
A finite-element toolbox for the stationary Gross-Pitaevskii
equation with rotation

(Computer Physics Communications, 209, p. 144-162, 2016)

Guillaume Vergeza,b, Ionut Danaila∗,a, Sylvain Auliacb, Frédéric Hechtb

aUniversité de Rouen Normandie, Laboratoire de Mathématiques Raphaël Salem, CNRS UMR 6085, Avenue de
l’Université, BP 12, F-76801 Saint-Étienne-du-Rouvray, France

bUPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4 Place Jussieu, F-75005 Paris, France

Abstract

We present a new numerical system using classical finite elements with mesh adaptivity for
computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a
toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all ex-
isting operating systems. This offers the advantage to hide all technical issues related to the
implementation of the finite element method, allowing to easily code various numerical algo-
rithms. Two robust and optimised numerical methods were implemented to minimize the Gross-
Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization
algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adap-
tivity strategies are used to reduce the computational time and increase the local spatial accuracy
when vortices are present. Different run cases are made available for 2D and 3D configurations
of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided,
allowing to easily run predefined cases or with user-defined parameter files. We also provide
several post-processing tools (like the identification of quantized vortices) that could help in ex-
tracting physical features from the simulations. The toolbox is extremely versatile and can be
easily adapted to deal with different physical models.

Key words: FreeFem++, Ipopt, Gross-Pitaevskii, Bose-Einstein, finite element, mesh
adaptivity, Sobolev gradient.

∗Corresponding author. Tel.: (+33)2 32 95 52 50 ; fax: (+33)2 32 95 52 86
Email addresses: vergez@ann.jussieu.fr (Guillaume Vergez), ionut.danaila@univ-rouen.fr (Ionut

Danaila), auliac@ann.jussieu.fr (Sylvain Auliac), hecht@ann.jussieu.fr (Frédéric Hecht)
Published in Computer Physics Communications Submitted: January 31, 2016. accepted: July 20, 2016.

Programm summary
Program Title: GPFEM
Catalogue identifier:
Program summary URL:
Program obtainable from:
Licensing provisions: Apache License, 2.0 (Apache-2.0)
No. of lines in distributed program, including test data, etc.: 49177
No. of bytes in distributed program, including test data, etc.: 450969
Distribution format: tar.gz
Programming language: FreeFem++ (free software, www.freefem.org)
Computer: PC, Mac, Super-computer.
Operating system: Windows, Mac OS, Linux.
Classification: 2.7, 4.9, 7.7.
Nature of problem: The software computes 2D or 3D stationary solutions of the Gross-Pitaevskii
equation with rotation. The main application is the computation of different types of vortex
states (Abrikosov vortex lattice, giant vortex) in rotating Bose-Einstein condensates. The
software can be easily modified to take into account different related physical models.
Solution method: The user has the choice between two robust and optimised numerical methods
for the direct minimization of the Gross-Pitaevskii energy: a steepest descent method based
on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization
library Ipopt. For both methods, mesh adaptivity strategies are implemented to reduce the
computational time and increase the local spatial accuracy when vortices are present.
Running time:
From minutes for 2D configurations to hours for 3D cases (on a personal laptop). Complex 3D
cases (with hundreds of vortices) may require several days of computational time.

2

1. Introduction

The Bose-Einstein condensate (BEC) is an ideal system to study superfluidity at a macroscopic
level: it is a highly controllable quantum system which admits a simple theoretical description
using the Gross-Pitaevskii equation (GPE) [1]. A great deal of attention has been lately devoted
to the development of accurate numerical schemes to solve different forms of the GPE, from
the classical (stationary or time-dependent) GPE, to systems of coupled GPEs (e. g. for two-
component or spinor BEC) and more recent formulations (e. g. with non-local interactions or
fractional GPE). For recent reviews of numerical methods for GPE, see [2, 3, 4, 5, 6].

Among all these formulations, the stationary GPE is used either to numerically generate an
initial condition for the simulation of real-time dynamics of BEC, or to directly investigate phys-
ical features of experimentally observed BEC. In the former case, the stationary (ground state)
solution which is the global minimizer of the GP energy is sought, while in the latter case,
capturing local minima of the GP energy could be of interest since they represent excited (or
metastable) states observed in experimental BEC configurations. The most striking example of
how numerical solutions of the stationary GP equation were used to investigate physics is the
study of quantized vortices in rotating BEC. Since superfluidity in BEC is closely related to the
nucleation of quantized vortices, this topic has focused the attention of physical and mathemat-
ical communities during the last two decades. Numerous experimental and theoretical studies
were devoted to the investigation of three-dimensional properties of single (straight or bent) vor-
tex lines, vortex rings or Abrikosov vortex lattices (for a review of such physical systems, see the
dedicated volumes [7, 8, 9, 10]). Numerical simulations of the stationary three-dimensional (3D)
GPE proved as a valuable investigation tool for all these topics, revealing properties of quantized
vortices difficult to observe experimentally, suggesting new configurations, or supporting new
physical or mathematical theories (e. g. [11, 12, 13, 14, 15]; for a review, see [16]).

The difficulty in computing solutions of the stationary GP equation with rotation comes from
the presence in a condensate of a large number of vortices, with large gradients of atomic density
in the vortex cores. This explains the use in the literature of discretisation methods with high
order spatial accuracy: Fourier spectral [17, 18, 19], sixth-order finite differences [13, 14, 15],
sine-spectral [20, 21], Laguerre–Hermite pseudo-spectral [22], hybrid discontinuous Galerkin
discretisations based on polynomials and plane waves [23], etc. Several software packages for
the classical stationary GPE were deposited in the CPC Program Library. They use different
numerical methods: iterative diagonalization method [24], optimal damping algorithm [25, 26],
Crank-Nicolson scheme [27], Newton-like method with an approximate line-search strategy [28,
29], fully-explicit fourth-order RungeKutta scheme [30], semi-implicit backward Euler scheme
[31], etc. The spatial discretization is generally based on spectral [25, 28, 31] or finite-difference
[27, 29, 30, 26] methods. Provided programs are written in Fortran [25, 27], C [29, 30] or Matlab
[28, 30, 31, 26].

Numerical methods based on standard finite elements are less represented in this field. Vortex
states in rotating BEC were computed using finite elements with fixed meshes [32, 33, 20, 34]
or dynamically adapted meshes [35], but only for 2D configurations. To the best of our knowl-
edge, no finite-element programs exist in the CPC Program Library for the GP equation with
rotation. The purpose of this paper is thus to distribute a finite-element solver for computing
steady solutions of the GPE with rotation, in both 2D and 3D settings. The code was built as a
toolbox for FreeFem++ [36, 37], which is a free software (under LGPL license) using a large
variety of triangular finite elements (linear and quadratic Lagrangian elements, discontinuous
P1, Raviart-Thomas elements, etc.) to solve partial differential equations. FreeFem++ is an

3

integrated product with its own high level programming language and a syntax close to mathe-
matical formulations, making the implementation of numerical algorithms very easy. Among the
features making FreeFem++ an easy-to-use and highly adaptive software we recall the advanced
automatic mesh generator, mesh adaptation, problem description by its variational formulation,
automatic interpolation of data, colour display on line, postscript printouts, etc. FreeFem++

community is continuously growing, with thousands of users all over the world.
The present FreeFem toolbox, called GPFEM, provides two efficient numerical methods for

computing stationary states with vortices, with the following novelties:
(i) the steepest-descent algorithm based on Sobolev gradients suggested in [38] and tested for
2D configurations in [35] was improved by adding an optimized line-search algorithm for the
descent step and extended for 3D configurations;
(ii) a novel minimisation method for 2D and 3D configurations was implemented based on
the state-of-the-art optimisation library Ipopt [39] using the direct minimization interior point
method;
(iii) the mesh adaptivity algorithm suggested in [35] for 2D configurations was extended in 3D
and optimised by the use of anisotropic mesh adaptivity functions provided by mshmet [40] and
mmg3d [41] softwares.
From the programming point of view, the toolbox presents the following advantages:
(iv) the switch from different finite elements (from linear P1 to quadratic P2 and high-order P3

or P4 finite elements) implies the modification of a single instruction (the definition of the finite-
element space);
(v) the scripts are easy to adapt to different mathematical or physical settings (two different scal-
ings are implemented);
(vi) a graphical interface allows to run predefined 2D or 3D examples.

The paper is organised as follows. In §2, we present different mathematical formulations of the
GP equation and energy. Two different scalings are introduced. Numerical methods are presented
in §3 and the important issue of setting the initial condition for the computation is described in §4.
The details of the derivation of closed formulae for the Thomas-Fermi approximation (generally
used as initial condition) is deferred to Appendix A. The structure of the provided software is
described in great detail in §5. Various test cases for computing 2D and 3D configurations with
vortices are presented in §6. The optional user interface is also described in §6. The main features
of the software and possible extensions are summarised in §7.

2. Mathematical model: the Gross-Pitaevskii energy

2.1. The Gross-Pitaevskii energy for the rotating condensate

We consider in this paper numerical methods for the direct minimization of the Gross-
Pitaevskii energy. For a pure BEC of N atoms confined in a trapping potential Vtrap(x) rotat-
ing with angular velocity Ω, the energy of the system in the rotating frame is described by the
functional:

E(ψ) =

∫
R3

(
~2

2m
|∇ψ|2 + Vtrap |ψ|

2 +
1
2

g|ψ|4 − ψ∗Ω·L(ψ)
)

dx (1)

where ψ(x) is the classical field complex wave function, ψ∗ denotes its complex conjugate, m is
the atomic mass, ~ the reduced Planck constant and g the coupling constant

g = 4π~2as/m, with as the scattering length. (2)
4

The angular momentum L can be expressed as

L(ψ) = x × P(ψ), with the impulse P(ψ) = −i~∇ψ, (3)

We consider in the following rotations along the z-axis (i. e. Ω = Ω k) and therefore only the
z-component of the angular momentum appears in (1) for the rotation term:

Ω · L(ψ) = ΩLzψ = i~Ω

(
y
∂ψ

∂x
− x

∂ψ

∂y

)
= i~Ω At∇ψ, with At = (y,−x, 0). (4)

As a consequence, the form of the Gross-Pitaevskii energy considered in this paper is:

E(ψ) =

∫
R3

(
~2

2m
|∇ψ|2 + Vtrap |ψ|

2 +
1
2

g|ψ|4
)

dx −ΩLz, (5)

with Lz the total angular momentum:

Lz = i~
∫
R3
ψ∗At∇ψdx = i

~
2

∫
R3

(
ψ∗At∇ψ − ψAt∇ψ∗

)
dx = ~

∫
R3
<

(
iψ∗At∇ψ

)
dx. (6)

< denotes the real part. We compute here minimizers of the energy (5) with the constraint∫
R3
|ψ(x)|2 dx = N, (7)

expressing the conservation of the number of atoms in the condensate. Among these minimizers,
the ground state is defined as a global minimum, i. e. ψg = minψ E(ψ). Local minimizers with
energy larger than that of the ground state are called excited states or meta-stable states.

Using (6), the energy (5) can be written in the following form that will be useful in deriving
numerical methods in the next section:

E(ψ) =

∫
R3

(
~2

2m

∣∣∣∣∣∇ψ + i
mΩ

~
Atψ

∣∣∣∣∣2 + Veff
trap |ψ|

2 +
1
2

g|ψ|4
)

dx, (8)

where the effective trapping potential is the original potential diminished by the centrifugal term:

Veff
trap = Vtrap −

1
2

mΩ2r2, r2 = x2 + y2. (9)

Another useful form of the energy corresponds to the grand potential of the system:

Ξ = E(ψ) − µN = E(ψ) − µ
∫
R3
|ψ|2 dx, (10)

where µ ∈ R is the chemical potential of the condensate, introduced as a Lagrange multiplier
for the constraint (7). The Euler-Lagrange equation (δΞ = 0) corresponding to (10) leads to the
stationary (or time-independent) GP equation:

−
~2

2m
∇2ψ + Vtrapψ + g|ψ|2ψ − i~ΩAt∇ψ = µψ. (11)

The ground state and excited states are therefore eigenfunctions of the nonlinear eigenvalue prob-
lem (11).

5

We also consider in this paper two-dimensional (2D) configurations corresponding to disk-
shape (or pancake) condensates. The dimension reduction from 3D to 2D can be done by ap-
proximating the 3D wave function by a factorized ansatz ψ(x, y, z) = ψ2D(x, y)ψ3(z). For the
precise form of the ansatz, the reader is referred to review papers [42, 43]. For a mathematical
justification of the dimension reduction from 3D to 2D equations, see [4]. By integrating out the
z-dependence, previous forms of energy and stationary GPE stand, withR3 replaced byR2, with
the caution that the non-linear interaction constant g expressed by (2) for the 3D setting has to
be replaced by its reduced form in 2D. This constant will be prescribed as an input parameter of
the computation.

2.2. Scaling and trapping potential

We consider in the following the Gross-Pitevskii model set on Rd, with d = 3 or 2. Various
forms of scaling are used in the literature [44, 45, 46]. To allow the switch between different
scalings, we introduce a parameter ε and define a general length scale as:

xs =
aho
√
ε
, aho =

√
~

mω⊥
, (12)

where aho is the harmonic oscillator length defined with respect to a reference trapping frequency
ω⊥. By setting x̃ = x/xs and

u =
ψ

√
N x−d/2

s

= ε−d/4 ψ
√

N a−d/2
ho

, (13)

the dimensionless GP energy (per particle) becomes:

E(u) =
E(ψ)

N ~2

m a−2
ho

=
E(ψ)

N~ω⊥
= ε

∫
Rd

[
1
2
|∇u|2 + Ctrap |u|2 +

1
2

Cg|u|4 − iCΩ u∗At∇u
]

dx̃, (14)

where

Ctrap(x̃, ỹ, z̃) =
1
ε2 Ṽ(x̃, ỹ, z̃), Ṽ(x̃, ỹ, z̃) =

1
mω2

⊥x2
s

Vtrap(x, y, z), (15)

Cg =
√
ε β, β =

4πNas

aho
(in 3D), β = β2D (given in 2D), (16)

CΩ =
1
ε

(
Ω

ω⊥

)
. (17)

From the conservation law (7) we obtain that the wave function u is now normalized to unity:

‖u‖22 =

∫
Rd
|u(x̃)|2 dx̃ = 1. (18)

The total angular momentum (6) is now scaled in units of ~:

L̃z =
Lz

N~
= i

∫
Rd

u∗At∇udx̃ =

∫
Rd
<

(
iu∗At∇u

)
dx̃. (19)

6

In this non-dimensional setting, the energy (8) takes the form:

E(u) = ε

∫
Rd

[
1
2

∣∣∣∇u + iCΩ Atu
∣∣∣2 + Ceff

trap |u|
2 +

1
2

Cg|u|4
]

dx̃, (20)

and the grand potential (10) becomes:

Ξ̃ = E(u) − µ̃
∫
Rd
|u|2 dx̃, µ̃ =

µ

~ω⊥
. (21)

The non-dimensional effective trapping potential corresponding to (9) is defined as:

Ceff
trap = Ctrap −

1
2

C2
Ω r̃2 =

1
ε2

Ṽ(x̃, ỹ, z̃) −
1
2

(
Ω

ω⊥

)2

r̃2

 =
1
ε2 Ṽeff(x̃, ỹ, z̃). (22)

Finally, the dimensionless form of the stationary GP equation (11) becomes with this scaling:

−
1
2
∇2u + Ctrapu + Cg|u|2u − iCΩAt∇u =

1
ε
µ̃ u, (23)

For the trapping potential, we consider in the following a general quadratic+quartic form
that allows to recover the expressions used in most of the theoretical and experimental studies
of rotating BEC. Starting from the following physical form of the trapping potential (harmonic
potential + detuned laser beam, see [47]):

Vtrap(x, y, z) =
m
2

(
ω2

xx2 + ω2
yy2 + ω2

z z2
)

+ U2

(
r

w2

)2

+ U4

(
r

w4

)4

, (24)

we obtain from (15) and (22) the dimensionless effective potential:

Ṽeff(x̃, ỹ, z̃) =
1
2

(
ax x̃2 + ayỹ2 + azz̃2 + a4r̃4

)
. (25)

The non-dimensional coefficients are:

ax =

(
ωx

ω⊥

)2

−

(
Ω

ω⊥

)2

+ 2
 U2

mω2
⊥w2

2

 ,
ay =

(
ωy

ω⊥

)2

−

(
Ω

ω⊥

)2

+ 2
 U2

mω2
⊥w2

2

 ,
az =

(
ωz

ω⊥

)2

,

a4 =
2
ε

 U4 a2
ho

mω2
⊥w4

4

(26)

The classical scaling used in the physical literature is recovered for ε = 1. In some mathemat-
ical studies [46, 48] it was convenient to define ε as:

ε =

(
aho

8πNas

)2/5

. (27)

7

This second scaling, referred as the Aftalion-Rivière (AR) scaling, is particularly appropriate
for the Thomas-Fermi (TF) regime characterized by strong interactions (the kinetic energy is
negligible compared to the interaction energy). This regime is attained when Nas/aho � 1,
which is typically the case in experiments (e. g. [49, 50, 51, 47]). In this case, ε is a small
parameter (ε ≈ 10−2 in experiments). As a consequence, we notice from (16) that Cg = 1

2ε2 and
the GP energy (20) becomes:

E(u) =

∫
Rd

[
ε

2

∣∣∣∇u + iCΩ Atu
∣∣∣2 +

1
ε

Ṽeff |u|2 +
1
4ε
|u|4

]
dx̃, (28)

which is indeed dominated by the trapping and interaction terms. The AR scaling was suc-
cessfully used in numerical simulation of 2D [32] or 3D [13, 14, 15] BEC configurations with
vortices.

3. Numerical methods: direct minimisation of the GP energy

We present in this section two numerical methods to compute minimizers u(x̃) of the non-
dimensional GP energy (14) or (20), with the constraint (18). The problem is set on a bounded
domainD ∈ Rd, and homogeneous Dirichlet boundary conditions u = 0 are imposed on ∂D. The
size of D will be estimated from the Thomas-Fermi approximation (see Appendix A), in order
to ensure that the condensate lies insideD. The parameters of the minimization problem are the
angular velocity CΩ, the non-linear interaction constant Cg and the trapping potential Ctrap(x̃).
For the sake of simplicity, the tilde notation for non-dimensional variables will be dropped in the
following.

3.1. A steepest descent method based on Sobolev gradients
The first method implemented in our toolbox is the steepest descent method using the Sobolev

gradients suggested in [38, 35]. The algorithm starts from an initial state u0(x) and iterates
following

un+1 = un − αn Gn, (29)

where Gn represents the gradient of the energy functional at step n and αn the descent step. The
idea introduced in [38] was to define a gradient related to the form (20) of the energy. A new
Hilbert space, denoted by HA(D,C), was defined and equipped with the inner product:

〈u, v〉HA
=

∫
D

〈u, v〉 + 〈∇Au,∇Av〉, (30)

where ∇A = ∇ + iCΩAt and 〈u, v〉 = uv∗ denotes the complex inner product. It was proved in
[38] that the norm arising from the metric ‖ · ‖HA is equivalent to the standard Sobolev H1 norm.
Hence the completion of C1(D,C) with respect to this metric consists of all members of H1. As
a consequence, the Riesz representation theorem in the Hilbert space HA = H1 allows to define
the Sobolev gradient ∇HA E(u) as the unique member of H1 such that, ∀v ∈ H1(D,C):

E′(u)v = <〈∇L2 E(u), v〉L2 = <〈∇H1 E(u), v〉H1 = <〈∇HA E(u), v〉HA
. (31)

Since the L2 gradient of the GP energy can be easily derived from (14):

∇L2 E(u) = 2ε
(
−

1
2
∇2u + Ctrapu + Cg|u|2u − iCΩAt∇u

)
, (32)

8

the relationship (31) allows to compute the HA gradient. Before using this gradient in the de-
scent method (29), it will be projected onto the tangent space of the constraint (18). An explicit
projection formula is derived in [38]. This technique is an alternative of the usual approach that
re-normalise the solution un+1 after each descent step.

Compared to the descent method presented in [38, 35], where a fixed value of the descent step
was used, the present method introduces an efficient estimation of the optimal descent step. Since
general purpose line-search methods (Brent, Armijo, etc) proved to be very time consuming for
this problem, we finally used the particular line-minimisation analysis specific to the GP energy.
The minimiser αn of the real function:

Jn(α) = E(un − αGn), α > 0. (33)

is a root of the third order polynomial:

J′n(α) = c3α
3 + c2α

2 + c1α + c0, (34)

with coefficients

c3 = 2Cg

∫
D

|Gn|
4, (35)

c2 = −6Cg

∫
D

|Gn|
2< (〈un,Gn〉) , (36)

c1 =

∫
D

|∇Gn|
2 + 2Ctrap|Gn|

2 + 2Cg|un|
2|Gn|

2 + 4Cg< (〈un,Gn〉)2 − 2CΩ<
(
iG∗nAt∇Gn

)
, (37)

c0 = −

∫
D

< (〈∇un,∇Gn〉) + 2< (〈un,Gn〉)
[
Ctrap + Cg|un|

2
]
− 2CΩ<

(
iG∗nAt∇un

)
. (38)

In FreeFem++, we can use the function polycomplexsolve (from GSL library) [52] to calculate
the three roots of the polynomial J′n(α) and then select the root realizing the minimum of the
energy Jn(α).

The algorithm for the descent method can be easily identified in the FreeFem++ scripts, since
appropriate macros were defined for the mathematical operators (inner product, norms, etc). All
variables are discretised using P1 finite elements; the non-linear term is represented with P4 finite
elements in 2D and P2 in 3D. The following steps were programmed, with a syntax very close to
mathematical relationships:

1. Suppose that the solution un at iteration n was built. We compute G = ∇HA E(un)/(2ε),
solution of the variational problem corresponding to (31) and (32):
∀v ∈ H1

0(D,C),

∫
D

(
1 + C2

Ω(x2 + y2)
)
Gv+∇G∇v−2iCΩAt∇Gv =

∫
D

1
2
∇un∇v+

[
Ctrapun + Cg|un|

2un − iCΩAt∇un

]
v.

(39)
2. We compute the projection of G over the tangent space of the unitary norm constraint (see

[38]):

Pun,HAG = G −
< (〈un,G〉L2)
<

(
〈un, vHA〉L2

)vHA , (40)

where vHA is solution of the variational problem:

〈vHA , v〉HA = 〈un, v〉L2 , ∀v ∈ HA. (41)
9

3. We compute the optimal descent step:

χn = min
χ>0

E(un − χ Pun,HAG), (42)

by finding the roots of the third order polynomial (34) with coefficients (35)-(38) and choos-
ing the one realizing the minimum of the line energy. Note that the factor (2ε) appearing
in the expression of the gradient (32) was included in the expression of the optimal descent
step χ = (2ε)α.

4. We build the solution un+1 at iteration n + 1:

un+1 = un − χn Pun,HAG.

5. Finally, we compute the relative error δEn+1 =
E(un+1)−E(un)

E(un+1) and call the mesh adaptivity
algorithm suggested in [35] (see below). Convergence to the stationary state is achieved if
δEn+1 < εc = 10−9.

3.2. Mesh adaptation

FreeFem++ includes a powerful mesh adaptivity tool (function adaptmesh) using metric con-
trol algorithms suggested in [53, 54, 55, 56]. The main idea is to define a metric based on the
Hessian and use a Delaunay procedure to build a new mesh such that all the edges are close to
the unit length with respect to this new metric. In the steepest descent algorithm, we call this
function after building un+1 in the step 4 of the previous algorithm. Since our convergence crite-
rion is based on the relative change of energy of the solution (δEn+1) we use the same indicator
to trigger the mesh adaptive procedure following the next algorithm (see also [35]):

1. choose a sequence of decreasing values εi ≥ εc, that represent threshold values for the mesh
adaptivity;

2. set i = 1;
3. if δEn+1 is decreasing and εi+1 < δEn+1 < εi and δEn > εc, call the mesh adaptivity proce-

dure; the solution u is interpolated on the new mesh and normalized to satisfy the unitary
norm constraint;

4. if δEn+1 is increasing, i. e. large variations of the energy appear (e. g. if new vortices enter
the domain), reconsider the previous bounds by setting i→ i − 1;

5. if step 3 was performed Nad ≥ 1 times, increase i to i + 1. Limiting the number of mesh
refinements for the same threshold, is necessary since, at step 2, the interpolation on the new
refined mesh and the normalization of the solution could lead to an increase of the value of
δEn+1.

Figure 1 illustrates the 2D mesh adaptivity procedure. It represents a test case where the initial
field has an off-centred vortex and the final (converged) solution is expected to present a centred
vortex (the details of the parameters for this case are given in section 6). We plot in figure 1(a) the
initial state, built with the Thomas-Fermi approximation. In figure 1(b) we plot the final solution
corresponding to the converged field obtained with the Sobolev gradient method. A zoom in
the vortex area is displayed in figures 1 (a1) and (b1). Note that the mesh adaptivity procedure
generated a denser mesh near the position of the vortex; the number of triangles was decreased
near the border, where the solution is smoother. However, the de-refinement of the mesh must be
used with caution for high rotation rates, when new vortices can nucleate in the condensate near

10

Figure 1: Illustration of the mesh adaptivity in 2D. Test case with an initial state containing an off-centred vortex (a)
and a final (stationary) state with a central vortex (b). The mesh refinement follows the evolution of the vortex position
(corresponding zoom in figures a1 and b1).

Figure 2: Illustration of the mesh adaptivity in 3D. Test case computing the equilibrium configuration with a single
S-shape vortex line.

11

the boundary. It was shown in [35] that this procedure decreases the CPU time and the number
of iterations when compared with computation on fixed refined meshes.

For 3D computations, FreeFem++ uses the function mshmet [40] to compute the metrics and
the function mmg3d [41] to build the new mesh corresponding to this metric. In figure 2, we
plot a 3D mesh adapted to the solution presenting a vortex line with a ”S” shape. We carried
out the visualisation with medit, a mesh visualisation software [57] interfaced with FreeFem++.
Note that the mesh adaptation follows precisely the vortex line by adding tetrahedra for a better
accuracy. Outside the vortex area, the mesh adaptation allowed us to have fewer tetrahedra, with
a bigger size.

3.3. Minimisation algorithm using the optimisation library Ipopt
The optimisation library Ipopt is based on an interior point minimisation method [39], a barrier

functions tool [58] and a filter line search [59]. This powerful state-of-the-art optimisation library
is interfaced with FreeFem++ [60] and offers the possibility to solve constrained optimisation
problems of the general form:

find x0 = argmin
x∈Rn

(f (x)), (43)

such that
{
∀i ≤ n, xlb

i ≤ xi ≤ xub
i (simple bounds),

∀i ≤ m, clb
i ≤ ci(x) ≤ cub

i (constraint functions), (44)

where lb stands for lower bound and ub for upper bound. If for some i ≤ m, clb
i = cub

i we obtain
an equality constraint.

For the minimisation of the Gross-Pitaevskii energy, the use of Ipopt is quite simple: the
conservation constraint (18) is an equality constraint and, consequently, we take m = 1 and
clb = cub = 1 in the previous general form. Ipopt will then solve the Euler-Lagrange equation
associated to the problem (43)-(44):{

∇ f (x) + λ∇c(x) = 0,
c(x) = 0, (45)

where λ ∈ R is a Lagrange multiplier and c(x) the constraint. Note that, in our case, λ corresponds
to the chemical potential. Let us define

L(x, λ) := f (x) + λ c(x). (46)

Ipopt first finds a descent direction (dx, dλ) by using the Newton method. Indeed, at each itera-
tion n it solves the system:(

∇2L(xn, λn) ∇c(xn)
∇c(xn) 0

) (
dx
dλ

)
= −

(
∇L(xn, λn)

c(xn)

)
. (47)

Then it advances at the next step: (
xn+1
λn+1

)
=

(
xn
λn

)
+ αn

(
dx
dλ

)
,

where αn ∈ (0, 1] is a descent step computed using the filter line-search method suggested in
[59]. The algorithm will stop when either the error (εn = max (‖∇ f (xn)+λn ∇c(xn)‖∞, ‖c(xn)‖∞))
or the number of iterations reaches a value defined by the user.

12

As Ipopt seeks for solutions in Rn, we have to separate in the Gross-Pitaevskii energy func-
tional the real and imaginary part. The problem to solve becomes:

find [ur, ui] ∈ (H1
0(D,R))2 wich minimizes

E(ur, ui) =

∫
D

[
1
2
|∇ur |

2 +
1
2
|∇ui|

2 + Ctrap (u2
r + u2

i) +
1
2

Cg (u2
r + u2

i)2
]
− CΩ Lz(ur, ui), (48)

with

Lz(ur, ui) =

∫
D

[
y

(
∂ur

∂x
ui −

∂ui

∂x
ur

)
− x

(
∂ur

∂y
ui −

∂ui

∂y
ur

)]
. (49)

Then we can calculate the Fréchet derivative of E as:

E′(ur, ui) · [vr, vi] =

∫
D

[
∇ur · ∇vr + ∇ui · ∇vi + 2 Ctrap (ur vr + ui vi)

]
+ 2 Cg

∫
D

(u2
r + u2

i) (ur vr + ui vi)

−CΩL′z(ur, ui) · [vr, vi], (50)

with

−L′z(ur, ui) · [vr, vi] =

∫
D

y
[
−
∂ur

∂x
vi +

∂ui

∂x
vr −

∂vr

∂x
ui +

∂vi

∂x
ur

]
+

∫
D

x
[
∂ur

∂y
vi −

∂ui

∂y
vr +

∂vr

∂y
ui −

∂vi

∂y
ur

]
. (51)

Finally, the second order Fréchet derivative of E is expressed as:

E′′(ur, ui) · ([vr, vi], [wr,wi]) =

∫
D

[
∇vr · ∇wr + ∇vi · ∇wi + 2 Ctrap (vr wr + vi wi)

]
+ 2 Cg

∫
D

[
(u2

r + u2
i) (vr wr + vi wi)

]
+ 4 Cg

∫
D

[(ur vr + ui vi) (ur wr + ui wi)]

−CΩL′′z (ur, ui) · ([vr, vi], [wr,wi]), (52)

with

−L′′z (ur, ui) · ([vr, vi], [wr,wi]) =

∫
D

y
[
−
∂wr

∂x
vi +

∂wi

∂x
vr −

∂vr

∂x
wi +

∂vi

∂x
wr

]
+

∫
D

x
[
∂wr

∂y
vi −

∂wi

∂y
vr +

∂vr

∂y
wi −

∂vi

∂y
wr

]
. (53)

The expression of the constraint functional is:

c(ur, ui) =

∫
D

(u2
r + v2

r) − 1, (54)

and its gradient:

∇c(ur, ui) · [vr, vi] = 2
∫
D

(ur vr + ui vi). (55)

13

With Ipopt linked as an external library to FreeFem++, we can not directly use mesh adaptivity
in its internal algorithm. In exchange, we can couple the computation of the minimizer with the
mesh adaptivity procedure. The following algorithm was implemented in the programs. Set
nadapt, the total number of mesh refinements to be done and ε0 and εlast, the first and the last mesh
adaptivity prescribed errors (parameters of the FreeFem++ function adaptmesh).

1. At step k ∈ [0, nadapt − 1], run Ipopt to find a solution [uk
r , u

k
i].

2. Build a new mesh adapted to [uk
r , u

k
i] with a prescribed mesh adaptivity error

εk = ε0

(
εlast

ε0

)k/(nadapt−1)

. (56)

3. Go to step k + 1.

Typical values used for 2D computations are nadapt = 4, ε0 = 0.1 and εlast = 0.005. For 3D
cases, as the computation is more difficult, it’s more convenient to use a higher number of mesh
adaptations and a lower ratio εlast/ε0. Typical values are nadapt = 6, ε0 = 0.01 and εlast = 0.005.

4. Building the initial approximation

In computing stationary states for rotating BEC, the initial approximation used to start the
iterative methods is of crucial importance. It can not only affect the convergence speed, but also
the topology of the stationary solution, especially when local minima (meta-stable) solutions are
sought. We present in this section three methods to build initial states for the computation of
stationary solutions: the Thomas-Fermi approximation, a rapid calculation of the ground state
with Ipopt for simplified configurations (axisymmetric or non-rotating) and, finally, an ansatz for
a manufactured initial state with vortices.

4.1. Analytical solution based on the Thomas-Fermi approximation
The Thomas-Fermi regime is characterized by strong interactions (the kinetic energy is neg-

ligible compared to the interaction energy). This regime is attained when Nas/aho � 1. If the
healing length ξ = (8πasρ)−1/2, with ρ the atomic density, is defined as the length for which
the kinetic and interaction energies are comparable, in the Thomas-Fermi regime the character-
istic length scales are larger than the healing length. We give below some typical values from
experiments of BEC with vortices [49, 61, 62]:

as � 1/ρ1/3 < ξ � aho � R
5 [nm] � 0.2 [µm] < 0.3 [µm] � 1 [µm] � 5 [µm],

where 1/ρ1/3 approximates the distance between atoms and R is the radius of the condensate.
The general form of the Thomas-Fermi approximation of the atomic density (ρ = |u|2) is

obtained by neglecting the first term in the energy (20). The Euler-Lagrange equation of the
corresponding grand potential (21) gives:

ρTF =

 µ̃/ε −Ceff
trap

Cg

+

=
1

ε2Cg

(
ε
µ

~ω⊥
− Ṽeff

)
+

. (57)

We notice that this form is equivalent to the usual Thomas-Fermi approximation for non-rotating
condensates, but with a trapping potential (22) corrected by the centrifugal term (see also [63]).

14

Following (9), for a harmonic trapping potential the radial trapping frequency ω⊥ is thus replaced
by (ω2

⊥ −Ω2)1/2.
It is also interesting to note from (13) and (57) that the atomic density in numerical simulations

using the AR scaling with typical value ε = 10−2 is amplified by a factor of 104, when compared
to the classical scaling (ε = 1). This remark is important for setting the numerical value which
will serve to identify a quantized vortex: since theoretically ρ = 0 in the vortex centre, the low
value ρmin of the iso-contour level used to represent vortices will depend on the scaling.

We use in the following the Thomas-Fermi approximation to estimate the size of the com-
putational domain and also to set the initial guess for the minimisation algorithms. We derive
in Appendix A closed formulae for the Thomas Fermi approximation corresponding to different
types of potentials: harmonic, quartic+quadratic, quartic-quadratic.

4.2. Numerical approximation with Ipopt for axisymmetric or non-rotating cases
The main drawback of the Thomas-Fermi approximation, which is generally a truncated

parabola, is the discontinuity of its first derivative on the border of the condensate where ρTF = 0.
This could trigger oscillations of the solution, when high-order (spectral) methods are used for
the space discretisation. A smoother initial field can be obtained by directly computing with
Ipopt a minimizer of the GP energy. When simplified forms of the energy (e. g. axisymmetric)
are used, this preliminary computation is very cheap in terms of computational time.

We present below the approach of computing axisymmetric initial fields with Ipopt, corre-
sponding to the ground state without vortices (a central vortex of given winding number can be
easily added to the following expressions). We consider the cylindrical coordinates (r, θ, z) and
assume that the solution is axisymmetric (∂u

∂θ
= 0) and symmetric in the z-direction (u(z) = u(−z)).

This is also the case of the Thomas-Fermi approximation if ax = ay in the trapping potential (25).
Using that ∂u

∂θ
= x ∂u

∂y − y ∂u
∂x and assuming that Lz = 0 (no central vortex), the energy becomes

E(u) = 4π
∫ Rmax

0

∫ zmax

0

[
1
2

(∣∣∣∣∣∂u
∂r

∣∣∣∣∣2 +

∣∣∣∣∣∂u
∂z

∣∣∣∣∣2) + Ceff
trap|u|

2 +
1
2

Cg|u|4
]

rdr dz. (58)

The 3D problem is now reduced to a 2D problem. In order to solve this 2D problem with Ipopt,
we need the Fréchet derivative of E and its Hessian:

E′(u).v = 4π
∫ Rmax

0

∫ zmax

0

[
∂u
∂r
∂v
∂r

+
∂u
∂z
∂v
∂z

+ 2Ceff
trapuv + 2Cg|u|2uv

]
rdr dz, (59)

E′′(u)[v,w] = 4π
∫ Rmax

0

∫ zmax

0

[
∂v
∂r
∂w
∂r

+
∂v
∂z
∂w
∂z

+ 2Ceff
trapvw + 2Cg

(
vw|u|2 + 2uv<(uw)

)]
rdrdz.

(60)
In the case of a 2D simulation, the axisymmetry reduces the 2D problem to a 1D problem.
In this case, the integration and the derivative with respect to z must be omitted in previous
formulations. Figure 3 shows a comparison between the Thomas-Fermi approximation and the
axisymmetric solution computed with Ipopt for two trapping potentials (25): harmonic potential,
with ax = ay = 1, a4 = 0 and quartic potential , with ax = ay = 1, a4 = 0.5. A third solution,
obtained by using the full 2D formulation of the GP energy without rotation in Ipopt, is also
plotted for reference. We notice the regularity of the axisymmetric solution in the vicinity of
ρTF = 0 and the good approximation it offers, when compared with the full 2D computation. For
anisotropic potentials, we can still use the full (2D or 3D) formulation of the GP energy without
rotation to compute with Ipopt an initial condition for the computations with rotation.

15

x
|u

|2
6 4 2 0 2 4 6

0

0.04

0.08

0.12

0.16

0.2

b)

x

|u
|2

6 4 2 0 2 4 6
0

0.04

0.08

0.12

0.16

0.2

ThomasFermi

Ipopt 1D (axisymmetric)

Ipopt 2D (without rotation)

a)

Figure 3: Initialisation of a 2D calculation. Density profiles corresponding to the Thomas-Fermi approximation (solid
line), the axisymmetric solution computed with Ipopt (N) and the full 2D solution computed with Ipopt without rotation
(�). Harmonic potential (a) and quartic potential (b).

4.3. Manufactured initial state with vortices

Sometimes it is necessary to manufacture initial states by artificially including vortices. This
could be useful when local minima, corresponding to meta-stable solutions, are sought. If
u(x, y, z) is the ground state without rotation (set by the TF approximation or computed with
Ipopt), we can add vortices by multiplying u in each plane (x, y) by the following ansatz used in
[14, 15] for 3D simulations:

uv(x, y) =

√
1
2

[
1 + tanh

(
4
εv

(rv − εv)
)]
· eiθv , (61)

where rv =
√

(x − xc)2 + (y − yc)2 and θv = atan
(

y−yc
x−xc

)
are the polar coordinates taken from the

imposed centre (xc, yc) of the vortex and εv the vortex radius. In order to obtain a particular 3D
shape of the vortex (U-shaped or S-shaped vortex, see figure 8), we can prescribe the position of
the vortex centre in each transverse plane (x, y). For example, a S-vortex lying in the major (x, z)
plane will have yc = 0 and

xc(z) = −1 +

tanh
[
αv

(
1 + z

βv

)]
tanh(αv)

, if z < 0,

xc(z) = 1 +
tanh

[
αv

(
−1 + z

βv

)]
tanh(αv)

, if z ≥ 0,

(62)

where αv and βv respectively control the curvature and the length of the vortex.
16

5. Description of the programs

The methods described previously were implemented in separated 2D and 3D toolboxes based
on the FreeFem++ software [37]. Using two input files, the toolbox offers to the user the choice
between two scalings (classical or Aftalion-Rivière), three ways of computing the initial approx-
imation (Thomas-Fermi, axisymmetric or non-rotating) and two methods to compute the ground
state (Sobolev gradient or Ipopt). The main difference between the 2D and 3D codes is in the
post-processing part: we can automatically count the number of vortices in 2D while it is more
difficult in 3D. Also, the setting of input parameters is different: there are several additional pa-
rameters in 3D to control the shape of the vortex ansatz (I-shaped, S-shaped or U-shaped) and
the shape of the initial mesh (cylindrical or ellipsoidal). Moreover, the user can choose to plot
the evolution of the energy with Gnuplot [64] during the computation and the evolution of the
solution with either the FreeFem++ plotting tool or using Medit [57]. In this section we first
describe the architecture of the programs and the organisation of the files. Then we focus on the
list of input parameters and the structure of output files.

5.1. Program architecture

Figure 4 gives a schematic overview of the content of the 3D toolbox. The 2D toolbox has
similar architecture.

All files are provided in a directory called BEC XD ToolBox FreeFem where X is the dimen-
sion 2 or 3. This directory is organised as follows:

1. The BEC XD ToolBox.edp is the main script.
2. The Input directory contains two files allowing the user to choose parameters:

• BEC XD physic param.dat contains the parameters describing the physical case.

• BEC XD run param.dat contains choices for the run.

3. The Include directory contains 9 files:

• BEC XD Macros.idp contains all the useful macros and functions.

• BEC XD comput param.idp reads the parameters files and builds constants.

• BEC XD comput init condition.idp computes an initial approximation using either
Thomas-Fermi or Ipopt.

• BEC XD Ipoptaxi init.idp contains the script to be used with Ipopt axisymmetric in
dimension (X − 1) for the initial condition.

• BEC XD Ipopt init.idp contains the script to be used with Ipopt in dimension X with-
out rotation to build the initial condition.

• BEC XD GradS method.idp solves the main problem with Sobolev gradient method.

• BEC XD Ipopt method.idp solves the main problem with Ipopt method.

• BEC XD plot energ.idp builds a Gnuplot script and runs Gnuplot in order to plot the
energy and other relevant quantities.

• BEC 2D results.idp finds the number of vortices and gives their positions in 2D.
17

Figure 4: Program architecture of the 3D toolbox.

4. The Examples directory. In 2D, this directory contains 8 examples of input files allowing
the user to choose between two cases of scaling, potential or method. To do so, in a terminal
window the user can write, for example, the command line:
FreeFem++ BEC XD ToolBox.edp
-run Examples/GradS Harm run param.dat

18

-param Examples/AR Harm physic param.dat.
This will run the program with an harmonic potential, the Aftalion-Rivière scaling and
Sobolev gradient method. In 3D, this directory contains 6 files to run examples to compute
a S-shaped or a U-shaped vortex, using either the Sobolev gradient method or Ipopt. A more
precise description of these examples is provided in section 6.

5. GLUT directory contains a C++ script that must be compiled to create a user interface with
GLUT.

6. A makefile to compile the source code for the interface and a README file are also pro-
vided.

5.2. Input parameters

We focus now on the description of the input parameters. These are distributed in two files.
In both files, comments are preceded by the usual // symbol and key words by the @ symbol.
If the user wants to set a parameter, he has to enter its value after the corresponding key word.
If a key word is not present in a file, a default value is given to the corresponding parameter.
Some parameters must be specified by the user, otherwise the computation stops (see below). By
default, the user has to use the two files provided in the Input directory. However, any input file
can be used by entering the following command in a terminal window:
FreeFem++ BEC XD ToolBox.edp -param name physics -run name run.
Here, name physics is the name of the input file containing the physical parameters and name run
is the name of the input file containing the parameters for the computation.
1/ The first file in the Input directory, BEC XD physic param.dat, contains the physical param-
eters:

• @scaling, a string that can take the values AR or Classical depending on which scaling is
chosen. A value must be given to this parameter.

• @kind, a boolean that takes the value 0 if one wants to set constants already built from (16),
(17) and (26), or the value 1 if one wants to set the corresponding physical parameters. A
value must be given to this parameter.

• If the 0 value was chosen for @kind the following parameters must be set to a real value:
@beta (=β), the coefficient in front of the non linear part of the equation (see 16),
@Omop (= Ω

ω⊥
), the coefficient of the angular momentum (see 17),

@ax, @ay, @az and @a4 are the coefficients in the potential Vtrap (see 26).

• If the value 1 was given to @kind the user has to assign a real value to the following param-
eters:
@N, the number of atoms,
@m, the atomic mass,
@as, the scattering length,
@Omega (= Ω), the rotation speed,
@omegax (= ωx), @omegay (= ωy), omegaz (= ωz), @omega2 (= ω2), @omega4 (= ω4),
@U2 and @U4 are the coefficients in Vtrap (see 24).

2/ The second file, BEC XD run param.dat contains the parameters for the run:

1. Here are the parameters that must be set,
19

• @method is a string to choose a method. The possible values are Ipopt or GradS.

• @EPS0 is a real corresponding to the final error to reach.

• @init is a string with the name of the initial approximation to use. The possible values
are TF (Thomas Fermi), Ipoptaxi (axisymmetric approximation) or Ipoptnorot (no
rotation).

All the parameters that follow are set by default:
• @GradSMaxIter is the maximum number of iterations in the Sobolev gradient method.

Default value: 8000.

• @IpoptMaxIter is the maximum number of iterations between each mesh adaptation
in Ipopt method. Default value: 50.

2. The following parameters are used for the outputs:

• @dircase is a prefix of the name of the output directory. The form of potential and
the name of the method used for computation are automatically added to this name.
Default value: BEC 3D.

• @scase is a prefix of the name of the output files. The values of Ω
ω⊥

and Cg are auto-
matically added to this name. Default value: BEC 3D.

• @withplot is a boolean controlling the possibility of plotting the solution during the
run. Default value: 1.

• @savesol is a boolean controlling the possibility of saving the solution during the run.
Default value: 1.

• @IWAIT is a boolean controlling the possibility of waiting after each plot. Default
value: 0.

• @meditplot is a boolean controlling the possibility of plotting the solution with medit.
Default value: 0.

• @output is a string that takes the value vtk or tecplot for the outputs format. Default
value: tecplot.

• @ITERSAVE, @ITERNORM and @ITERPLOT are integers corresponding to the
frequency of iterations in Sobolev gradient method to save, normalize or plot the so-
lution. Default value: 100.

• @savenergy and @plotenergy are booleans to save and plot the energy during the run.
Default value: 1.

• @countvortices (only in 2D) is a boolean to count the number of vortices and to give
their position. Default value: 1.

3. One can control how to build the initial mesh by setting the following parameters:

• @aRdom is a coefficient that multiply the Thomas-Fermi radius in order to have a
larger domain. Default value: 1.25.

• @nbseg is the number of segments on the border of the mesh. Default value: 50 in 3D
and 200 in 2D.

• @meshkind (only in 3D) is a string that can take the values cylindre or ellipsoid and
allows the user to choose between a cylindrical mesh or an ellipsoidal mesh in 3D.
Default value: ellipsoid.

20

• @hminsurf is the minimal size of the edge of a triangle on the surface of the ellipsoidal
mesh. Default value: 0.6.

• @hminvol is the minimal size of the edge of a tetrahedra inside the ellipsoidal mesh.
Default value: 0.3.

4. The parameters for loading an old solution as an initial field are:

• @ifILrst is a boolean, with true value if the user wants to load a restart file. Default
value: 0. If ifILrst = 1, the following 4 parameters have to be specified:

• @keepmesh is a boolean to choose to keep the loaded mesh or not.

• @dirload is a string for the name of the directory containing the restart mesh and
solution.

• @dmesh is a string for the name of the file containing the mesh to load.

• @dsol is a string for the name of the file containing the solution to load.

5. The following parameters control how to build the initial field for the wave function:

• @mod is an integer. If @mod > 0, a central vortex with winding number @mod is
added in the axisymmetric approximation built with Ipopt. Default value: 0.

• @narray is the number of circles of vortices in the manufactured initial field (see
section 4.3). Default value: 0.
If narray = 1, the following 8 parameters have to be specified:

• @Nv, the number of vortices on each circle.

• @Rarr, the radius of the first circle.

• @dRarr, the distance between two circles.

• @Tharr, the orientation of the first circle.

• @dTharr, a step between the orientation of each circle.

• @shape (only in 3D) is a string controlling the shape of the ansatz vortex added in the
initial condition (see equation 62). It can be I, Ux, Uy, Sx, Sy. The x or y indicates if
the vortex is in the plane (O,x,z) or (O,y,z). Default value: I.

• @curvature (= αv, only in 3D) is the parameter controlling the curvature of the ansatz
vortex (see 62). Default value: 10.

• @length (= βv, only in 3D) is the parameter controlling the length of the ansatz vortex
(see 62). Default value: 2.

6. The user can control the mesh adaptivity process:

• @ifIadapt is a boolean to choose to adapt the mesh of the initial field. Default value:
1.

• @erradaptI is the error in the mesh adaptation of the initial field. This parameter is
used by the FreeFem function adaptmesh in 2D or mshmet in 3D. Default value: 0.01
in 3D and 0.1 in 2D.

• @ifRadapt is a boolean to choose to adapt the mesh during the computation. Default
value: 1.

• @hminad is the minimal size of an edge in the new mesh. Default value: 0.001.
21

• @hmaxad is the maximal size of an edge in the new mesh. Default value: 1.

• @erradapt is the error in the mesh adaptation. It does change during a computation
with Sobolev gradient method. If the Ipopt method is used for the computation, it
corresponds to the parameter εlast in (56). Default value: 0.01 in 3D and 0.1 in 2D for
Sobolev gradient method and 0.008 in 3D and 0.005 in 2D for Ipopt method.

• @anisoadapt is a real value. If @anisoadapt > 0, the mesh adaptation will be
anisotropic and the ratio between the size of the smallest and the biggest edges of
each triangle will be bounded by @anisoadapt. Default value: 10.

7. The following parameters are needed for the mesh adaptation in the Sobolev gradient
method only:

• @EPSAD1 is the first value of the L2 relative error the user wants to reach to make a
mesh adaptation (= ε1 in 3.2). Default value: 1e-2.

• @EPSADMIN is the last stage (= εc in 3.2). Default value: 1e-9.

• @IPASSAL is the number of times a mesh adaptation is performed before changing
the value of EPSAD1 (Nad in 3.2). Default value: 2.

• @EPSADSTEP is a factor to change the value of EPSAD1. Default value: 2.

• @ITERADAPT is the maximum number of iterations between two mesh adaptations.
If IT ERADAPT = 0, we don’t use this criterion. Default value: 0.

8. The last parameters are for the mesh adaptation in Ipopt method:

• @niadapt is the number of times a mesh adaptation is performed with the same error
εk (see 56). Default value: 1.

• @nbadapt is the total number of mesh adaptations made during the computation (nadapt
in 56). Default value: 6 in 3D and 4 in 2D.

• @maerr1 is the initial error in mesh adaptation (ε0 in 56). Default value: 0.01.

5.3. Output files

When a computation starts, the Output directory is created. It contains a directory, whose
name includes the prefix (defined by the parameter @dircase), the form of potential and the
chosen method. This directory will contain an .echo file with a summary of the main parameters,
informations on the run, names of the output files, final energy and the CPU time. The plot.gp
file will contain a Gnuplot script that the user can run to plot the evolution of the energy, the
error, the angular momentum or the L2 norm of the solution. The .mesh and .rst file contains
the mesh and the solution respectively. They can be used as a restart field. Finally, the .tec or
.vtk files contain the solution for a given iteration (defined by the parameters ITERPLOT) in the
format tecplot or vtk.

6. Examples and user interface

To simplify the understanding of parameter files, some examples are provided in the directory
Examples. A user interface was implemented using the GLUT library [65] to run these examples
or to run the toolbox with predefined parameter files. In this section, we first present the examples
files and some results of computations. Then, we focus on the use of the GLUT user interface.

22

Figure 5: Solution of the second example in 2D: (a) the initial state built by adding 11 manufactured vortices to the
ground state computed with Ipopt (1D axisymmetric), (b) converged solution with the Sobolev gradient method, (c)
solution obtained with Ipopt.

6.1. 2D computations

The examples for 2D computations use two forms of the trapping potential. For each case, the
use of both scalings and numerical methods is possible.

1. The first case is the harmonic potential with ax = 1, ay = 1 (see 26), β = 500 (see eq.
16) and Ω/ω⊥ = 0.4 (see eq. 17). We start with an initial approximation made with Ipopt
axisymmetric and we add one manufactured off-centred vortex, as in Figure 1(a). The final
state we reach is a BEC with one central vortex as in figure 1(b). To run this example, the
following files from the directory Examples have to be used:

• AR Harm physic param.dat or Classical Harm physic param.dat for the physical pa-
rameters, depending on which scaling is chosen,

• Ipopt Harm run param.dat or GradS Harm run param.dat for the computation pa-
rameters, depending on which method is chosen.

2. The second case is a combined quartic/quadratic potential with ax = 1, ay = 1, a4 = 0.5
(see eq. 26), β = 500 and Ω/ω⊥ = 2. We start with an initial approximation made with
Ipopt axisymmetric and we add a circle of manufactured vortices, as in figure 5(a). Both
methods reach a BEC with eleven vortices organised into an Abrikosov lattice as shown in
figures 5(b) and 5(c). To run this example, the following files must be selected by the user
in the directory Examples:

• AR Quart physic param.dat or Classical Quart physic param.dat for the physical
parameters,

• Ipopt Quart run param.dat or GradS Quart run param.dat for the chosen method.

In figures 6 and 7, we provide two results with the same quartic+quadratic potential as in the
2D example illustrated in figure 5: ax = 1, ay = 1, a4 = 0.5. In the case illustrated in figure
6, we set the rotation speed to Ω = 3.5 and increase the non-linear constant β from 5000 to
15000. When this constant increases, the condensate becomes larger and the number of vortices
increases significantly. They arrange in a triangular Abrikosov lattice. The files used to per-
form this simulation are provided in the directory Input as BEC 2D physic param Latt.dat and
BEC 2D run param Latt.dat.

23

Figure 6: 2D solution obtained with the Sobolev gradient method for a quartic+quadratic potential with Ω/ω⊥ = 3.5 and
different values of the non-linear interaction constant: (a) β = 5000, (b) β = 10000, (c) β = 15000.

In the case of figure 7, the non-linear constant β = 500 is fixed and the rotation speed Ω in-
creases from 3 to 5. The condensate is larger when the rotation speed increases and a giant vortex
appears at the centre of the condensate. This case was simulated in [44]. The size of the computa-
tional domain increases as the rotation speed increases. This illustrates the need of the use of the
Thomas-Fermi approximation to estimate the size of the domain. The files used to perform this

Figure 7: 2D solution built with the Ipopt method for a quartic+quadratic potential with β = 500 and different values of
the rotation frequency: (a) Ω/ω⊥ = 3, (b) Ω/ω⊥ = 4, (c) Ω/ω⊥ = 5.

simulation are provided in the directory Input under the names BEC 2D physic param Giant.dat
and BEC 2D run param Giant.dat.

6.2. 3D computations
Two examples with harmonic trapping potential with ax = 1, ay = 1.062, az = 0.0672 (see

eq. 26), β = 15900 and Ω/ω⊥ = 0.4 are provided for 3D computations. They correspond to
numerical tests used in [13]. These tests have shown that, with the same physical parameters,
one can get different final meta-stable states, by starting from different initial states. In the first
case, illustrated in figure 8(a), the computation starts with an axisymmetric approximation with
a manufactured U-shaped vortex added at the centre. The final state, reached with both the

24

Figure 8: Example from the interface software: isosurface of low atomic density illustrating 3D vortices. (a) U vortex
obtained with the Ipopt method starting from a manufactured initial state with a U-shaped centred vortex. (b) S vortex
obtained with the Sobolev gradient method starting from a manufactured initial state with a S-shaped centred vortex.

Sobolev gradient method and the Ipopt method, presents a bended vortex with a U shape. In the
second case of figure 8(b), we start with an axisymmetric approximation with a manufactured
central vortex with a S shape. The final converged state keeps a S-shaped vortex when using both
numerical methods. According to [13] the S-shaped vortices is a local minima of the energy. We
conclude that both methods converge to the local minimum which is the closest to the initial
guess provided. The input files used for these examples are provided in the directory Examples
as:

• VortexU physic param.dat and VortexS physic param.dat for the physical parameters,

• VortexU GradS run param.dat and VortexU Ipopt run param.dat for the computation pa-
rameters of the U-shaped vortex case,

• VortexS GradS run param.dat and VortexS Ipopt run param.dat for the computation pa-
rameters of the S-shaped vortex case.

The result shown in figure 9 was obtained using physical parameters from [14]: ax =

−0.2, ay = −0.2, az = 0.0672, a4 = 0.075, β = 21000 (see 26), and Ω/ω⊥ = 2. The ground
state displays a giant vortex surrounded by eleven singly-quantized vortices. This simulation
was carried out using Ipopt for a quartic-minus-quadratic potential. The files used to perform
this simulation are provided in the directory Input as: BEC 3D physic param Giant.dat and
BEC 3D run param Ipopt Giant.dat.

Figure 10 illustrates other possible vortex states that can be obtained. An anisotropic harmonic
potential with ax = 1, ay = 1.062, az = 0.0672, β = 50000 (see 26), and Ω/ω⊥ = 0.95 was
used. The computation resulted in an Abrikosov lattice with 31 vortices in 3D. The anisotropy

25

Figure 9: 3D solution computed with the Ipopt method for a quartic-minus-quadratic potential. (a) Isosurface of low
atomic density coloured with the phase. (b) The outer layer is removed to see the singly quantised vortices inside the
condensate. β = 21000 and Ω/ω⊥ = 2.

makes the condensate to take an elongated shape following the x-axis. The files used to per-
form this simulation are provided in the directory Input as: BEC 3D physic param aniso.dat
and BEC 3D run param Ipopt aniso.dat.

Figure 10: 3D solution computed with the Sobolev gradient method for an anisotropic harmonic potential. Different
views of an isosurface of the low atomic density showing the presence of 31 singly quantized vortices in an elongated
condensate. β = 50000 and Ω/ω⊥ = 0.95.

26

6.3. Optional user interface

A simple user interface was made in C++ with the GLUT tool of the OpenGL library. The
C++ source code for this interface is in the directory GLUT. It can be compiled using the makefile
provided with the toolbox. This interface allows the user to easily run the examples or to run
the toolbox using any modified input file. The screen capture of the interface in 3D is shown
in figure 11. On the top left corner one can see a terminal from which was run the executable
”RunToolbox”. The window on the top right corner of figure 11 appears. By clicking on the right
button of the mouse, a pull-down menu allows the user to run the toolbox with one of the three
example files provided, or using the input files from the Input directory. Then a Gnuplot window
appears plotting the evolution of the energy during the run. This window is on the bottom right
corner of figure 11. Finally the bottom left corner of figure 11 shows the 3D solution plotted with
Medit. The user can also decide to plot it with the usual graphical interface of FreeFem++.

Figure 11: Screen capture of the user interface for a 3D computation. We can see: the terminal in which the application
is run, the solution plotted with Medit and the plot of the energy evolution.

In 2D, there are three menus to choose one of the examples previously described:

1. Potential allows to choose between the harmonic (Harm) or the quartic+quadratic (Quart)
trapping potential example.

2. Method allows to choose between the Ipopt (Ipopt) or the Sobolev gradient (GradS) method.

3. Scaling allows to choose between the Aftalion Rivière (AR) or the classical scaling.

In the last menu (Run), the user can run either the selected example (Run Example) or run the
toolbox with the input files which are in the Input directory (Run Input).

27

7. Conclusion

We provide with this paper a finite-element software for 2D and 3D computation of station-
ary solutions of the Gross-Pitaevskii equation. The user has the choice between two robust and
optimised numerical methods: a steepest descent method based on Sobolev gradients and a min-
imization algorithm based on the state-of-the-art optimization library Ipopt. For both methods,
mesh adaptivity strategies are implemented to reduce the computational time and increase the
local spatial accuracy when vortices are present. The numerical system is tested and validated
through various cases representing 2D and 3D configurations of Bose-Einstein condensates in
rotation. A particular attention was paid to the physical interpretation of the computations.
The main parameters of the run can be prescribed either in non-dimensional or physical form.
Thomas-Fermi approximations are derived as closed formulae for a more accurate description
of the initial field for the minimization procedures. Energy and angular momentum are tracked
during the computation and post-processing tools allow to identify quantized vortices in the final,
equilibrium state.

An optional graphical user interface is also provided with the software. It allows to easily run
predefined cases or with user-defined parameter files.

The programs were written as a toolbox to be used within the free software FreeFem++. This
offers the advantage that all technical issues related to the implementation of the finite element
method are hidden, allowing to focus on numerical algorithms and their performance. Automatic
mesh generators, powerful mesh adaptivity functions and the availability of various types of finite
elements with complex functions are the main features making FreeFem++ very appealing in
implementing numerical methods for Schrödinger type equations. The toolbox distributed with
this paper is extremely versatile and can be easily adapted to deal with different physical models.
A natural extension of this toolbox is the simulation of the time-dependent Gross-Pitaevskii
equation: this is an ongoing work and will be reported in a further contribution.

Acknowledgements

This work was supported by the French ANR grant ANR-12-MONU-0007-01 BECASIM
(Modéles Numériques call). We would like to acknowledge the use of computational resources
provided by CRIHAN (Centre de Ressources Informatiques de Haute-Normandie, France) un-
der the project 2015001. We also acknowledge the generous hospitality of the Fields Institute,
Toronto, during the Thematic Program on Multiscale Scientific Computing, January-April, 2016.

A. Formulae for the Thomas-Fermi approximation

We derive in this Appendix closed formulae for the Thomas-Fermi approximation for differ-
ent types of trapping potentials (quartic ± quadratic). The Thomas-Fermi density (57) can be
rewritten using (22) as:

ρTF = |u|2 =

(
ρ0 − 2Ṽeff

CS

)
+

, ρ0 = 2εµ̃ = 2ε
µ

~ω⊥
, and CS = 2ε2Cg. (63)

We recall that ε = 1 for the classical scaling using the oscillator length aho as length scale. The
constant ρ0 will be determined by imposing the unitary norm constraint (18). We derive below
different formulas for ρ0 corresponding to the effective trapping potential (25). We drop in the
following the tilde notation.

28

A.1. 2D harmonic potential
For this case, the effective trapping potential (25) is reduced to

Ṽeff =
1
2

(
axx2 + ayy2

)
. (64)

The unitary norm constraint (18) becomes

I =

∫
D

(
ρ0 − axx2 − ayy2

)
dxdy = CS. (65)

To calculate I analytically, we use the change of variables:
x =

r
√

ax
cos θ

y =
r
√ay

sin θ
dxdy =

r
√axay

drdθ, r ∈ [0,
√
ρ0], θ ∈ [0, 2π], (66)

and

I =
1
√axay

∫ 2π

0
dθ

∫ √
ρ0

0
(ρ0 − r2)rdr =

πρ2
0

2√axay
. (67)

Finally, the constant ρ0 is expressed as:

ρ0 =

(2√axay

π
CS

)1/2

, (68)

and the dimensions of the condensate follow:

Rx =

√
ρ0

ax
, Ry =

√
ρ0

ay
. (69)

A.2. 3D harmonic potential
Same analysis for the potential

Ṽeff =
1
2

(
axx2 + ayy2 + azz2

)
. (70)

The constraint (18) becomes

I =

∫
D

(
ρ0 − axx2 − ayy2 − azz2

)
dxdydz = CS. (71)

To calculate I analytically, we use the change of variables:

x =
r
√

ax
sin θ cos φ

y =
r
√ay

sin θ sin φ

z =
r
√

az
cos θ

dxdydz =
r2 sin θ
√axayaz

drdθdφ,

r ∈ [0,

√
ρ0]

θ ∈ [0, π]

φ ∈ [0, 2π]

(72)

29

and

I =
1

√axayaz

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ √
ρ0

0
(ρ0 − r2)r2dr =

8πρ5/2
0

15√axayaz
. (73)

Finally, the constant ρ0 is expressed as:

ρ0 =

(15√axayaz

8π
CS

)2/5

, (74)

and the dimensions of the condensate follow:

Rx =

√
ρ0

ax
, Ry =

√
ρ0

ay
, Rz =

√
ρ0

az
. (75)

A.3. 2D combined quartic and quadratic potential
We consider that the trap has radial symmetry (ax = ay = a2) and the trapping potential is

Ṽeff =
1
2

(
a2r2 + a4r4

)
. (76)

Note that a4 > 0, but a2 can be either positive (quartic+quadratic potential) or negative (quartic-
quadratic potential). The border of the condensate is defined by the radius R that satisfies:

a4R4 + a2R2 − ρ0 = 0,=⇒ R2
± =
−a2 ±

√
a2

2 + 4ρ0a4

2a4
. (77)

A.3.1. Case a2 ≥ 0: quartic+quadratic potential
In this case, a2 > 0, a4 > 0 and we infer from (77) that ρ0 > 0 and it exists a single root R+:

R2
+ =
−a2 +

√
a2

2 + 4ρ0a4

2a4
> 0. (78)

The constraint (18) becomes in polar coordinates (r, t):

I = 2π
∫ R

0

(
ρ0 − a2r2 − a4r4

)
rdr = CS, (79)

or

CS = 2π
[
ρ0

R2

2
− a2

R4

4
− a4

R6

6

]
=
πR4

6

(
3a2 + 4a4R2

)
. (80)

Consequently, we first have to calculate the root η = R2 > 0 of the non-linear equation (by a
Newton method by example):

4a4η
3 + 3a2η

2 −
6
π

(CS)︸ ︷︷ ︸
Aη

= 0, (81)

and then calculate
ρ0 = a2η + a4η

2 > 0. (82)

The radius of the condensate is finally given by R =
√
η.

30

A.3.2. Case a2 < 0: quartic-quadratic potential

We distinguish two cases:

• if ρ0 > 0, (77) has only one root R+, and the computation of ρ0 is the same as above. We
also infer that this case occurs when:

0 < ρ0 = a2R2 + a4R4 =⇒ η = R2 >
|a2|

a4
. (83)

• if ρ0 < 0, (77) has two roots R−,R+ and the integration will be carried for r ∈ [R−,R+] (there
is a hole in the center of the condensate):

I = 2π
∫ R+

R−

(
ρ0 − a2r2 − a4r4

)
rdr = CS, (84)

or
CS

2π
=

[
ρ0

2

(
R2

+ − R2
−

)
−

a2

4

(
R4

+ − R4
−

)
−

a4

6

(
R6

+ − R6
−

)]
(85)

and using

R2
+ + R2

− = −
a2

a4
, R2

+R2
− = −

ρ0

a4
, R2

+ − R2
− =

√
a2

2 + 4ρ0a4

a4
(86)

we obtain that

CS

2π
=

(
a2

2 + 4ρ0a4

)3/2

12a2
4

, (87)

and finally

ρ0 =
1

4a4

6a2
4

π
CS

2/3

− a2
2

 =
1

4a4

[(
a2

4Aη

)2/3
− a2

2

]
. (88)

Since ρ0 < 0, this occurs if

a4 <

√
π|a2|

3

6CS
=
|a2|

3/2√
Aη

. (89)

A.3.3. Summary for the 2D combined quartic and quadratic potential

Ṽeff =
1
2

(
a2r2 + a4r4

)
. (90)

31

−− > compute ρ0

Compute CS = 2ε2Cg,

• if a2 < 0 and a4 <

√
πa3

2

6CS

ρ0 =
1

4a4

6a2
4

π
CS

2/3

− a2
2

• else

calculate the root η > 0 of:

f (η) = 4a4η
3 + 3a2η

2 −
6
π

(CS) = 0,

and then calculate

ρ0 = a2R2 + a4R4

−− > compute the maximum radius of the condensate

R+ =

−a2 +

√
a2

2 + 4ρ0a4

2a4

1/2

.

(91)

A.4. 3D combined quartic and quadratic potential

We consider a trapping potential with radial symmetry (ax = ay = a2):

Ṽeff =
1
2

(
a2r2 + a4r4 + azz2

)
. (92)

Note that a4 > 0, az > 0, but a2 can be either positive (quartic+quadratic potential) or negative
(quartic-quadratic potential). The border of the condensate is defined by:

a4R4 + a2R2 + azz2 − ρ0 = 0,=⇒ z(r) = ±
1
√

az

(
ρ0 − a2r2 − a4r4

)1/2
. (93)

A.4.1. Case a2 > 0: quartic+quadratic potential
In this case, a2 > 0, az > 0, a4 > 0 and we infer from (93) that ρ0 > 0 and it exists a single root

R⊥ which is the radius of the condensate in the central plane (z = 0):

R2
⊥ =
−a2 +

√
a2

2 + 4ρ0a4

2a4
> 0. (94)

Consequently, the condensate extends in the central plane from r = 0 to r = R⊥. Using the
z–symmetry of the condensate, we calculate in cylindrical coordinates

I =

∫
D

(ρ0 − a2r2 − a4r4 − azz2) =

∫ 2π

0
dθ

∫ R⊥

0
rdr 2

∫ z(r)

0
(ρ0 − a2r2 − a4r4 − azz2)dz (95)

32

or using (93):

I =
8π

3
√

az

∫ R⊥

0
(ρ0 − a2r2 − a4r4)3/2rdr (96)

=
8π

3
√

az

∫ R⊥

0

ρ0 +
a2

2

4a4

 − (
√

a4r2 +
a2
√

4a4

)23/2

rdr (97)

It is useful to calculate the integral

J(x) =

∫
(λ2 − x2) dx, λ > 0. (98)

After elementary integration by parts, we obtain:

J(x) =
3λ4

8
arcsin

(x
λ

)
+

3λ2

8
x
(
λ2 − x2

)1/2
+

1
4

x
(
λ2 − x2

)3/2
, (99)

or in the more useful form:

J(x) = λ4

3
8

arcsin
(x
λ

)
+

3
8

(x
λ

) (
1 −

(x
λ

)2
)1/2

+
1
4

(x
λ

) (
1 −

(x
λ

)2
)3/2 . (100)

We also notice that:
J(λ) =

3π
16
λ4, J(0) = 0, J(−λ) = −

3π
16
λ4. (101)

Using now the notation

λ =

√
ρ0 +

a2
2

4a4
, (102)

and the change of variables

u =
√

a4r2 +
a2
√

4a4
, du = 2

√
a4dr, (103)

r = 0 =⇒ u0 =
a2
√

4a4
, (104)

r = R⊥ =⇒ u⊥ = λ, (105)

our integral becomes:

I =
4π

3
√

aza4

∫ λ

u0

(λ2 − u2)3/2du =
4π

3
√

aza4
(J(λ) − J(u0)) . (106)

Introducing the parameter:

η =
a2√

4a4ρ0
> 0,=⇒

u0

λ
=

η√
1 + η2

, (107)

and using (100) and (101), we finally obtain:

I =
4π

3
√

aza4
λ4

3
8

π2 − arcsin
η√

1 + η2

 − 3
8

η√
1 + η2

1
(1 + η2)1/2 −

1
4

η√
1 + η2

1
(1 + η2)3/2

 ,
=

4π
3
√

aza4
λ4

3
8

arccos
η√

1 + η2
−

3
8

η

1 + η2 −
1
4

η

(1 + η2)2

 . (108)

33

Using that:

λ4 = ρ2
0(1 + η2)2 =

a4
2

(4a4)2

(1 + η2)2

η4 , (109)

we obtain a non-linear equation in η:

I = CS =
8πa4

2

3a1/2
z (4a4)5/2

1
η4

3(1 + η2)2

8
arccos

η√
1 + η2

−
3
8
η(1 + η2) −

1
4
η

 ,
=

πa4
2

a1/2
z (4a4)5/2

1
η4

(1 + η2)2 arccos
η√

1 + η2
− η3 −

5
3
η

 . (110)

To summarize this case, we have to

• find the root η > 0 of the non-linear equation:

f (η) =
a1/2

z (4a4)5/2

πa4
2

CS︸ ︷︷ ︸
Aη

η4 − (1 + η2)2 arccos
η√

1 + η2
+ η3 +

5
3
η = 0, (111)

f ′(η) = 4Aηη
3 − 4η(1 + η2) arccos

η√
1 + η2

+ (1 + η2) + 3η2 +
5
3
, (112)

• compute

ρ0 =
a2

2

4a4η2 , (113)

and the dimensions of the condensate:

R2
⊥ =
−a2 +

√
a2

2 + 4ρ0a4

2a4
, (114)

Rzmax = z|r=0 =

(
ρ0

az

)1/2

. (115)

A.4.2. Case a2 = 0: pure quartic potential
The integration is carried exactly in the same manner, the difference coming from the limits of

the integration following r. We obtain

I =
4π

3
√

aza4
(J(λ) − J(0)) =

4π
3
√

aza4

3π
16
λ4, (116)

with λ =
√
ρ0. Finally

I = CS =
π2

2
√

az4a4
(ρ0)2 , (117)

and
ρ0 =

1
π

(
2a1/2

z (4a4)1/2
)1/2

C1/2
S . (118)

R⊥ =

(
ρ0

a4

)1/4

, Rzmax =

(
ρ0

az

)1/2

. (119)

34

A.4.3. Case a2 < 0: quartic-quadratic potential
For this case, a2 < 0, az > 0, a4 > 0 and we distinguish two subcases:

• If ρ0 < 0, the condensate has a hole. We infer from (93) that there are two roots R±⊥

(R±⊥)2 =
−a2 ±

√
a2

2 + 4ρ0a4

2a4
> 0. (120)

and the condensate extends in central plane from R−⊥ to R+
⊥.

The integration is carried exactly in the same manner, the difference coming from the limits
of the integration following r. We obtain

I =
4π

3
√

aza4
(J(λ) − J(−λ)) =

4π
3
√

aza4
2

3π
16
λ4. (121)

and finally

I = CS =
π2√
az4a4

ρ0 +
a2

2

4a4

2

. (122)

The value of ρ0 results as:

ρ0 =
a1/4

z (4a4)1/4

π
C1/2

S −
a2

2

4a4
=

a2
2

4a4
(ξ − 1). (123)

Since ρ0 < 0, this case is obtained if:

ξ =
a1/4

z (4a4)5/4

πa2
2

(CS)1/2 =

√
Aη
√
π
< 1. (124)

The dimensions of the condensate are

R2
max =

−a2 +

√
a2

2 + 4ρ0a4

2a4
, (125)

Rzmax = z
∣∣∣
r2=

−a2
2a4

=
1
√

az

√
ρ0 +

a2
2

4a4
. (126)

• If ρ0 > 0, the condensate has only a depletion centered around z = 0 (the density profile has
not any more the maximum at z = 0). This case occurs when:

ξ =
a1/4

z (4a4)5/4

πa2
2

C1/2
S =

√
Aη
√
π
> 1. (127)

The computation is the same as for the case of ”quartic + quadratic” potential, with the
difference that the root η is now negative. In particular

Rzmax =
1
√

az

√
ρ0 +

a2
2

4a4
. (128)

35

A.4.4. Summary for the 3D combined quartic and quadratic potential
Ṽeff =

1
2

(
a2r2 + a4r4 + azz2

)
.

Compute CS = 2ε2Cg,

• if a2 = 0,
ρ0 =

1
π

(
2a1/2

z (4a4)1/2
)1/2

C1/2
S ,

Rmax =

(
ρ0

a4

)1/4

, Rzmax =

(
ρ0

az

)1/2

.

• else

−− > compute

Aη =
a1/2

z (4a4)5/2

πa4
2

CS

−− > define the function

f (η) = Aη η
4 − (1 + η2)2 arccos η√

1+η2
+ η3 + 5

3η

• if a2 > 0,

− − −− > find the positive root η ∈ [0, 200] of f (η) = 0

ρ0 =
a2

2

4a4η2 ,

Rmax =

−a2 +

√
a2

2 + 4ρ0a4

2a4

1/2

, Rzmax =

(
ρ0

az

)1/2

.

• else

ξ =

√
Aη
√
π
,

• if ξ < 1,
ρ0 =

a2
2

4a4
(ξ − 1),

Rmax =

−a2 +

√
a2

2 + 4ρ0a4

2a4

1/2

, Rzmax =

(
ρ0

az
+

a2
2

4a4az

)1/2

.

• else

find the negative root η ∈ [−200, 0] of f (η) = 0

ρ0 =
a2

2

4a4η2 ,

Rmax =

−a2 +

√
a2

2 + 4ρ0a4

2a4

1/2

, Rzmax =

(
ρ0

az
+

a2
2

4a4az

)1/2

.

References

[1] L. P. Pitaevskii, S. Stringari, Bose-Einstein condensation, Clarendon Press, Oxford, 2003.
36

[2] A. Minguzzi, S. Succi, F. Toschi, M. P. Tosi, P. Vignolo, Numerical methods for atomic quantum gases with
applications to Bose-Einstein condensates and to ultracold fermions, Physics Reports 395 (2004) 223–355.

[3] W. Bao, Ground states and dynamics of rotating Bose-Einstein condensates, in P. G. Kevrekidis, D. J. Frantzeskakis,
R. Carretero-González (Eds.), Transport Phenomena and Kinetic Theory: Applications to Gases, Semiconduc-
tors, Photos, and Biological Systems, Series Modeling and Simulation in Science, Engineering and Technology,
Birkhauser, 2006, pp. 215–255.

[4] W.Bao, Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinetic and related
models 6 (2013) 1–135.

[5] X. Antoine, C. Besse, W. Bao, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-
Pitaevskii equations, Computer Physics Communications 184 (12) (2013) 2621–2633.

[6] W.Bao, Mathematical models and numerical methods for Bose-Einstein condensation, Proceedings of the Interna-
tional Congress of Mathematicians (Seoul 2014) IV (2014) 971–996.

[7] C. F. Barenghi, R. J. Donnelly, W. F. Vinen (Eds.), Quantized Vortex Dynamics and Superfluid Turbulence, no. 571
in Lecture Notes in Physics, Springer, 2001.

[8] P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González (Eds.), Emergent Nonlinear Phenomena in Bose-
Einstein Condensates, no. 45 in Atomic, Optical, and Plasma Physics, Springer, 2008.

[9] C. F. Barenghi, Y. A. Sergeev (Eds.), Vortices and Turbulence at Very Low Temperatures, no. 501 in CISM Inter-
national Centre for Mechanical Sciences, Springer, 2008.

[10] B. Halperin, M. Tsubota (Eds.), Quantum Turbulence, no. 16 in Progress in Low Temperature Physics, Springer,
2009.

[11] K. Kasamatsu, M. Machida, N. Sasa, M. Tsubota, Three-dimensional dynamics of vortex-lattice formation in Bose-
Einsteincondensates, Phys. Rev. A 71 (2005) 063616.

[12] N. G. Berloff, Interactions of vortices with rarefaction solitary waves in a Bose-Einstein condensate and their role
in the decay of superfluid turbulence, Phys. Rev. A 69 (2004) 053601.

[13] A. Aftalion, I. Danaila, Three-dimensional vortex configurations in a rotating Bose-Einstein condensate, Physical
Review A 68 (2003) 023603(1–6).

[14] A. Aftalion, I. Danaila, Giant vortices in combined harmonic and quartic traps, Physical Review A 69 (2004)
033608(1–6).

[15] I. Danaila, Three-dimensional vortex structure of a fast rotating Bose-Einstein condensate with harmonic-plus-
quartic confinement, Phys. Review A 72 (2005) 013605(1–6).

[16] K. Kasamatsu, M. Tsubota, Quantized vortices in atomic Bose-Einstein condensates, Prog. Low Temp. Phys. 16
(2008) 351–403.

[17] J. J. Garcı́a-Ripoll, V. M. Pérez-Garcı́a, Vortex bending and tightly packed vortex lattices in Bose-Einstein conden-
sates, Phys. Rev. A 64 (2001) 053611.

[18] J. J. Garcı́a-Ripoll, V. M. Pérez-Garcı́a, Optimizing Schrödinger functionals using Sobolev gradients: application
to quantum mechanics and nonlinear optics, SIAM J. Sci. Comput. 23 (2001) 1315–1333.

[19] R. Zeng, Y. Zhang, Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Computer
Physics Communications 180 (2009) 854–860.

[20] W. Bao, Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,
Siam J. Sci. Comput. 25 (2004) 1674.

[21] W. Bao, I.-L. Chern, F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first
excited states in Bose-Einstein condensates, J. Comp. Physics 219 (2006) 836–854.

[22] W. Bao, J. Shen, A generalized Laguerre-Hermite pseudospectral method for computing symmetric and central
vortex states in Bose-Einstein condensates, J. Comp. Physics 227 (2008) 9778–9793.

[23] C. Farhat, J. Toivanen, A hybrid discontinuous Galerkin method for computing the ground state solution of Bose-
Einstein condensates, Journal of Computational Physics 231 (2012) 4709–4722.

[24] R. P. Tiwari, A. Shukla, A basis-set based fortran program to solve the Gross-Pitaevskii equation for dilute bose
gases in harmonic and anharmonic traps, Computer Physics Communications 174 (12) (2006) 966–982.

[25] C. M. Dion, E. Cancès, Ground state of the time-independent Gross-Pitaevskii equation, Computer Physics Com-
munications 177 (2007) 787–798.

[26] U. Hohenester, OCTBEC a Matlab toolbox for optimal quantum control of Bose-Einstein condensates, Computer
Physics Communications 185 (1) (2014) 194–216.

[27] P. Muruganandam, S. Adhikari, Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully
anisotropic trap, Computer Physics Communications 180 (10) (2009) 1888–1912.

[28] M. Caliari, S. Rainer, GSGPEs: A Matlab code for computing the ground state of systems of Gross-Pitaevskii
equations, Computer Physics Communications 184 (3) (2013) 812 – 823.

[29] D. Vudragović, I. Vidanović, A. Balaz, P. Muruganandam, S. K. Adhikari, C programs for solving the time-
dependent Gross-Pitaevskii equation in a fully anisotropic trap, Computer Physics Communications 183 (9) (2012)
2021 – 2025.

37

[30] R. Caplan, NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated inte-
grators using compact high-order schemes, Computer Physics Communications 184 (4) (2013) 1250–1271.

[31] X. Antoine, R. Duboscq, GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of station-
ary solutions, Computer Physics Communications 185 (11) (2014) 2969–2991.

[32] A. Aftalion, Q. Du, Vortices in a rotating Bose-Einstein condensate: critical angular velocities and energy diagrams
in the Thomas-Fermi regime, Phys. Rev. A 64 (2001) 063603.

[33] W. Bao, W. Tang, Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional,
J. Comp. Physics 187 (2003) 230–254.

[34] L. O. Baksmaty, Y. Liub, U. Landmanc, N. P. Bigelowd, H. Pu, Numerical exploration of vortex matter in Bose-
Einstein condensates, Mathematics and Computers in Simulation 80 (2009) 131–138.

[35] I. Danaila, F. Hecht, A finite element method with mesh adaptivity for computing vortex states in fast-rotating
Bose-Einstein condensates, J. Comput. Physics 229 (2010) 6946–6960.

[36] F. Hecht, New developments in Freefem++, Journal of Numerical Mathematics 20 (2012) 251–266.
[37] F. Hecht, O. Pironneau, A. L. Hyaric, K. Ohtsuke, FreeFem++ (manual), www.freefem.org, 2007.
[38] I. Danaila, P. Kazemi, A new Sobolev gradient method for direct minimization of the Gross–Pitaevskii energy with

rotation, SIAM J. Sci. Computing 32 (2010) 2447–2467.
[39] A. Wächter, An interior point algorithm for large-scale nonlinear optimization with applications in process engi-

neering, PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA.
[40] C. D. C. Dapogny, P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applica-

tions to free and moving boundary problems, Journal of Computational Physics 262 (2014) 358-378.
[41] C. Dobrzynski, P. Frey, MMG3D: User Guide. [Technical Report] RT-0422, INRIA hal-00681813, 2012.
[42] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev.

Mod. Phys. 71 (1999) 463–512.
[43] V. S. Bagnato, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, D. Mihalache, Bose-Einstein condensation:

twenty years after, Romanian Reports in Physics 67 (2015) 5–50.
[44] A. L. Fetter, B. Jackson, S. Stringari, Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap,

Phys. Rev. A 71 (2005) 013605.
[45] M. Tsubota, K. Kasamatsu, M. Ueda, Vortex lattice formation in a rotating Bose-Einstein condensate, Phys. Rev.

A 65 (2002) 023603.
[46] A. Aftalion, T. Rivière, Vortex energy and vortex bending for a rotating Bose-Einstein condensate, Phys. Rev. A 64

(2001) 043611.
[47] V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Fast rotation of a Bose-Einstein condensate, Phys. Rev. Lett. 92 (2004)

050403.
[48] A. Aftalion, Vortices in Bose-Einstein Condensates, Birkhauser, 2006.
[49] K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortices in a stirred Bose-Einstein condensate, J. Mod. Opt.

47 (2000) 2715.
[50] K. W. Madison, F. Chevy, V. Bretin, J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes

to vortex nucleation, Phys. Rev. Lett. 86 (2001) 4443.
[51] P. Rosenbusch, V. Bretin, J. Dalibard, Dynamics of a single vortex line in a Bose-Einstein condensate, Phys. Rev.

Lett. 89 (2002) 200403.
[52] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, R. Ulerich, GNU Scientific

Library Reference Manual (3rd Ed.), ISBN 0954612078, www.gnu.org, 2015.
[53] H. Borouchaki, M. J. Castro-Diaz, P. L. George, F. Hecht, B. Mohammadi, Anisotropic adaptive mesh generation

in two dimensions for CFD, in: 5th Inter. Conf. on Numerical Grid Generation in Computational Field Simulations,
Mississipi State Univ., 1996.

[54] M. Castro-Diaz, F. Hecht, B. Mohammadi, Anisotropic grid adaptation for inviscid and viscous flows simulations,
Int. J. Comput. Fluid Dynamics 25 (2000) 475–491.

[55] F. Hecht, B. Mohammadi, Mesh adaptation by metric control for multi-scale phenomena and turbulence, AIAA
paper 97 (1997) 0859.

[56] P. L. George, H. Borouchaki, Delaunay triangulation and meshing, Hermès, Paris, 1998.
[57] P. J. Frey, Medit: An interactive mesh visualisation software, RT-0253, INRIA, 2001.
[58] A. W. J. Nocedal, R. A. Waltz, Adaptive barrier strategies for nonlinear interior methods, SIAM Journal on Opti-

mization 19(4) (2008) 1674–1693.
[59] A. Wächter, L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale

nonlinear programming, Mathematical Programming 106 (2006) 25-57.
[60] S. Auliac, Développement d’outils d’optimisation pour freefem++, Thèse (2014) Université Pierre et Marie Curie,

Paris, France.
[61] K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate, Phys.

Rev. Lett. 84 (2000) 806.

38

[62] V. Bretin, P. Rosenbusch, F. Chevy, G. Shlyapnikov, J. Dalibard, Quadrupole oscillation of a single-vortex Bose-
Einstein condensate: Evidence for Kelvin modes, Phys. Rev. Lett. 90 (2003) 100403.

[63] S. Stringari, Phase diagram of quantized vortices in a trapped Bose-Einstein condensed gas, Phys. Rev. Lett. 82
(1999) 4371.

[64] T. Williams, C. Kelley, Gnuplot 5.0 : An interactive plotting programm, http://www.Gnuplot.info/, 2015.
[65] M. Kilgard, GLUT 3.7, https://www.opengl.org/resources/libraries/glut/, 2000.

39

