ω/ω⊥ = 5.
numerical methods is possible.

1. The first case is the harmonic potential with ax = 1, ay = 1
(see (26)), β = 500 (see Eq. (16)) and Ω/ω⊥ = 0.4 (see Eq.
(17)). We start with an initial approximation made with Ipopt
axisymmetric andweaddonemanufactured off-centred vortex,
as in Fig. 1(a). The final state we reach is a BEC with one central
vortex as in Fig. 1(b). To run this example, the following files
from the directory Examples have to be used:
• AR_Harm_physic_param.dat or

Classical_Harm_physic_param.dat for the physical parame-
ters, depending on which scaling is chosen,

• Ipopt_Harm_run_param.dat or GradS_Harm_run_param.dat
for the computation parameters, depending on which
method is chosen.

2. The second case is a combined quartic/quadratic potential with
ax = 1, ay = 1, a4 = 0.5 (see Eq. (26)), β = 500 and
Ω/ω⊥ = 2. We start with an initial approximation made
with Ipopt axisymmetric and we add a circle of manufactured
vortices, as in Fig. 5(a). Both methods reach a BEC with eleven
vortices organized into anAbrikosov lattice as shown in Fig. 5(b)
and (c). To run this example, the following filesmust be selected
by the user in the directory Examples:
• AR_Quart_physic_param.dat or

Classical_Quart_physic_param.dat for the physical parame-
ters,

• Ipopt_Quart_run_param.dat or GradS_Quart_run_param.dat
for the chosen method.

In Figs. 6 and 7, we provide two results with the same quartic+

quadratic potential as in the 2D example illustrated in Fig. 5: ax =

1, ay = 1, a4 = 0.5. In the case illustrated in Fig. 6, we set the
rotation speed toΩ = 3.5 and increase the non-linear constant β
from 5000 to 15 000.When this constant increases, the condensate
becomes larger and the number of vortices increases significantly.
They arrange in a triangular Abrikosov lattice. The files used to
perform this simulation are provided in the directory Input as
BEC_2D_physic_param_Latt.dat and BEC_2D_run_param_Latt.dat.

In the case of Fig. 7, the non-linear constant β = 500 is fixed
and the rotation speed Ω increases from 3 to 5. The condensate
is larger when the rotation speed increases and a giant vortex
appears at the centre of the condensate. This case was simulated

156 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
Fig. 8. Example from the interface software: isosurface of low atomic density
illustrating 3D vortices. (a) U vortex obtained with the Ipopt method starting from
a manufactured initial state with a U-shaped centred vortex. (b) S vortex obtained
with the Sobolev gradient method starting from amanufactured initial state with a
S-shaped centred vortex.

in [44]. The size of the computational domain increases as the
rotation speed increases. This illustrates the need of the use of the
Thomas–Fermi approximation to estimate the size of the domain.
The files used to perform this simulation are provided in the
directory Input under the names BEC_2D_physic_param_Giant.dat
and BEC_2D_run_param_Giant.dat.

6.2. 3D computations

Two examples with harmonic trapping potential with ax =

1, ay = 1.062, az = 0.0672 (see Eq. (26)), β = 15 900 and
Ω/ω⊥ = 0.4 are provided for 3D computations. They correspond
to numerical tests used in [13]. These tests have shown that,
with the same physical parameters, one can get different final
meta-stable states, by starting from different initial states. In the
first case, illustrated in Fig. 8(a), the computation starts with
an axisymmetric approximation with a manufactured U-shaped
vortex added at the centre. The final state, reached with both the
Sobolev gradientmethod and the Ipoptmethod, presents a bended
vortex with a U shape. In the second case of Fig. 8(b), we start
with an axisymmetric approximation with a manufactured central
vortex with a S shape. The final converged state keeps a S-shaped
vortex when using both numerical methods. According to [13] the
S-shaped vortices is a local minima of the energy. We conclude
that both methods converge to the local minimum which is the
closest to the initial guess provided. The input files used for these
examples are provided in the directory Examples as:

• VortexU_physic_param.dat and VortexS_physic_param.dat for
the physical parameters,

• VortexU_GradS_run_param.dat and VortexU_Ipopt_run_param.
dat for the computation parameters of the U-shaped vortex
case,

• VortexS_GradS_run_param.dat and VortexS_Ipopt_run_param.
dat for the computationparameters of the S-shaped vortex case.

The result shown in Fig. 9 was obtained using physical param-
eters from [14]: ax = −0.2, ay = −0.2, az = 0.0672, a4 =

0.075, β = 21 000 (see (26)), and Ω/ω⊥ = 2. The ground state
displays a giant vortex surrounded by eleven singly-quantized
vortices. This simulation was carried out using Ipopt for a
quartic-minus-quadratic potential. The files used to perform this
simulation are provided in the directory Input as: BEC_3D_physic_
param_Giant.dat and BEC_3D_run_param_Ipopt_Giant.dat.
Fig. 9. 3D solution computedwith the Ipoptmethod for a quartic-minus-quadratic
potential. (a) Isosurface of low atomic density coloured with the phase. (b) The
outer layer is removed to see the singly quantized vortices inside the condensate.
β = 21 000 andΩ/ω⊥ = 2.

Fig. 10. 3D solution computedwith the Sobolev gradientmethod for an anisotropic
harmonic potential. Different views of an isosurface of the low atomic density
showing the presence of 31 singly quantized vortices in an elongated condensate.
β = 50 000 andΩ/ω⊥ = 0.95.

Fig. 10 illustrates other possible vortex states that can be ob-
tained. An anisotropic harmonic potential with ax = 1, ay =

1.062, az = 0.0672, β = 50 000 (see (26)), and Ω/ω⊥ = 0.95
was used. The computation resulted in an Abrikosov lattice with
31 vortices in 3D. The anisotropy makes the condensate to take
an elongated shape following the x-axis. The files used to perform
this simulation are provided in the directory Input as: BEC_3D_
physic_param_aniso.dat and BEC_3D_run_param_Ipopt_aniso.dat.

6.3. Optional user interface

A simple user interface was made in C++ with the GLUT tool
of the OpenGL library. The C++ source code for this interface is in
the directory GLUT. It can be compiled using themakefile provided
with the toolbox. This interface allows the user to easily run the
examples or to run the toolbox using any modified input file. The
screen capture of the interface in 3D is shown in Fig. 11. On the
top left corner one can see a terminal from which was run the
executable ‘‘RunToolbox’’. The window on the top right corner of
Fig. 11 appears. By clicking on the right button of the mouse, a
pull-downmenu allows the user to run the toolboxwith one of the
three example files provided, or using the input files from the Input
directory. Then a Gnuplot window appears plotting the evolution
of the energy during the run. This window is on the bottom right
corner of Fig. 11. Finally the bottom left corner of Fig. 11 shows the
3D solution plotted with Medit. The user can also decide to plot it
with the usual graphical interface of FreeFem++.

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 157
Fig. 11. Screen capture of the user interface for a 3D computation. We can see: the terminal in which the application is run, the solution plotted with Medit and the plot of
the energy evolution.
In 2D, there are three menus to choose one of the examples
previously described:
1. Potential allows to choose between the harmonic (Harm) or the

quartic + quadratic (Quart) trapping potential example.
2. Method allows to choose between the Ipopt (Ipopt) or the

Sobolev gradient (GradS) method.
3. Scaling allows to choose between the Aftalion–Rivière (AR) or

the classical scaling.

In the lastmenu (Run), the user can run either the selected example
(Run Example) or run the toolbox with the input files which are in
the Input directory (Run Input).

7. Conclusion

We provide with this paper a finite-element software for 2D
and 3D computation of stationary solutions of the Gross–Pitaevskii
equation. The user has the choice between two robust and
optimized numerical methods: a steepest descent method based
on Sobolev gradients and a minimization algorithm based on
the state-of-the-art optimization library Ipopt. For both methods,
mesh adaptivity strategies are implemented to reduce the
computational time and increase the local spatial accuracy when
vortices are present. The numerical system is tested and validated
through various cases representing 2D and 3D configurations of
Bose–Einstein condensates in rotation. A particular attention was
paid to the physical interpretation of the computations. The main
parameters of the run can be prescribed either in non-dimensional
or physical form. Thomas–Fermi approximations are derived as
closed formulae for a more accurate description of the initial field
for the minimization procedures. Energy and angular momentum
are tracked during the computation and post-processing tools
allow to identify quantized vortices in the final, equilibrium state.

An optional graphical user interface is also provided with the
software. It allows to easily run predefined cases or with user-
defined parameter files.

The programs were written as a toolbox to be used within
the free software FreeFem++. This offers the advantage that all
technical issues related to the implementation of the finite element
method are hidden, allowing to focus on numerical algorithms and
their performance. Automatic mesh generators, powerful mesh
adaptivity functions and the availability of various types of finite
elements with complex functions are the main features making
FreeFem++ very appealing in implementing numerical methods
for Schrödinger type equations. The toolbox distributed with this
paper is extremely versatile and can be easily adapted to deal with
different physical models. A natural extension of this toolbox is the
simulation of the time-dependent Gross–Pitaevskii equation: this
is an ongoing work and will be reported in a further contribution.

Acknowledgements

This work was supported by the French ANR grant ANR-
12-MONU-0007-01 BECASIM (Modéles Numériques call). We
would like to acknowledge the use of computational resources
provided by CRIHAN (Centre de Ressources Informatiques de
Haute-Normandie, France) under the project 2015001. We also
acknowledge the generous hospitality of the Fields Institute,
Toronto, during the Thematic Program on Multiscale Scientific
Computing, January–April, 2016.

Appendix. Formulae for the Thomas–Fermi approximation

We derive in this Appendix closed formulae for the
Thomas–Fermi approximation for different types of trapping po-
tentials (quartic ± quadratic). The Thomas–Fermi density (57) can
be rewritten using (22) as:

ρTF = |u|2 =


ρ0 − 2Ṽ eff

CS


+

, ρ0 = 2εµ̃ = 2ε
µ

h̄ω⊥

, and

CS = 2ε2Cg .

(A.1)

We recall that ε = 1 for the classical scaling using the oscillator
length aho as length scale. The constant ρ0 will be determined

158 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
by imposing the unitary norm constraint (18). We derive below
different formulas for ρ0 corresponding to the effective trapping
potential (25). We drop in the following the tilde notation.

A.1. 2D harmonic potential

For this case, the effective trapping potential (25) is reduced to

Ṽ eff
=

1
2


axx2 + ayy2


. (A.2)

The unitary norm constraint (18) becomes

I =


D


ρ0 − axx2 − ayy2


dxdy = CS. (A.3)

To calculate I analytically, we use the change of variables:
x =

r
√
ax

cos θ

y =
r

√
ay

sin θ
dxdy =

r
√
axay

drdθ,

r ∈ [0,
√
ρ0], θ ∈ [0, 2π], (A.4)

and

I =
1

√
axay

 2π

0
dθ
 √

ρ0

0
(ρ0 − r2)rdr =

πρ2
0

2
√
axay

. (A.5)

Finally, the constant ρ0 is expressed as:

ρ0 =


2
√
axay
π

CS

1/2

, (A.6)

and the dimensions of the condensate follow:

Rx =


ρ0

ax
, Ry =


ρ0

ay
. (A.7)

A.2. 3D harmonic potential

Same analysis for the potential

Ṽ eff
=

1
2


axx2 + ayy2 + azz2


. (A.8)

The constraint (18) becomes

I =


D


ρ0 − axx2 − ayy2 − azz2


dxdydz = CS. (A.9)

To calculate I analytically, we use the change of variables:

x =
r

√
ax

sin θ cosφ

y =
r

√
ay

sin θ sinφ

z =
r

√
az

cos θ

dxdydz

=
r2 sin θ
√
axayaz

drdθdφ,


r ∈ [0,

√
ρ0]

θ ∈ [0, π]

φ ∈ [0, 2π]

(A.10)

and

I =
1

√
axayaz

 2π

0
dφ
 π

0
sin θdθ

 √
ρ0

0
(ρ0 − r2)r2dr

=
8πρ5/2

0

15
√
axayaz

. (A.11)
Finally, the constant ρ0 is expressed as:

ρ0 =


15

√
axayaz
8π

CS

2/5

, (A.12)

and the dimensions of the condensate follow:

Rx =


ρ0

ax
, Ry =


ρ0

ay
, Rz =


ρ0

az
. (A.13)

A.3. 2D combined quartic and quadratic potential

We consider that the trap has radial symmetry (ax = ay = a2)
and the trapping potential is

Ṽ eff
=

1
2


a2r2 + a4r4


. (A.14)

Note that a4 > 0, but a2 can be either positive (quartic+quadratic
potential) or negative (quartic − quadratic potential). The border
of the condensate is defined by the radius R that satisfies:

a4R4
+ a2R2

− ρ0 = 0,=⇒ R2
±

=

−a2 ±


a22 + 4ρ0a4

2a4
. (A.15)

A.3.1. Case a2 ≥ 0: quartic + quadratic potential
In this case, a2 > 0, a4 > 0 andwe infer from (A.15) thatρ0 > 0

and there exists a single root R+:

R2
+

=

−a2 +


a22 + 4ρ0a4

2a4
> 0. (A.16)

The constraint (18) becomes in polar coordinates (r, t):

I = 2π
 R

0


ρ0 − a2r2 − a4r4


rdr = CS, (A.17)

or

CS = 2π

ρ0

R2

2
− a2

R4

4
− a4

R6

6


=
πR4

6


3a2 + 4a4R2 . (A.18)

Consequently, we first have to calculate the root η = R2 > 0 of the
non-linear equation (by a Newton method by example):

4a4η3 + 3a2η2 −
6
π
(CS)  
Aη

= 0, (A.19)

and then calculate

ρ0 = a2η + a4η2 > 0. (A.20)

The radius of the condensate is finally given by R =
√
η.

A.3.2. Case a2 < 0: quartic − quadratic potential
We distinguish two cases:

• ifρ0 > 0, (A.15) has only one root R+, and the computation ofρ0
is the same as above. We also infer that this case occurs when:

0 < ρ0 = a2R2
+ a4R4

=⇒ η = R2 >
|a2|
a4
. (A.21)

• if ρ0 < 0, (A.15) has two roots R−, R+ and the integration will
be carried for r ∈ [R−, R+] (there is a hole in the centre of the
condensate):

I = 2π
 R+

R−


ρ0 − a2r2 − a4r4


rdr = CS, (A.22)

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 159
or
CS

2π
=

ρ0
2


R2

+
− R2

−


−

a2
4


R4

+
− R4

−


−

a4
6


R6

+
− R6

−


(A.23)

and using

R2
+

+ R2
−

= −
a2
a4
, R2

+
R2

−
= −

ρ0

a4
, R2

+
− R2

−

=


a22 + 4ρ0a4

a4
(A.24)

we obtain that

CS

2π
=


a22 + 4ρ0a4

3/2
12a24

, (A.25)

and finally

ρ0 =
1
4a4


6a24
π

CS

2/3

− a22


=

1
4a4


a24Aη

2/3
− a22


. (A.26)

Since ρ0 < 0, this occurs if

a4 <


π |a2|3

6CS
=

|a2|3/2
Aη

. (A.27)

A.3.3. Summary for the 2D combined quartic and quadratic potential

Ṽ eff
=

1
2


a2r2 + a4r4


. (A.28)

−− > compute ρ0

Compute CS = 2ε2Cg ,

• if a2 < 0 and a4 <


πa32
6CS

ρ0 =
1
4a4


6a24
π

CS

2/3

− a22


• else

calculate the root η > 0 of:

f (η) = 4a4η3 + 3a2η2 −
6
π
(CS) = 0,

and then calculate

ρ0 = a2R2
+ a4R4

−− > compute the maximum radius of the condensate

R+ =

−a2 +


a22 + 4ρ0a4

2a4

1/2

.

(A.29)

A.4. 3D combined quartic and quadratic potential

We consider a trapping potential with radial symmetry (ax =

ay = a2):

Ṽ eff
=

1
2


a2r2 + a4r4 + azz2


. (A.30)
Note that a4 > 0, az > 0, but a2 can be either positive (quartic +

quadratic potential) or negative (quartic−quadratic potential). The
border of the condensate is defined by:

a4R4
+ a2R2

+ azz2 − ρ0 = 0,

=⇒ z(r) = ±
1

√
az


ρ0 − a2r2 − a4r4

1/2
. (A.31)

A.4.1. Case a2 > 0: quartic + quadratic potential
In this case, a2 > 0, az > 0, a4 > 0 and we infer from (A.31)

that ρ0 > 0 and it exists a single root R⊥ which is the radius of the
condensate in the central plane (z = 0):

R2
⊥

=

−a2 +


a22 + 4ρ0a4

2a4
> 0. (A.32)

Consequently, the condensate extends in the central plane from
r = 0 to r = R⊥. Using the z-symmetry of the condensate, we
calculate in cylindrical coordinates

I =


D

(ρ0 − a2r2 − a4r4 − azz2)

=

 2π

0
dθ
 R⊥

0
rdr 2

 z(r)

0
(ρ0 − a2r2 − a4r4 − azz2)dz (A.33)

or using (A.31):

I =
8π

3
√
az

 R⊥

0
(ρ0 − a2r2 − a4r4)3/2rdr (A.34)

=
8π

3
√
az

 R⊥

0


ρ0 +

a22
4a4


−


√
a4r2 +

a2
√
4a4

2
3/2

rdr. (A.35)

It is useful to calculate the integral

J(x) =


(λ2 − x2) dx, λ > 0. (A.36)

After elementary integration by parts, we obtain:

J(x) =
3λ4

8
arcsin

 x
λ


+

3λ2

8
x

λ2 − x2

1/2
+

1
4
x

λ2 − x2

3/2
, (A.37)

or in the more useful form:

J(x) = λ4


3
8
arcsin

 x
λ


+

3
8

 x
λ


1 −

 x
λ

21/2

+
1
4

 x
λ


1 −

 x
λ

23/2

. (A.38)

We also notice that:

J(λ) =
3π
16
λ4, J(0) = 0, J(−λ) = −

3π
16
λ4. (A.39)

Using now the notation

λ =


ρ0 +

a22
4a4

, (A.40)

and the change of variables

u =
√
a4r2 +

a2
√
4a4

, du = 2
√
a4dr, (A.41)

r = 0 =⇒ u0 =
a2

√
4a4

, (A.42)

r = R⊥ =⇒ u⊥ = λ, (A.43)

160 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
our integral becomes:

I =
4π

3
√
aza4

 λ

u0
(λ2 − u2)3/2du =

4π
3
√
aza4

(J(λ)− J(u0)) . (A.44)

Introducing the parameter:

η =
a2

√
4a4ρ0

> 0,=⇒
u0

λ
=

η
1 + η2

, (A.45)

and using (A.38) and (A.39), we finally obtain:

I =
4π

3
√
aza4

λ4


3
8


π

2
− arcsin

η
1 + η2



−
3
8

η
1 + η2

1
(1 + η2)1/2

−
1
4

η
1 + η2

1
(1 + η2)3/2


,

=
4π

3
√
aza4

λ4


3
8
arccos

η
1 + η2

−
3
8

η

1 + η2

−
1
4

η

(1 + η2)2


. (A.46)

Using that:

λ4 = ρ2
0 (1 + η2)2 =

a42
(4a4)2

(1 + η2)2

η4
, (A.47)

we obtain a non-linear equation in η:

I = CS =
8πa42

3a1/2z (4a4)5/2
1
η4


3(1 + η2)2

8
arccos

η
1 + η2

−
3
8
η(1 + η2)−

1
4
η


,

=
πa42

a1/2z (4a4)5/2
1
η4


(1 + η2)2 arccos

η
1 + η2

− η3 −
5
3
η


. (A.48)

To summarize this case, we have to

• find the root η > 0 of the non-linear equation:

f (η) =
a1/2z (4a4)5/2

πa42
CS  

Aη

η4 − (1 + η2)2 arccos
η

1 + η2

+ η3 +
5
3
η = 0, (A.49)

f ′(η) = 4Aηη3 − 4η(1 + η2) arccos
η

1 + η2

+ (1 + η2)+ 3η2 +
5
3
, (A.50)

• compute

ρ0 =
a22

4a4η2
, (A.51)

and the dimensions of the condensate:

R2
⊥

=

−a2 +


a22 + 4ρ0a4

2a4
, (A.52)

Rzmax = z|r=0 =


ρ0

az

1/2

. (A.53)
A.4.2. Case a2 = 0: pure quartic potential
The integration is carried exactly in the same manner, the

difference coming from the limits of the integration following r .
We obtain

I =
4π

3
√
aza4

(J(λ)− J(0)) =
4π

3
√
aza4

3π
16
λ4, (A.54)

with λ =
√
ρ0. Finally

I = CS =
π2

2
√
az4a4

(ρ0)
2 , (A.55)

and

ρ0 =
1
π


2a1/2z (4a4)1/2

1/2
C1/2
S . (A.56)

R⊥ =


ρ0

a4

1/4

, Rzmax =


ρ0

az

1/2

. (A.57)

A.4.3. Case a2 < 0: quartic − quadratic potential
For this case, a2 < 0, az > 0, a4 > 0 and we distinguish two

subcases:

• If ρ0 < 0, the condensate has a hole. We infer from (A.31) that
there are two roots R±

⊥

(R±

⊥
)2 =

−a2 ±


a22 + 4ρ0a4

2a4
> 0 (A.58)

and the condensate extends in central plane from R−

⊥
to R+

⊥
.

The integration is carried exactly in the same manner, the
difference coming from the limits of the integration following
r . We obtain

I =
4π

3
√
aza4

(J(λ)− J(−λ)) =
4π

3
√
aza4

2
3π
16
λ4 (A.59)

and finally

I = CS =
π2

√
az4a4


ρ0 +

a22
4a4

2

. (A.60)

The value of ρ0 results as:

ρ0 =
a1/4z (4a4)1/4

π
C1/2
S −

a22
4a4

=
a22
4a4

(ξ − 1). (A.61)

Since ρ0 < 0, this case is obtained if:

ξ =
a1/4z (4a4)5/4

πa22
(CS)

1/2
=


Aη

√
π
< 1. (A.62)

The dimensions of the condensate are

R2
max =

−a2 +


a22 + 4ρ0a4

2a4
, (A.63)

Rzmax = z

r2= −a2

2a4
=

1
√
az


ρ0 +

a22
4a4

. (A.64)

• If ρ0 > 0, the condensate has only a depletion centred around
z = 0 (the density profile has not any more the maximum at
z = 0). This case occurs when:

ξ =
a1/4z (4a4)5/4

πa22
C1/2
S =


Aη

√
π
> 1. (A.65)

G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162 161
The computation is the same as for the case of ‘‘quar-
tic + quadratic’’ potential, with the difference that the root η
is now negative. In particular

Rzmax =
1

√
az


ρ0 +

a22
4a4

. (A.66)

A.4.4. Summary for the 3D combined quartic and quadratic potential

Ṽ eff
=

1
2


a2r2 + a4r4 + azz2


.

Compute CS = 2ε2Cg ,
• if a2 = 0,
ρ0 =

1
π


2a1/2z (4a4)1/2

1/2
C1/2
S ,

Rmax =


ρ0

a4

1/4

, Rzmax =


ρ0

az

1/2

.

• else

−− > compute

Aη =
a1/2z (4a4)5/2

πa42
CS

−− > define the function

f (η) = Aη η4 − (1 + η2)2 arccos
η

1 + η2
+ η3 +

5
3
η



• if a2 > 0,

− − −− > find the positive root η ∈ [0, 200] of f (η) = 0
ρ0 =

a22
4a4η2

,

Rmax =

−a2 +


a22 + 4ρ0a4

2a4

1/2

, Rzmax =


ρ0

az

1/2

.

• else

ξ =


Aη

√
π
,

• if ξ < 1,

ρ0 =
a22
4a4

(ξ − 1),

Rmax =

−a2 +


a22 + 4ρ0a4

2a4

1/2

,

Rzmax =


ρ0

az
+

a22
4a4az

1/2

.

• else

find the negative root η ∈ [−200, 0] of f (η) = 0

ρ0 =
a22

4a4η2
,

Rmax =

−a2 +


a22 + 4ρ0a4

2a4

1/2

,

Rzmax =


ρ0

az
+

a22
4a4az

1/2

.

References

[1] L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation, Clarendon Press,
Oxford, 2003.

[2] A. Minguzzi, S. Succi, F. Toschi, M.P. Tosi, P. Vignolo, Phys. Rep. 395 (2004)
223–355.

[3] W. Bao, in: P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González (Eds.),
Transport Phenomena and Kinetic Theory: Applications to Gases, Semicon-
ductors, Photos, and Biological Systems, in: Series Modeling and Simulation
in Science, Engineering and Technology, Birkhauser, 2006, pp. 215–255.

[4] W. Bao, Y. Cai, Kinet. Relat. Models 6 (2013) 1–135.
[5] X. Antoine, C. Besse,W. Bao, Comput. Phys. Comm. 184 (12) (2013) 2621–2633.
[6] W. Bao, Proceedings of the International Congress of Mathematicians (Seoul

2014) IV, 2014, pp. 971–996.
[7] C.F. Barenghi, R.J. Donnelly, W.F. Vinen (Eds.), Quantized Vortex Dynamics and

Superfluid Turbulence, in: Lecture Notes in Physics, vol. 571, Springer, 2001.
[8] P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González (Eds.), Emergent

Nonlinear Phenomena in Bose-Einstein Condensates, in: Atomic, Optical, and
Plasma Physics, vol. 45, Springer, 2008.

[9] C.F. Barenghi, Y.A. Sergeev (Eds.), Vortices and Turbulence at Very Low
Temperatures, in: CISM International Centre forMechanical Sciences, vol. 501,
Springer, 2008.

[10] B. Halperin, M. Tsubota (Eds.), Quantum Turbulence, in: Progress in Low
Temperature Physics, vol. 16, Springer, 2009.

[11] K. Kasamatsu, M. Machida, N. Sasa, M. Tsubota, Phys. Rev. A 71 (2005) 063616.
[12] N.G. Berloff, Phys. Rev. A 69 (2004) 053601.
[13] A. Aftalion, I. Danaila, Phys. Rev. A 68 (2003) 023603(1–6).
[14] A. Aftalion, I. Danaila, Phys. Rev. A 69 (2004) 033608(1–6).
[15] I. Danaila, Phys. Rev. A 72 (2005) 013605(1–6).
[16] K. Kasamatsu, M. Tsubota, Prog. Low Temp. Phys. 16 (2008) 351–403.
[17] J.J. García-Ripoll, V.M. Pérez-García, Phys. Rev. A 64 (2001) 053611.
[18] J.J. García-Ripoll, V.M. Pérez-García, SIAM J. Sci. Comput. 23 (2001) 1315–1333.
[19] R. Zeng, Y. Zhang, Comput. Phys. Comm. 180 (2009) 854–860.
[20] W. Bao, Q. Du, SIAM J. Sci. Comput. 25 (2004) 1674.
[21] W. Bao, I.-L. Chern, F.Y. Lim, J. Comput. Phys. 219 (2006) 836–854.
[22] W. Bao, J. Shen, J. Comput. Phys. 227 (2008) 9778–9793.
[23] C. Farhat, J. Toivanen, J. Comput. Phys. 231 (2012) 4709–4722.
[24] R.P. Tiwari, A. Shukla, Comput. Phys. Comm. 174 (12) (2006) 966–982.
[25] C.M. Dion, E. Cancès, Comput. Phys. Comm. 177 (2007) 787–798.
[26] U. Hohenester, Comput. Phys. Comm. 185 (1) (2014) 194–216.
[27] P. Muruganandam, S. Adhikari, Comput. Phys. Comm. 180 (10) (2009)

1888–1912.
[28] M. Caliari, S. Rainer, Comput. Phys. Comm. 184 (3) (2013) 812–823.
[29] D. Vudragović, I. Vidanović, A. Balaz, P. Muruganandam, S.K. Adhikari, Comput.

Phys. Comm. 183 (9) (2012) 2021–2025.
[30] R. Caplan, Comput. Phys. Comm. 184 (4) (2013) 1250–1271.
[31] X. Antoine, R. Duboscq, Comput. Phys. Comm. 185 (11) (2014) 2969–2991.
[32] A. Aftalion, Q. Du, Phys. Rev. A 64 (2001) 063603.
[33] W. Bao, W. Tang, J. Comput. Phys. 187 (2003) 230–254.
[34] L.O. Baksmaty, Y. Liub, U. Landmanc, N.P. Bigelowd, H. Pu, Math. Comput.

Simulation 80 (2009) 131–138.
[35] I. Danaila, F. Hecht, J. Comput. Phys. 229 (2010) 6946–6960.
[36] F. Hecht, J. Numer. Math. 20 (2012) 251–266.
[37] F. Hecht, O. Pironneau, A.L. Hyaric, K. Ohtsuke, FreeFem++ (manual), 2007,

www.freefem.org.
[38] I. Danaila, P. Kazemi, SIAM J. Sci. Comput. 32 (2010) 2447–2467.
[39] A. Wächter, An interior point algorithm for large-scale nonlinear optimization

with applications in process engineering (Ph.D. thesis), Carnegie Mellon
University, Pittsburgh, PA, USA.

[40] C.D.C. Dapogny, P. Frey, J. Comput. Phys. 262 (2014) 358–378.
[41] C. Dobrzynski, P. Frey,MMG3D: User Guide. [Technical Report] RT-0422, INRIA

hal-00681813, 2012.
[42] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Modern Phys. 71 (1999)

463–512.
[43] V.S. Bagnato, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, D. Mihalache,

Romanian Rep. Phys. 67 (2015) 5–50.
[44] A.L. Fetter, B. Jackson, S. Stringari, Phys. Rev. A 71 (2005) 013605.
[45] M. Tsubota, K. Kasamatsu, M. Ueda, Phys. Rev. A 65 (2002) 023603.
[46] A. Aftalion, T. Rivière, Phys. Rev. A 64 (2001) 043611.
[47] V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 92 (2004) 050403.
[48] A. Aftalion, Vortices in Bose-Einstein Condensates, Birkhauser, 2006.
[49] K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, J. Modern Opt. 47 (2000)

2715.
[50] K.W. Madison, F. Chevy, V. Bretin, J. Dalibard, Phys. Rev. Lett. 86 (2001) 4443.
[51] P. Rosenbusch, V. Bretin, J. Dalibard, Phys. Rev. Lett. 89 (2002) 200403.
[52] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth,

F. Rossi, R. Ulerich, GNU Scientific Library Reference Manual third ed., ISBN
0954612078, 2015, www.gnu.org.

[53] H. Borouchaki, M.J. Castro-Diaz, P.L. George, F. Hecht, B. Mohammadi, 5th
Inter. Conf. on Numerical Grid Generation in Computational Field Simulations,
Mississipi State Univ., 1996.

[54] M. Castro-Diaz, F. Hecht, B. Mohammadi, Int. J. Comput. Fluid Dyn. 25 (2000)
475–491.

[55] F. Hecht, B. Mohammadi, AIAA Pap. 97 (1997) 0859.
[56] P.L. George, H. Borouchaki, Delaunay Triangulation and Meshing, Hermès,

Paris, 1998.
[57] P.J. Frey, Medit: An Interactive Mesh Visualisation Software, RT-0253, INRIA,

2001.

http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref1
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref2
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref3
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref4
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref5
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref7
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref8
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref9
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref10
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref11
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref12
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref13
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref14
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref15
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref16
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref17
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref18
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref19
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref20
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref21
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref22
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref23
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref24
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref25
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref26
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref27
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref28
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref29
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref30
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref31
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref32
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref33
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref34
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref35
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref36
http://www.freefem.org
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref38
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref40
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref42
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref43
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref44
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref45
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref46
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref47
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref48
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref49
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref50
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref51
http://www.gnu.org
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref53
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref54
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref55
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref56

162 G. Vergez et al. / Computer Physics Communications 209 (2016) 144–162
[58] A.W.J. Nocedal, R.A. Waltz, SIAM J. Optim. 19 (4) (2008) 1674–1693.
[59] A. Wächter, L.T. Biegler, Math. Program. 106 (1) (2006) 25–57.
[60] S. Auliac, Développement d’outils d’optimisation pour Freefem++, Thèse,

Université Pierre et Marie Curie, Paris, France, 2014.
[61] K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84 (2000)

806.
[62] V. Bretin, P. Rosenbusch, F. Chevy, G. Shlyapnikov, J. Dalibard, Phys. Rev. Lett.
90 (2003) 100403.

[63] S. Stringari, Phys. Rev. Lett. 82 (1999) 4371.
[64] T. Williams, C. Kelley, Gnuplot 5.0 : An Interactive Plotting Programm, 2015,

http://www.Gnuplot.info/.
[65] M. Kilgard, GLUT 3.7, 2000, https://www.opengl.org/resources/libraries/glut/.

http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref58
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref59
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref61
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref62
http://refhub.elsevier.com/S0010-4655(16)30250-8/sbref63
http://www.Gnuplot.info/
https://www.opengl.org/resources/libraries/glut/

	A finite-element toolbox for the stationary Gross--Pitaevskii equation with rotation
	Introduction
	Mathematical model: the Gross--Pitaevskii energy
	The Gross--Pitaevskii energy for the rotating condensate
	Scaling and trapping potential

	Numerical methods: direct minimization of the GP energy
	A steepest descent method based on Sobolev gradients
	Mesh adaptation
	Minimization algorithm using the optimization library Ipopt

	Building the initial approximation
	Analytical solution based on the Thomas--Fermi approximation
	Numerical approximation with Ipopt for axisymmetric or non-rotating cases
	Manufactured initial state with vortices

	Description of the programs
	Program architecture
	Input parameters
	Output files

	Examples and user interface
	2D computations
	3D computations
	Optional user interface

	Conclusion
	Acknowledgements
	Formulae for the Thomas--Fermi approximation
	2D harmonic potential
	3D harmonic potential
	2D combined quartic and quadratic potential
	Case a2 geq 0 : quartic + quadratic potential
	Case a2 <0 : quartic - quadratic potential
	Summary for the 2D combined quartic and quadratic potential

	3D combined quartic and quadratic potential
	Case a2 >0 : quartic + quadratic potential
	Case a2 = 0 : pure quartic potential
	Case a2 <0 : quartic - quadratic potential
	Summary for the 3D combined quartic and quadratic potential

	References

