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Multicomponent Bose-Einstein condensates exhibit an intriguing variety of nonlinear structures.
In recent theoretical work [C. Qu, L.P. Pitaevskii and S. Stringari, Phys. Rev. Lett. 116, 2016],
the notion of magnetic solitons has been introduced. Here we examine a variant of this concept in
the form of vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates. We
first provide concrete experimental evidence for such states in an atomic BEC and subsequently
illustrate the broader concept of these states, which are based on the interplay between miscibility
and intercomponent repulsion. Armed with this more general conceptual framework, we expand the
notion of such states to higher dimensions presenting the possibility of both vortex-antidark states
and ring-antidark-ring (dark soliton) states. We perform numerical continuation studies, investigate
the existence of these states and examine their stability using the method of Bogolyubov-de Gennes
analysis. Dark-antidark and vortex-antidark states are found to be stable for broad parametric
regimes. In the case of ring dark solitons, where the single-component ring state is known to be
unstable, the vector entity appears to bear a progressively more and more stabilizing role as the
intercomponent coupling is increased.

PACS numbers:

I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) offer an ex-
cellent testbed for the exploration of waveforms relevant
to multicomponent nonlinear wave systems [1, 2]. A prin-
cipal paradigm consists of the dark-bright (DB) solitary
wave and related structures such as dark-dark solitary
waves that have long been studied theoretically [3–9].
The experimental study of such states was pioneered
much earlier in nonlinear optics, including e.g. the ob-
servation of dark-bright solitary wave structures in Refs.
[10, 11]. Yet, it was the versatility and tunability of BECs
that enabled a wide variety of relevant studies initially
motivated by the proposal of Ref. [12]. Specifically,
the experimental realization of DBs [13] was followed by
a string of experiments investigating the dynamics and
properties of these features including in-trap oscillations
of DBs, their spontaneous generation (e.g. via counter-
flow experiments) and their interactions both with other
DBs and with external potential barriers [14–19].

Very recently, a different type of multicomponent soli-
tons was proposed, the so-called “magnetic solitons”
[20]. Given the limited number of experimental inves-
tigations in connection to magnetic solitons (in compar-
ison to other soliton families, such as bright or dark soli-
tons) such entities naturally are of considerable inter-
est. The ability to generate them using current state-
of-the art experiments with multicomponent BECs gives
them considerable experimental appeal as well. These
states have a complementary intensity profile in the two-
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components (ψ1(x, t), ψ2(x, t)) and are described by the
two-component wave function(

ψ1(x, t)
ψ2(x, t)

)
=
√
n

(
cos( θ2 )eiφ1

sin( θ2 )eiφ2

)
where θ(x, t) characterizes the spatial distribution of the
amplitude, n the total density and φ the phase of each
component. It is relevant to note that a related idea re-
garding the formulation of the multicomponent nonlinear
wave state was put forth, e.g., in Ref. [21].

A complementary possibility recognized considerably
earlier was that of dark-antidark solitary waves [22]. An-
tidark solitary waves are bright solitary waves on top
of a finite background. Here, we will avoid calling the
structures under investigation “magnetic”, as we do not
a priori constrain the sum of the densities of the two
components to equal that of a single component ground
state, as in the settings of Refs. [20, 21]. We will
show that the idea of complementary non-trivial com-
ponents, one of which is antidark, is a very general one
and is applicable in several dimensions as well: similar
ideas naturally emerge in two dimensions in the form of
vortex-antidark and ring-antidark-ring states, which to
the best of our understanding have previously not been
explored. In particular, a vortex-antidark wave will be
a miscible two-dimensional state where a vortex in the
one-component forms a potential well inside which the
atomic density of the second component builds up to
create an anti-dark solitary wave. A ring dark soliton,
on the other hand, has been extensively studied in one-
component BECs [2] as a radial state that starts in the
linear limit as a linear combination of the 2nd excited
states of an isotropic quantum harmonic oscillator of fre-

quency Ω, i.e., ∼ (Ωr2−1)e−Ωr2/2 and as the atom num-
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ber increases it becomes a tanh-shape dark soliton but
in the radial variable. Hence, again starting from a mis-
cible state that contains a ring dark soliton in the one
component, we will observe that this structure will con-
fine atoms of the second component in the form of an
anti-dark ring, creating what we will thus name a ring-
antidark-ring state. We motivate and complement our
theoretical prediction, numerical verification and stabil-
ity analysis of such states with an example of an exper-
imental realization in a BEC that confirms that dark-
antidark states are straightforward to create and observe
the dynamics of in current experimental settings.

The fundamental rationale behind such states is remi-
niscent of that of the DB entities. For a single-component
system, an extensive discussion of the existence and sta-
bility of excited states such as dark solitons or vortices
can be found in the respective 1d and 2d chapters of
Ref. [2]. In a two-component system with intercompo-
nent repulsion, a dark soliton or a vortex (or a ring) in
one component will induce an effective potential, through
the intercomponent nonlinearity, on the second compo-
nent. If now atoms of the second (“bright”) component
are added solely within this effective potential, the den-
sity suppression in the first component will get filled
by atoms of the second component and a dark-bright,
a vortex-bright [23, 24] or a ring-DB solitary wave [25]
will emerge. If, now, the second component features a
(spatially extended) ground state profile in the misci-
ble regime, the presence of intercomponent repulsion will
produce an effective additional potential which will at-
tract atoms of the second component into the dip of the
first one. This generates a bright solitary wave on top
of the existing nontrivial background, forming an anti-
dark solitary wave. An additional constraint in this case
is that the two components need to coexist outside of
the dark-antidark (DA), vortex-antidark (VA), or ring-
antidark-ring (RAR) structure. This imposes the condi-
tion of miscibility between the two species [26–28], i.e.
the condition that the intercomponent repulsion should
be less than the square root of the product of the intra-
component ones, 0 ≤ g12 <

√
g11g22. We note in passing

here that this condition is derived in the context of homo-
geneous BECs and is only slightly affected by the pres-
ence of weak trapping conditions as in the case examples
considered herein [30].

Based on the discussion above, there is a straightfor-
ward path that one can follow in order to establish such
states (at least, numerically) involving an antidark com-
ponent. One can start at the uncoupled limit of g12 = 0
with an excited state (e.g., a dark soliton in 1d, or a vor-
tex or a ring dark soliton in 2d) in one component and
a fundamental (ground) state in the second component.
Then, after turning on the intercomponent coupling, the
dip of the excited state in the first component will induce
an effective attracting potential (due to the intercompo-
nent repulsion) in the second component, attracting some
atoms into the dip while maintaining (due to miscibility)
the background of the second component. By construc-

tion, an antidark structure will be formed.
Such a state, as we will see in detail below, will con-

tinue to exist for values of g12 up to the miscibility-
immiscibility threshold. To discuss these types of states,
we will proceed as follows: in section II, we will pro-
vide an example of an experimental realization of a dark-
antidark solitary wave that will serve as a key motivation
for the corresponding theoretical more in-depth study. In
section III, we will explore the relevant states numeri-
cally, using numerical continuation and bifurcation the-
ory, starting from the uncoupled limit described above.
Finally, in section IV, we will summarize our conclusions
and present some intriguing possibilities for future work.

II. EXPERIMENTAL RESULTS

To motivate our discussion, we begin by presenting
experimental evidence for the existence, stability and
dynamics of a dark-antidark solitary wave, shown in
Fig. 1. In our experiments we observe these features
in two-component BECs confined in an elongated dipole
trap. The experiments begin by creating a BEC of
approximately 0.8 × 106 87Rb atoms held in an opti-
cal trap with harmonic trap frequencies of ωx,y,z =
2π{1.4, 176, 174} Hz, where z is the direction of grav-
ity. Evaporation in the dipole trap is continued until no
thermal fraction is discernible. Initially, all atoms are
in the |F,mF 〉 = |1,−1〉 hyperfine state. Subsequently,
a homogeneous magnetic bias field of 10G is turned
on, and a brief microwave pulse transfers a fraction of
the atoms (approximately 50% for the case shown in
Fig. 1) into the |2,−2〉 hyperfine state. The transfer oc-
curs uniformly across the whole BEC. The resulting two-
component BEC can be described by two separate Gross-
Pitaevskii equations that are only coupled by the inter-
component scattering length (see the theory section be-
low). The intra- and intercomponent scattering lengths
for the two states are a11 = 100.4a0, a22 = 98.98a0, and
a12 = 98.98a0, where a11 denotes the scattering of two
atoms in the |1,−1〉 state, a12 the scattering between an
atom in the |1,−1〉 and |2,−2〉 state, and a22 between
two atoms in the |2,−2〉 state [31]; a0 is the Bohr radius.
Based on the standard miscibility argument [26–28], dis-
cussed above, this mixture is slightly miscible. After the
microwave pulse, the difference between a11 and a22 in-
duces dynamics leading to a slight enhancement of the
concentration of |2,−2〉 atoms towards the center of the
cloud. These dynamics also result in the emergence of a
dark-antidark solitary wave as shown in Fig. 1 when the
mixture is held in trap for approximately 10 sec or longer.
The solitary waves are imaged by suddenly switching off
the trap and imaging the |2,−2〉 state after 10 ms of
expansion and the |1,−1〉 state after 11 ms of expan-
sion. The difference in the free-fall time separates the
two images on the camera, so that the two components
appear below each other in the images. During all in-trap
evolution leading to the soliton formation, the two com-
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FIG. 1: (Color online) Experimental realization of dark-antidark solitary waves. (a) Absorption images (upper two panels)
and corresponding integrated cross sections (lower two panels) of a dark-antidark solitary wave. The dark soliton component
resides in a cloud of |F,mF 〉 = |2,−2〉 atoms (upper and third panel), while the bright component consists of atoms in the
|F,mF 〉 = |1,−1〉 state (second and forth panel from top). (b) Experimentally observed oscillation of the dark-antidark solitary
wave in the trap. The position is measured along the x-axis, i.e. along the weakly confining axis of the trap. The time is
measured starting from the initial microwave pulse that creates the two-component mixture. The blue dots are experimental
data, while the red line is a sine function fit to the data. (c) Comparison between a dark-bright soliton in a mixture of atoms
in the |F,mF 〉 = |1,−1〉 and |F,mF 〉 = |1, 0〉 states (left image) and a dark-antidark structure in a mixture of atoms in the
|F,mF 〉 = |2,−2〉 and |F,mF 〉 = |1,−1〉 states (right image).

ponents have been well overlapped vertically. Repeating
this procedure with well controlled experimental param-
eters, we observe that each iteration of the experimental
run reliably produces a two-component BEC containing
one dark-antidark solitary wave such as the one shown
in Fig. 1. In all iterations, the dark soliton resides in the
|2,−2〉 component and the antidark soliton is found in
the |1,−1〉 component. The solitary waves are very long
lived. We have observed their in-trap dynamics for up to
20 sec from the time of their generation. For comparison,
starting with a 50/50 mixture of the two components, we
measure the 1/e lifetime of the |2,−2〉 component to be
∼ 22 sec and that of |1,−1〉 component to be ∼ 33 sec
for our experimental parameters. The emergence of these
solitary waves is rather insensitive to the exact mixture
ratio of the components. Experimentally we tested and
confirmed their existence in a variety of mixtures ranging
from 30% of the atoms in the |2,−2〉 state and 70% in
the |1,−1〉 state, to mixtures of 50% in the |2,−2〉 state
and 50% in the |1,−1〉 state. In mixtures where the
abundance of the |2,−2〉 component exceeded approxi-
mately 50%, no clear soliton formation was seen. We
note that these observations regarding the emergence of
the dark-antidark solitons may be specific to the proce-
dure employed to generate these features in our experi-
ments, which is not based on a dedicated wavefunction
engineering [14, 17] or phase imprinting [13] technique.

We have also repeated the experiment with a mix-

ture of atoms in the |1,−1〉 and |1, 0〉 components. The
scattering lengths for this mixture are a11 = 100.4a0,
a22 = 100.86a0, and a12 = 100.41a0, where a11 now de-
notes the scattering of two atoms in the |1,−1〉 state,
a12 the scattering between an atom in the |1,−1〉 and
|1, 0〉 state, and a22 between two atoms in the |1, 0〉
state [31]. This mixture is closer to the miscibility-
immiscibility threshold. Following an analogous proce-
dure as described above, no formation of dark-antidark
solitary waves was observed. Instead, dark-bright soli-
tons were generated. A comparison between a dark-
bright soliton and a dark-antidark one shown in Fig. 1(c),
showcasing their very different structure in the bright
component. This emphasizes the important role that the
miscibility of the component plays for the generation of a
non-zero background in the second (bright) component,
as has also been highlighted in Ref. [20].

We note here an important open issue that we will
not fully address in our numerical investigation that
follows, namely that of experimentally identifying only
dark-antidark states in the first of the above mixtures
and only dark-bright ones in the second one. Our nu-
merical results below will show that dark-antidark states
exist up to the miscibility-immiscibility threshold (al-
though as the latter limit is approached, they may be
difficult to identify given their degeneration to dark soli-
tons). On the other hand, the work in Ref. [29] sug-
gests that dark-bright solitary waves exist on both sides
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of the miscibility-immiscibility transition. This combi-
nation indicates that a closer investigation of the prox-
imity to the transition limit (including a consideration
of possible small residual magnetic field curvatures and
genuinely 3D computations) may be necessary to further
explore this feature.

The long lifetimes and reproducible generation of dark-
antidark solitary waves in a mixture of atoms in the
|2,−2〉 and |1,−1〉 states allow us to observe their in-
trap dynamics (Fig. 1(b)). We clearly detect a slow os-
cillation of the solitary wave along the weak axis of the
trap. A fit of the data in Fig. 1(b) gives an oscillation
period of approximately 5.6 sec. For comparison, the pe-
riod of a dark soliton in a single-component BEC in the
same trap is predicted to be 1 sec [32, 33]. Hence, the
dark-antidark solitary waves are significantly slower. A
similar trend has been found in Refs. [12, 15], where it
was seen that dark-bright solitons are slowed when the
amount of atoms in the bright component is increased.
The theory of “magnetic solitons” described in [20] as-
sumes a11 = a22, which in our experiment is only ap-
proximately fulfilled. This theory predicts an oscillation
period on the order of 9.8 sec, somewhat longer than that
observed in the experiment. A quantitative comparison
between experiment and theory, including the possible in-
fluence of a small residual magnetic field curvature, the
mixing ratio of the two components and the finite lifetime
of the trapped atoms, will be left for future work. Here,
these first observations of dark-antidark solitary waves
serve as a motivation to investigate (chiefly as a function
of the intercomponent scattering length) and generalize,
for instance to higher dimensions, the underlying con-
cepts of dark-antidark structures using numerical contin-
uation studies and Bogolyubov-de Gennes analysis.

III. THEORETICAL/NUMERICAL RESULTS

In order to capture the qualitative features of the states
of interest, it will suffice to utilize a mean-field model in
the form of the Gross-Pitaevskii equation. Upon suitable
standard reductions [1, 2], the model can be transformed
to its dimensionless version in the form:

i
∂ψ1

∂t
= −1

2
∆ψ1 + V (x)ψ1 +

(
g11|ψ1|2 + g12|ψ2|2

)
ψ1(1)

i
∂ψ2

∂t
= −1

2
∆ψ2 + V (x)ψ2 +

(
g12|ψ1|2 + g22|ψ2|2

)
ψ2(2)

Here, the pseudo-spinor field is denoted by (ψ1, ψ2)T

(where T is used for transpose), V (x) = Ω2

2 x2 repre-
sents the parabolic trap, while gij are the interaction
coefficients, proportional to the experimental scattering
lengths mentioned above. In line with the analysis of Ref.
[20], we will assume in what follows that g11 = g22 = g,
while 0 ≤ g12 ≤ g. Given that only the ratios of the
scattering lengths matter, we will choose g = 1, while
0 ≤ g12 < 1, in order to be in the miscible regime, while
preserving intercomponent repulsion.

In our numerics, the stationary states (ψ
(0)
1 , ψ

(0)
2 )T are

identified by virtue of a fixed point iteration (typically
a Newton method) originally at g12 = 0, i.e., the limit
where the two components are uncoupled. Then, para-
metric continuation is utilized in order to follow the con-
figuration as a function of g12 up to the miscibility thresh-
old.

Upon computing the solution, Bogolyubov-de Gennes
stability analysis is implemented that perturbs the solu-
tions according to:

ψ1 = e−iµ1t
(
ψ

(0)
1 (x) + δ(a(x)eiωt + b?(x)e−iω

?t)
)
(3)

ψ2 = e−iµ2t
(
ψ

(0)
2 (x) + δ(c(x)eiωt + d?(x)e−iω

?t)
)
(4)

Here ω represents the linearization eigenfrequency and
the vector (a, b, c, d)T is the linearized eigenvector per-
taining to the respective eigenfrequency. The chemical
potentials are denoted by (µ1, µ2), while δ is a formal
small parameter of the linearization ansatz. Ω repre-
sents the strength of the trapping potential in the lon-
gitudinal versus the transverse directions (i.e., the ra-
tio thereof). For one-dimensional (1d) calculations, one
needs to choose Ω � 1 for the reductions to the one-
dimensional effective model to be meaningful: we set
Ω = 0.025 and µ1 = µ2 = 1. For two-dimensional (2d)
calculations, we will assume Ω = 0.2 and µ1 = µ2 = 2
unless noted otherwise.

Numerical computations are performed using
FreeFem++ [34]. The numerical system developed for
computing stationary solutions of the Gross-Pitaevskii
equation [35] was extended for the two-component
system (1)-(2). We use quadratic (P 2) finite elements
with mesh adaptivity, offering high-resolution of the
steep gradients in the solution. The Bogolyubov-de
Gennes linear eigenvalue problem corresponding to
the P 2 finite element discretization is solved using the
ARPACK library.

A. 1d: Dark-antidark solitary waves

We start by considering the scenario of dark-antidark
solitons in one spatial dimension. Solutions of this type
are represented in Fig. 2 (a) for the in-trap case (Ω =
0.025) and Fig. 2 (b) for the homogeneous case (Ω = 0).
The latter case (without trap) is shown for reference to
classical dark-bright solitons. In the latter, contrary to
what is the case here (where it is finite), the background
of this second component is vanishing. In what follows,
we focus on the case with trapping potential.

For g12 = 0 the solution has the form of a regular dark
solitary wave coupled to a ground state in the second
component. For a finite value of g12 the stationary solu-
tion develops a bump at the location of the dark soliton
dip. Due to the intercomponent repulsion, the density
dip in the first component leads to an attracting poten-
tial well for the second component.
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FIG. 2: (Color online) 1D Dark-antidark solitary waves. Three examples of the two components in the dark-antidark state
for progressively increasing g12: (a) in-trap case with trap frequency Ω = 0.025 � 1, (b) homogeneous case with Ω = 0.
(c) Dependence of the lowest eigenfrequencies scaled by the trap frequency Ω for the in-trap case. Plot of the real part of
eigenvalues: black dots indicate the theoretical prediction for the anomalous mode (see discussion in the text). The colors are
there only to visually aid the eye to identify the continuation of the different modes. Plot of the imaginary part: evidence of
very low growth of oscillatory instability for 0.71 < g12 < 0.87.

Therefore an antidark peak is formed that becomes
stronger as g12 is increased, while the first component
tends to vanish as the miscibility-immiscibility threshold
of g12 = 1 is approached. This trend is clearly seen in
Fig. 2 (a). For this case, we have used Ω = 0.025, al-
though similar results have been found for other values
of the trap strength.

Remarkably, in the case of the dark-antidark solitary
wave family we find the relevant solution to be generally
stable (as shown in Fig. 2 (c)) through a wide interval

of variation of the g12 parameter; an extremely weak os-
cillatory instability arises for 0.71 < g12 < 0.87, which
will be discussed further below, yet its growth rate is so
small that we do not expect it to affect the dynamics in
an observable way over the time scales of interest. In the
large chemical potential limit, we in fact have a detailed
handle on the spectrum of the relevant eigenfrequencies
in an analytical form. When g12 = 0, the second compo-
nent is uncoupled from the first and its spectrum in the
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ground state consists of eigenfrequencies

ω =

√
n(n+ 1)

2
Ω (5)

where n is a non-negative integer, as discussed in Refs.
[36, 37]. The dark soliton (DS) spectrum on the other
hand, as explained, e.g., in Ref. [2] consists of the spec-
trum of the ground state in which the soliton is “embed-
ded”, given by Eq. (5), as well as an extensively studied
anomalous (or negative energy) mode associated struc-
turally with the excited state nature of the DS state,
and practically with its oscillation inside the parabolic
trap. As is well known, the latter mode has the frequency
ω = Ω/

√
2 in the large chemical potential limit [32, 33]

and is the lowest excitation frequency in the system. Us-
ing an argument similar to that presented in Ref. [20], we

expect that the relevant mode scales as ω ≈ Ω
√
δg/(2g),

where δg = g − g12. This prediction is also represented
in Fig. 2 (c) (black dots in the plot of the real part
of eigenvalues) and is in reasonable agreement with the
corresponding numerical result throughout the interval
of variation of g12. As Ω → 0 this mode tends to 0,
restoring the translational invariance in the limit when
the trap is absent. In the presence of the trap, there
are two pairs of modes at ω = 0 associated with the in-
variance of both components with respect to phase and
physically associated with the conservation of atom num-
bers in both of the nonlinearly coupled components. Re-
garding the rest of the spectrum (the modes associated
with the ground state in each component), it can be seen
that they can be partitioned into two fundamental cate-
gories, namely those that are essentially left invariant and
those that undergo a rapid monotonic decrease (which is
nearly linear for small g12) as g12 increases. The for-
mer ones of these modes are referred as density modes in
Ref. [1], while the latter ones (decreasing proportionally

to
√

(g − g12)/(g + g12)) are referred to as spin modes.
As this takes place, it is in principle possible for the
anomalous mode (of dark soliton oscillation) and the low-
est frequency associated with the ground state to collide
and lead to a resonant eigenfrequency quartet [2]. This
does happen in the example of Fig. 2 (c) (plot of the
imaginary part of eigenvalues) for 0.71 < g12 < 0.87, yet
as mentioned above the growth rate of this instability
is minuscule and hence it will not be considered further
herein.

B. 2d: Vortex-antidark solitary waves

We now generalize the above concept to the 2d case,
as is shown in Fig. 3. Our first example in this setting re-
places the 1d dark soliton by a 2d vortex in the first com-
ponent that generates an attractive potential well for the
second component. Once again, it can be seen that start-
ing from the decoupled limit of g12 = 0 and increasing g12

in the miscible regime, the coupled vortex-antidark state

emerges with progressively more and more atoms of the
second component being radially concentrated in the well
formed by the vortex. This creates a radially symmetric
antidark solitary wave in the second component.

FIG. 3: 2D Vortex-antidark solitary waves obtained for Ω =
0.2 and µ1 = µ2 = 2. (a) Three-dimensional renderings of the
density as a function of (x, y) for the vortex-antidark states
and for the particular values of g12 = 0, 0.5 and 0.9. (b) Cut
through the density of these states (at y = 0). (c) Variation
of eigenfrequencies normalized by the trap frequency Ω of the
spectral BdG analysis with g12 (see also the relevant detailed
discussion in the text). Notice that all eigenfrequencies re-
main real over the parametric interval considered, indicating
the spectral stability and dynamical robustness of the associ-
ated state.

For this case, the spectrum, shown in Fig. 3 (c) fea-
tures two sets of constituents. In the limit of g12 = 0, the
ground state component consists of frequencies theoreti-
cally approximated (in the Thomas-Fermi limit of large
µ considered here) by

ω =
√
m+ 2k(1 +m) + 2k2Ω, (6)

where k,m ≥ 0 are non-negative integers. The first
component bearing the vortex also shares these frequen-
cies (due to the vortex being again “embedded” within
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the ground state), but additionally carries an anoma-
lous (negative energy) mode that is a signature of its
excited state nature [2]. This mode is associated with
the rotation of the vortex around the center of the
parabolic trap. It is well characterized by the frequency

ω = Ω2

2µ log(Aµ/Ω), where A ≈ 2
√

2π [38]. As g12 is in-

creased, a similar trend as in one-dimension is observed:
one set of frequencies remains invariant, while a second
set, originally degenerate with the first at g12 = 0, mono-
tonically decreases as δg → 0. The anomalous mode
frequency associated with the vortex monotonically de-
creases as well, although in a less pronounced manner.

Physically, this implies that the additional atoms
stored within the antidark component decrease the ro-
tation frequency (i.e., increase the rotation period) of
the composite entity within the trap. A similar behav-
ior was found for dark-bright solitons even experimen-
tally [12, 15]. Thus, for dark-antidark solitons and for
vortex-antidark solitary waves, “heavier means slower”.

C. 2D: Ring-antidark-ring solitary waves

Finally, to illustrate the generality of the underlying
concept, we explore the role of increasing the intercom-
ponent (repulsive) coupling g12 in the miscible regime
for the case where the first component bears a ring dark
soliton (RDS), while the second one is started in the
ground state, again at large µ (i.e., in the vicinity of
the Thomas-Fermi limit). Ring dark solitons have been
predicted early on in the context of BECs [39], following
their proposal and even experimental observation in non-
linear optics [40, 41]. Subsequent detailed studies of their
stability [42, 43] illustrated that they are unstable for all
values of the chemical potential from the linear limit on-
wards, progressively becoming more unstable as µ is in-
creased. The initial instability is towards a quadrupolar
mode leading to four vortices, while subsequently hexap-
olar (leading to six vortices), octapolar (leading to eight
vortices) etc. instabilities arise in the relevant spectrum.

Here, we observe the relevant states in Fig. 4. A pro-
gressive increase of g12 generates an attractive annular
potential for atoms in the second component so that an
antidark ring is formed in the second component. As with
the previous states, the increase of g12 also decreases the
density of the dark ring component (for the same chemi-
cal potential), finally leading it towards extinction as the
miscibility-immiscibility threshold is approached. An as-
sociated and quite interesting feature is that as g12 is in-
creased, progressively more and more unstable modes of
the original single component RDS are stabilized, hence
it is intriguing to note that for the same chemical po-
tential states with larger g12 and hence larger antidark
component are less susceptible to instability. In fact, the
state tends towards complete stabilization as the misci-
bility threshold is approached, a feature interrelated with
the tendency towards extinction of the associated RDS
component. It is relevant to note also that in these last

two cases (of Figs. 3 and 4) the state appears to termi-
nate noticeably before the homogeneous miscibility limit
of g12 = 1, while the 1d corresponding DA state can be
identified continuously up to the miscibility-immiscibility
threshold.

FIG. 4: 2D ring-antidark-ring solitary waves obtained for
Ω = 0.2 and µ1 = µ2 = 2. (a) Three-dimensional renderings
of the density as a function of (x, y) for the vortex-antidark
states and for the particular values of g12 = 0, 0.5 and 0.9.
(b) Cut through the density of these states (at y = 0). (c)
Variation of real and imaginary parts (normalized by the trap
frequency Ω) of frequencies of the spectral BdG analysis with
g12. Notice how the imaginary eigenfrequencies associated
with instabilities to (azimuthal) snaking progressively disap-
pear as g12 is increased, i.e. the ring antidark solitary wave
has a stabilizing effect on the unstable ring dark soliton.
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IV. CONCLUSIONS & FUTURE WORK

In the present paper, we proposed a multitude of states
motivated by the recent proposal of magnetic solitons put
forth in Ref. [20]. These “dark-antidark” states that we
discuss are based on a simple physical principle, namely
the formation of an attractive potential well on top of
a ground state component by the presence of a “dark”
structure in the other component. In the miscible case
with intercomponent repulsion, this potential well at-
tracts atoms and forms an antidark entity (a 1d soliton, a
2d soliton or even a ring soliton) in the (formerly) ground
state component. This is a natural generalization (in the
case of a non-vanishing background for the second com-
ponent) also of the notion of dark-bright solitons which
has recently been extensively explored.

We have proposed this notion theoretically at an intu-
itive level and have illustrated its generality via detailed
numerical computations. Furthermore, we have show-
cased it in experiments, at least in as far as its 1d in-
stallment is concerned. This emphasizes the relevance
of these features for current experiments with multicom-
ponent BECs. An additional appealing feature of such
symbiotic structures lies in the fact that when the sin-
gle component entity (such as the ring dark soliton) may
be unstable, this coupling appears to have a stabilizing
effect rendering the relevant entity more amenable to ob-
servation. Both the existence and the spectral stability
characteristics of these states were explained over vari-
ations of the intercomponent coupling throughout their
range of existence.

Naturally, there are many open directions for future
study in this subject. From an experimental perspec-
tive, it would be particularly interesting to explore the

possibility to form such states in both two- and three-
dimensions. In the latter 3D setting, computations
would also be especially useful in elucidating such states:
recently, vortex-line-bright and vortex-ring-bright [44]
states have been identified, and their generalization to
antidark ones would be quite relevant, as well as the
study of their stability. From a theoretical perspective,
it would also be quite intriguing to explore further the
“particle description” of such entities, both at the level
of the single particle (e.g. characterizing the rotation of
a vortex-antidark solitary wave), but also quite impor-
tantly at the level of interaction of multiple such entities.
The latter has not been quantified even in 1d settings.
As a final but important point, we note the sensitive
dependence of the emergence in experiments of the dark-
antidark versus dark-bright solitons on the value of scat-
tering lengths in the vicinity of the miscibility threshold.
This is a feature worth further elucidating in future ex-
periments and corresponding theoretical analyses. Some
of these topics are presently under consideration and will
be reported in future publications.
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González, The Defocusing Nonlinear Schrödinger Equa-
tion, SIAM (Philadelphia, 2015).

[3] D. N. Christodoulides, Phys. Lett. A, 132, 451–452
(1988).

[4] V. V. Afanasyev, Yu. S. Kivshar, V. V. Konotop, and
V. N. Serkin, Opt. Lett., 14, 805–807 (1989).

[5] Yu. S. Kivshar and S. K. Turitsyn, Opt. Lett., 18, 337–
339 (1993).

[6] R. Radhakrishnan and M. Lakshmanan, J. Phys. A:
Math. Gen., 28, 2683–2692 (1995).

[7] A. V. Buryak, Yu. S. Kivshar, and D. F. Parker, Phys.
Lett. A, 215, 57–62 (1996).

[8] A. P. Sheppard and Yu. S. Kivshar, Phys. Rev. E, 55,
4773–4782 (1997).

[9] Q.-H. Park and H. J. Shin, Phys. Rev. E, 61, 3093–3106
(2000).

[10] Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides,
and Yu. S. Kivshar, J. Opt. Soc. Am. B, 14, 3066–3077
(1997).

[11] E. A. Ostrovskaya, Yu. S. Kivshar, Z. Chen, and
M. Segev, Opt. Lett., 24, 327–329 (1999).

[12] Th. Busch and J. R. Anglin, Phys. Rev. Lett., 87, 010401
(2001).

[13] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher,
M. Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and
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R. Carretero-González, P. G. Kevrekidis, V. Achilleos,
D. J. Frantzeskakis, P. Schmelcher,and P. Engels, Phys.
Lett. A, 375, 642–646 (2011).

[16] D. Yan, J. J. Chang, C. Hamner, P. G. Kevrekidis, P. En-
gels, V. Achilleos, D. J. Frantzeskakis, R. Carretero-
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Kevrekidis, D.J. Frantzeskakis, Phys. Rev. A 77, 023625
(2008).

[43] S. Middelkamp, P.G. Kevrekidis, D.J. Frantzeskakis, R.
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