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We present a new model for an axisymmetric vortex ring confined in a tube. The
model takes into account the elliptical (elongated) shape of the vortex ring core
and thus extends our previous model (Danaila et al. J. Fluid Mech., vol. 774, 2015,
pp. 267–297) derived for vortex rings with quasi-circular cores. The new model
offers a more accurate description of the deformation of the vortex ring core, induced
by the lateral wall, and a better approximation of the translational velocity of the
vortex ring, compared with the previous model. The main ingredients of the model
are the following: the description of the vorticity distribution in the vortex ring is
based on the previous model of unconfined elliptical-core vortex rings (Kaplanski
et al. Phys. Fluids, vol. 24, 2012, 033101); Brasseur’s approach (Brasseur, NASA
Tech. Rep. JIAA TR-26, 1979) is then applied to derive a wall-induced correction for
the Stokes streamfunction of the confined vortex ring flow. We derive closed formulae
for the flow streamfunction and vorticity distributions. An asymptotic expression for
the long-time evolution of the drift velocity of the vortex ring as a function of the
ellipticity parameter is also derived. The predictions of the model are shown to be
in agreement with direct numerical simulations of confined vortex rings generated
by a piston–cylinder mechanism. The predictions of the model support the recently
suggested heuristic relation (Krieg & Mohseni Trans. ASME J. Fluids Engng, vol. 135,
2013, 124501) between the energy and circulation of vortex rings with converging
radial velocity. A new procedure for fitting experimental and numerical data with the
predictions of the model is described. This opens the way for applying the model
to realistic confined vortex rings in various applications including those in internal
combustion engines.

Key words: vortex dynamics, vortex flows, vortex interactions

1. Introduction
A large amount of the physical and mathematical literature has been devoted to the

study of vortex rings in unbounded domains (see the reviews by Shariff & Leonard
(1992), Lim & Nickels (1995), Fukumoto (2010)). The study of radially confined
vortex ring flows has received far less attention, despite its importance in many
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practical applications. These include vortex ring-like structures in gasoline internal
combustion engines (Begg et al. 2009) and transient flow fields behind arterial
stenoses (Gharib et al. 2006).

To the best of the authors’ knowledge, the first theoretical analysis of confined
vortex rings was performed by Brasseur (1979). He assumed that the flow field
in the outer region (far from the core) depends on its total circulation but not on
the details of the ring’s vorticity distribution. The vortex ring in his study was
represented as a thin circular vortex filament (CVF) (Lamb 1932), with given initial
circulation Γ0 and radius R0. Then the streamfunction of the confined vortex ring
was decomposed as a sum of an unconfined streamfunction for the CVF and a
correction streamfunction induced by the tube (Brasseur 1986). Danaila, Kaplanski
& Sazhin (2015) applied Brasseur’s method using not the CVF but a more realistic
vorticity distribution in the vortex ring based on the unconfined viscous vortex ring
model derived by Kaplanski & Rudi (1999, 2005). The wall-induced correction of
the streamfunction was derived analytically, giving closed analytical formulae for
the vorticity and streamfunction of a confined vortex ring. Using the power-law
assumption for the time variation of the viscous length of the vortex ring, the time
variations of the main integral characteristics such as circulation, kinetic energy and
translational velocity were obtained. The predictions of this model were shown to be
in agreement with available experimental data (Stewart et al. 2012) and results of
direct numerical simulations.

The confined vortex ring model suggested by Danaila et al. (2015) is based on
the assumption that the vorticity distribution of the vortex ring is a quasi-isotropic
Gaussian. This assumption was inferred from the unconfined vortex ring model
suggested by Kaplanski & Rudi (1999, 2005). This model was analytically derived
as a first-order solution of the linearised axisymmetric Navier–Stokes equation. The
measurements of unconfined or confined vortex ring vorticity, however, show that
the vorticity field of the vortex ring deforms during its development (Fukumoto &
Moffatt 2000); at later stages it becomes elongated due to Reynolds number effects
(Weigand & Gharib 1997; Danaila & Helie 2008). This deformation is accompanied
by the modification of the vorticity distribution function and leads to changes in
vortex ring integral characteristics. For example, the compression of the vorticity
during the formation stage leads to an increase in both ring translational velocity (U)
and the downstream distance at which the separation of the ring from the trailing jet
occurs. At the decay stage, this leads to an enhanced reduction of the values of U.
Also, the deformation of the vortex ring core has been observed in the process of
the ring interaction with other vortex structures, e.g. vortex ring interaction with a
columnar vortex (Candon & Marshall 2012). It was shown that taking into account
the effects of ellipticity leads to better predictions of the translational velocity of
the vortex ring when compared to experimentally observed rings (Weigand & Gharib
1997) or the predictions of previously developed vortex ring models (Fukumoto &
Moffatt 2008).

For a vortex ring confined in a tube, the elongated shape of the vortex core is
accentuated by the interaction with the lateral wall (Danaila et al. 2015). Also, the
tube wall induces the deformation of the streamlines of the flow, without significant
changing of the vorticity field. Based on these observations, we have developed a
new model for a confined vortex ring, taking into account the elliptic shape of the
vortex core. As in the model suggested by Kaplanski, Fukumoto & Rudi (2012),
the ellipticity of the vorticity distribution in the vortex ring is taken into account.
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Model for confined vortex rings with elliptical-core vorticity distribution 69

As in our earlier model (Danaila et al. 2015) Brasseur’s method is used to take
into account the streamfunction correction induced by the wall. In the new model,
the elliptical distribution of vorticity is postulated, while other properties, such as
circulation Γ , kinetic energy E, translational velocity U and streamfunction Ψ , are
calculated. The main motivation for using a more realistic elliptical description of the
vorticity distribution in the vortex rings is to render the model useful for practical
applications requiring an accurate but simple model for describing the geometry of
confined vortex rings (e.g. vortex rings in gasoline internal combustion engines (Begg
et al. 2009; Sazhin 2014)) or for reconstructing the velocity field around a vortex
ring when only incomplete measurements are available (see Zhang & Danaila 2012;
Danaila & Protas 2015).

The paper is organised as follows. Previously developed analytical vortex ring
models taking into account the effects of the radial confinement and ellipticity of
the vortex ring core are summarised in § 2. In § 3 a new model for the confined
elliptical-core vortex ring is described. In § 4 direct numerical simulations of
axisymmetric vortex rings are used to assess the applicability of the new model.
The predictions of the new model are compared with the heuristic relation between
vortex ring energy and circulation suggested by Krieg & Mohseni (2013) in § 5. The
main results of the paper are summarised in § 6.

2. Background
Danaila et al. (2015) considered an axisymmetric vortex ring of radius R0 placed

in an infinitely long rigid tube of radius Rw, moving in an incompressible fluid with
translational velocity U along the axis of symmetry (x) (see figure 1). For a given
instant t, the vorticity ω(r, x) and the Stokes streamfunction Ψ (r, x) are determined
by the following equations (Batchelor 1988):

LΨ =ω, L :=− ∂
∂r

(
1
r
∂

∂r

)
− ∂

∂x

(
1
r
∂

∂x

)
=−1

r

(
∂2

∂r2
+ ∂2

∂x2
− 1

r
∂

∂r

)
, (2.1a,b)

where x, r are the axes of a cylindrical coordinate system. We consider the following
boundary conditions: at the axis of symmetry,

ω(0, x)=Ψ (0, x)= 0, for r= 0, (2.2)

vanishing vorticity and streamfunction in the far field,

ω, Ψ → 0 when (x2 + r2)1/2→∞, (2.3)

and no flow through the tube wall,

ω→ 0,
1
r
∂Ψ

∂x
= 0, for r= Rw. (2.4a,b)

Brasseur (1979) represented the vortex ring as a circular vortex filament (CVF)
and derived a correction of the streamfunction of the flow to satisfy the boundary
condition (2.4) at the wall. Danaila et al. (2015) used an approach similar to that
used by Brasseur (1979), but replaced CVF with the more realistic vortex ring model
derived by Kaplanski & Rudi (1999, 2005). This was possible since the vortex
filament does not include any description of the vortex geometry. In what follows we
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r

FIGURE 1. Schematic of a vortex ring in a tube. The elliptical core is described using
two length scales: L in the radial direction and βL in the streamwise direction.

summarise the main formulae used in the model developed by Danaila et al. (2015).
This model is hereafter referred to as the vortex ring model with a circular core
(VRC) and the subscript VRC will be used to identify the parameters obtained in
this model.

Danaila et al. (2015) scaled physical variables as:

x1 = x− X0

R0
, r1 = r

R0
, ω∗ = ωR2

0

Γ0
, Ψ ∗ = Ψ

Γ0R0
, (2.5a−d)

where R0 is the radius of the vortex ring, Γ0 its initial circulation and X0 the
streamwise position of the vortex centre. In what follows, the star superscripts are
dropped and the vorticity and the streamfunction are considered as dimensionless.
The vortex ring model derived by Kaplanski & Rudi (1999, 2005) is described by
parameter θc:

θc = R0

Lc
, (2.6)

where Lc is the diffusivity length (see figure 1), which is assumed to vary in time
following a power law for laminar vortex rings:

θc = R0√
2νt

, (2.7)

where ν is the fluid kinematic viscosity. The generalisation of (2.7) for turbulent vortex
rings was discussed by Kaplanski et al. (2009). The Reynolds number of the flow is
introduced as Re= Γ0/ν and the parameter ε= R0/Rw < 1 quantifies the confinement
of the vortex ring. The wall is located at r1w = 1/ε.

Following Brasseur’s approach, streamfunction Ψ w describing the flow generated by
a viscous vortex ring in a tube is presented as the sum of the streamfunction of the
unbounded vortex ring Ψ and the wall-induced correction −Ψ 0. In the VRC model
the streamfunction of the flow was presented as:

Ψ w
VRC(x1, r1)=ΨVRC(x1, r1)−Ψ 0

VRC(x1, r1), (2.8)
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where

ΨVRC = r1θc

4

∫ ∞
0

[
exp(x1θcµ)erfc

(
µ+ x1θc√

2

)
+ exp(−x1θcµ)erfc

(
µ− x1θc√

2

)]
× J1(r1θcµ)J1(θcµ) dµ. (2.9)

Streamfunction ΨVRC corresponds to the vorticity distribution predicted by the
unbounded vortex ring model derived by Kaplanski & Rudi (1999, 2005):

ωVRC = θ 3
c√
2π

exp
(
−(r

2
1 + x2

1 + 1)θ 2
c

2

)
I1
(
r1θ

2
c

)
. (2.10)

In (2.9) and (2.10), J1 is the Bessel function of the first kind, I1 the modified Bessel
function of the first kind and erfc the complementary error function

erfc(x)= 2√
π

∫ ∞
x

exp(−t2) dt. (2.11)

Using series expansion in (2.9) in terms of z1= θc

√
x2

1 + r2
1→∞, it was shown that

the limit of the streamfunction (2.9) at a large distance from the ring’s core is identical
to that found by Brasseur (1979) for the circular vortex filament. The streamfunction
correction Ψ 0

VRC induced by the presence of the tube was then found as:

Ψ 0
VRC =

r1

π

∫ ∞
0

K1(µ/ε)

I1(µ/ε)
I1(µ)I1(r1µ) cos(x1µ) dµ, (2.12)

where K1 is the modified Bessel function of the second kind.
The streamfunction (2.8) along with the vorticity distribution (2.10) represent an

approximate solution to problem (2.1) with boundary conditions (2.2)–(2.4). Using the
power-law assumption (2.7), the time-dependent integral characteristics of the confined
vortex ring flow based on the VRC model were predicted. When compared with those
obtained by direct numerical simulations, a good agreement was obtained. The largest
difference between analytical and numerical results was observed for relatively high
Reynolds numbers, when the quasi-circular shape of the vortex core resulting from the
vorticity distribution (2.10) turned out not to be very accurate. It is anticipated that
the accuracy of a more advanced model taking into account realistic elliptical shapes
of vortex ring cores, described in the next section, will improve the accuracy of the
Danaila et al. (2015) model.

The confined vortex ring model taking into account the ellipticity of the vortex
ring core, described later in § 3, is based on the model suggested by Kaplanski et al.
(2012) for an unbounded viscous vortex ring with an elliptical cross-section.

This model, hereafter referred to as the VRE model, is based on imposing weak
perturbations on the first-order solution (2.10) for the vorticity in order to find
an approximation of the nonlinear solution to the Navier–Stokes equations for high
Reynolds numbers. Parameter β (see figure 1) allowed Kaplanski et al. (2012) to take
into account the deformation of the vortex ring core along the streamwise direction.
Using scaling (2.5), the non-dimensional vorticity for the VRE model was expressed
as:

ωVRE = θ 3
e

β
√

2π
exp

(
−(r

2
1 + (x1/β)

2 + 1)θ 2
e

2

)
I1
(
r1θ

2
e

)
, (2.13)
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where

θe = R0

Le
= λθc H⇒ Le = Lc

λ
, (2.14)

Le is the new viscous length scale.
Parameters β > 0 and λ > 0 describe the elongation or compression along axes

x and r, respectively, when compared to the VRC model for the vortex ring with
circular cross-section. Furthermore, two small parameters ε0 and γ 0 were introduced,
such that

β = 1+ ε0, λ= 1+ γ 0, (2.15a,b)

where 0 6 ε0 < 1 and 0 6 γ 0 < 1.
The streamfunction corresponding to vorticity distribution (2.13) was derived in the

form:

ΨVRE = r1θe

4

∫ ∞
0

exp
(
(β2 − 1)

µ2

2

) [
exp(µx1θe)erfc

(
µβ + x1θe/β√

2

)
+ exp(−µx1θe)erfc

(
µβ − x1θe/β√

2

)]
J1 (θeµ) J1 (r1θeµ) dµ. (2.16)

After the change of variables µθe → µ in the integrand, at large distances z =
θe

√
x2

1 + r2
1→∞ the streamfunction (2.16) was approximated by:

ΨVRE ≈Ψ a
VRE =

r1

2

∫ ∞
0

exp
(
(β2 − 1)

µ2

2θ 2
e

)
exp(−|x1|µ)J1(µ)J1(r1µ) dµ. (2.17)

In the next section the previously developed models, described above, will be
combined to investigate the radially confined vortex rings with elliptical cores.

3. Radially confined vortex rings with elliptical cores
Brasseur’s methodology is applied to derive the streamfunction of the flow generated

in a tube by the viscous vortex ring with vorticity distribution (2.13). A new scaling,
based on Rw as length scale, is introduced:

x̃= x
Rw
= εx1, r̃= r

Rw
= εr1, (3.1a,b)

where ε = R0/Rw was defined earlier. The total streamfunction of the flow is
decomposed as:

Ψ w
VRE =ΨVRE −Ψ 0

VRE, (3.2)

where the correction Ψ 0
VRE satisfies the equation LΨ 0

VRE = 0, with operator L defined
in (2.1), and the following boundary conditions at the wall (cf. (2.4)):

1
r̃
∂Ψ 0

VRE

∂ x̃
= 1

r̃
∂ΨVRE

∂ x̃
, at r̃= 1. (3.3)

An equivalent formulation is obtained by introducing the flow potential Φ linked with
Ψ by the following equations, giving the two components of the velocity vector:

vr = ∂Φ
∂r
=−1

r
∂Ψ

∂x
, vx = ∂Φ

∂x
= 1

r
∂Ψ

∂r
. (3.4a,b)
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This allows us to present an alternative form of (3.2):

Φw
VRE =ΦVRE −Φ0

VRE, (3.5)

with the correction potential satisfying the Laplace equation:

∇2Φ0
VRE = 0, (3.6)

and the following boundary condition at the wall:

∂Φ0
VRE

∂ r̃
= ∂ΦVRE

∂ r̃
, at r̃= 1. (3.7)

To derive an approximation of Φ0
VRE we assume that approximation (2.17) is valid in

the vicinity of the wall. The non-dimensional potential (scaled by Γ0) corresponding
to the streamfunction (2.17) is obtained in the form:

Φa
VRE =−

1
2

∫ ∞
0

exp
(
(β2 − 1)

µ2

2θ 2
e

)
exp(−|x̃1|µ)J1(µ)J0(r1µ) dµ. (3.8)

This equation is rewritten in (r̃, x̃) coordinates as:

Φa
VRE =−

ε

2

∫ ∞
0

exp
(
(β2 − 1)

ε2µ2

2θ 2
e

)
exp(−|x̃|µ)J1(εµ)J0(r̃µ) dµ. (3.9)

Since β = 1+ ε0 (see (2.15)), we can use the following power series expansion in
terms of the small parameter ε0:

exp
(
(β2 − 1)

ε2µ2

2θ 2
e

)
= exp

(
(2ε0 + ε2

0)
χ 2µ2

2

)
= 1+ ε0χ

2µ2 + 1
2
ε2

0χ
2µ2(1+ χ 2µ2)+ · · · , (3.10)

where

χ = ε

θe
= Le

Rw
(3.11)

represents the ratio between the viscous length scale and the radius of the tube (χ� 1).
Using the expansion

J1(εµ)= εµ2 −
(εµ)3

16
+ (εµ)

5

384
+ · · · , (3.12)

and remembering that

∂n

∂xn
exp(−µx)= (−µ)n exp(−µx) (3.13)

potential (3.9) can be expanded as:

Φa
VRE =

ε

2

(
ε

2
∂S
∂ x̃
− ε3

16
∂3S
∂ x̃3
+ ε5

384
∂5S
∂ x̃5
− · · ·

)
, (3.14)

where

S=
∫ ∞

0

(
1+ ε0χ

2µ2 + 1
2
ε2

0χ
2µ2(1+ χ 2µ2)

)
exp(−|x̃|µ)J0(r̃µ) dµ. (3.15)
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Note that we kept an approximation of the order of o(ε2
0). This approach can be

extended to higher-order approximations in ε0. From (3.14) and (3.15) it can be seen
that the behaviour of potential Φa

VRE at large distances is controlled by S; for ε0 = 0
the first harmonic of (3.14) represents a point dipole (although, in fact, a similar
dependence of this potential on x̃ and r̃ takes place for any ε0).

The basic idea behind Brasseur’s method is that expansion (3.14) can be applied to
the total flow field Φw

VRE. In this case, function S is replaced by function Q= S−Q1
which satisfies the boundary condition of no flow through the tube wall (∂Q/∂ r̃= 0)
at r̃ = 1. Following decomposition (3.5), function Q1 is finally used to derive the
correction potential as:

Φ0
VRE =

ε

2

(
ε

2
∂Q1

∂ x̃
− ε3

16
∂3Q1

∂ x̃3
+ ε5

384
∂5Q1

∂ x̃5
− · · ·

)
. (3.16)

Let us now rewrite (3.15) as:

S=D1 + (ε0χ
2 + 1

2ε
2
0χ

2)D2 + 1
2ε

2
0χ

4D3, (3.17)

where

D1 =
∫ ∞

0
exp(−|x̃|µ)J0(r̃µ) dµ= 1√

(x̃2 + r̃2)
= 2

π

∫ ∞
0

K0(r̃µ) cos(µx̃) dµ, (3.18)

D2 =
∫ ∞

0
µ2 exp(−|x̃|µ)J0(r̃µ) dµ= (−r̃2 + 2x̃2)

(x̃2 + r̃2)5/2

= − 2
π

∫ ∞
0
µ2K0(r̃µ) cos(µx̃) dµ, (3.19)

D3 =
∫ ∞

0
µ4 exp(−|x̃|µ)J0(r̃µ) dµ= 3(3r̃4 − 24r̃2x̃2 + 8x̃4)

(x̃2 + r̃2)9/2

= 2
π

∫ ∞
0
µ4K0(r̃µ) cos(µx̃) dµ. (3.20)

Function Q is sought in the following form:

Q =
[

D1 +
∫ ∞

0
f1(µ)I0(r̃µ) cos(µx̃) dµ

]
+
[(
ε0χ

2 + 1
2
ε2

0χ
2

)
D2 +

∫ ∞
0

f2(µ)µ
2I0(r̃µ) cos(µx̃) dµ

]
+
[

1
2
ε2

0χ
4D3 +

∫ ∞
0

f3(µ)µ
4I0(r̃µ) cos(µx̃) dµ

]
. (3.21)

Remembering the definitions of integrals D1, D2 and D3, this expression can be
rewritten as:

Q =
∫ ∞

0

[
2
π

K0(r̃µ)+ f1(µ)I0(r̃µ)
]

cos(µx̃) dµ

+
∫ ∞

0

[(
ε0χ

2 + 1
2
ε2

0χ
2

)(
− 2

π

)
K0(r̃µ)+ f2(µ)I0(r̃µ)

]
µ2 cos(µx̃) dµ

+
∫ ∞

0

[
1
2
ε2

0χ
4

(
2
π

)
K0(r̃µ)+ f3(µ)I0(r̃µ)

]
µ4 cos(µx̃) dµ. (3.22)
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The boundary condition ∂Q/∂ r̃= 0 at r̃= 1 requires that

f1(µ)= 2
π

K1(µ)

I1(µ)
, (3.23)

f2(µ)=
(
ε0χ

2 + 1
2
ε2

0χ
2

)(
− 2

π

)
K1(µ)

I1(µ)
, (3.24)

f3(µ)= 1
2
ε2

0χ
4

(
2
π

)
K1(µ)

I1(µ)
. (3.25)

Using these expressions for f1, f2 and f3 and (3.21), we obtain the new expression for
function Q= S−Q1, with:

Q1=− 2
π

∫ ∞
0

[
1−

(
ε0χ

2 + 1
2
ε2

0χ
2

)
µ2 + 1

2
ε2

0χ
4µ4

]
K1(µ)

I1(µ)
I0(r̃µ) cos(µx̃) dµ. (3.26)

Substituting this expression for Q1 into (3.16), we obtain, after differentiation, the
following expression:

Φ0
VRE =

ε

π

∫ ∞
0

[
εµ

2
+ ε

3µ3

16
+ ε

5µ5

384

]
×
[

1−
(
ε0 + 1

2
ε2

0

)
χ 2µ2 + 1

2
ε2

0χ
4µ4

]
K1(µ)

I1(µ)
I0(r̃µ) sin(µx̃) dµ. (3.27)

Keeping in mind that the expression in the first brackets represents the expansion of
I1(εµ), we can present the potential field induced by the presence of the tube as:

Φ0
VRE =

ε

π

∫ ∞
0

[
1−

(
ε0 + 1

2
ε2

0

)
χ 2µ2 + 1

2
ε2

0χ
4µ4

]
K1(µ)

I1(µ)
I0(r̃µ)I1(εµ) sin(µx̃) dµ.

(3.28)
Note that the terms in the square brackets represent the first terms in the series

expansion of exp(−(β2 − 1)(χ 2µ2)/2). If we go back to (3.10) and keep the higher-
order terms, we obtain in (3.17) only integrals depending on even powers of µ. These
integrals have the following structure:

D2p =
∫ ∞

0
µ2p exp(−|x̃|µ)J0(r̃µ) dµ. (3.29)

It can be proven that (see appendix A):

D2p = 2(−1)p

π

∫ ∞
0
µ2pK0(r̃µ) cos(µx̃) dµ. (3.30)

Using (3.30) to take into account high-order terms in the expansion (3.10), it can be
finally shown that:

Φ0
VRE =

ε

π

∫ ∞
0

exp
(
−(β2 − 1)

χ 2µ2

2

)
K1(µ)

I1(µ)
I0(r̃µ)I1(εµ) sin(µx̃) dµ. (3.31)

The corresponding streamfunction is easily derived from its definition (3.4):

Ψ 0
VRE =

εr̃
π

∫ ∞
0

exp
(
−(β2 − 1)

χ 2µ2

2

)
K1(µ)

I1(µ)
I1(r̃µ)I1(εµ) cos(µx̃) dµ. (3.32)
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Remembering (3.1), expression (3.32) can be rewritten in (r1, x1) coordinates as:

Ψ 0
VRE =

r1

π

∫ ∞
0

exp
(
−(β2 − 1)

µ2

2θ 2
e

)
K1(µ/ε)

I1(µ/ε)
I1(r1µ)I1(µ) cos(µx1) dµ. (3.33)

The same expression, but in (r, x) coordinates, can be presented as:

Ψ 0
VRE =

r
π

∫ ∞
0

exp
(
−(β2 − 1)

R2
0µ

2

2θ 2
e

)
K1(Rwµ)

I1(Rwµ)
I1(rµ)I1(R0µ) cos(µx) dµ. (3.34)

The total streamfunction of the flow generated by a viscous vortex ring with
elliptical core is inferred from (3.2), where ΨVRE is given by (2.16) and Ψ 0

VRE given
by (3.33). Note that for ε0 = 0, (2.12) derived for the VRC model is recovered.

3.1. Estimations of the ellipticity parameters
Firstly, we focus on an estimation of the ellipticity parameter β in a long-time limit,
t→∞ (θ =R0/

√
2νt→ 0). To simplify the analysis, we assume that the influence of

the boundary layer generated at the lateral wall is weak and focus on the asymptotic
development of the translational velocity U.

In the circular VRC model, the expression for the translational velocity was
obtained by Kaplanski & Rudi (1999):

UVRC = Γ0θc
√

π

4πR0

[
3 exp

(
−θ

2
c

2

)
I1

(
θ 2

c

2

)
+ θ

2
c

12 2F2

({
3
2
,

3
2

}
,

{
5
2
, 3
}
,−θ 2

c

)
− 3θ 2

c

5 2F2

({
3
2
,

5
2

}
,

{
2,

7
2

}
,−θ 2

c

)]
. (3.35)

The expansion UVRC for small θc gives the well-known formula derived by Rott &
Cantwell (1993) for the drift velocity of a decaying vortex ring:

Uasymp
VRC = 0.0037

2
√

2Γ0πθ
3
c

R0
= 0.0037

I
ρ(νt)3/2

, (3.36)

where the initial vortex ring circulation and impulse are related by Γ0 =M/(πR2
0)=

I/(ρπR2
0), superscript asymp indicates the asymptotic limit.

For a vortex ring with elliptic core, Kaplanski et al. (2012) derived an expression
for the translational velocity in the form:

UVRE = Γ0θe

4R0π

∫ ∞
0

exp(−µ2) [6√πβµ+π exp(β2µ2)(1− 6β2µ2)

× erfc(βµ)] J2
1(θeµ) dµ. (3.37)

Following (2.14) and (2.15), we can express the time evolution of θe by relating it to
that of a circular vortex (θc) (see Kaplanski et al. 2012) as:

θe(t)= λ(t)θc(t)= (1+ γ0(θc(t)/θc0))θc(t), for t > t0 (θc(t) < θc0), (3.38)

where
γ0(θc(t)/θc0)= γ 0,
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θc0 refers to the time instant t0 such that at t> t0 the vortex ring can be considered a
thick one. The value of t0 was estimated from numerical (Danaila & Helie 2008) and
experimental (Weigand & Gharib 1997) data. This value turned out to be close to the
one inferred from relation θc0 = 4. Expansion (3.37) with respect to small θc and ε0
gives:

Uasym
VRE =

(49− 15ε0)

840(2π)3/2

2
√

2Γ0πθ
3
c

R0
= (49− 15ε0)

840(2π)3/2

I
ρ(νt)3/2

. (3.39)

When deriving expression (3.39) it was assumed that ε0= const. which implies that
β = const.

Formula (3.39) is a generalisation of the Rott & Cantwell (1993) formula
(see (3.36)) to the case of vortex rings with elliptical cores (this generalisation
is important for high Reynolds numbers). Equation (3.36) is recovered when ε0 = 0.
It is important to link (3.39) with the formula suggested in the experimental study
by Weigand & Gharib (1997):

U = 0.0032
I

ρ(νt)3/2
. (3.40)

The constant in (3.40) can be recovered from formula (3.39) if the ellipticity parameter
is ε0 = 0.4, i.e. β = 1.4. This value of β = 1.4 is also supported by the experimental
data reported by Cater, Soria & Lim (2004), in which both axial and radial vorticity
profiles were measured (cf. Kaplanski et al. 2012).

Formula (3.39) shows the dependency of the drift velocity of the vortex ring on the
ellipticity parameter in the asymptotic limit t→∞ (θc→ 0).

In a short-time limit, θc is large and θe varies with time as (Kaplanski et al. 2012):

θe(t)= λ(t)θc(t)= (1+ γ0(θc0/θc(t)))θc(t), for t 6 t0 (θc(t) > θc0). (3.41)

In this case, formula (3.37) can be approximated by the asymptotic expression derived
by Fukumoto & Moffatt (2008)

Ucs = Γ0

4πR0

(
log(4
√

2θc)− 0.558− 1.8358
θ 2

c

)
(3.42)

by considering fixed values for β and θc0 and fitting the value of γ0. Considering two
typical values of θc0= 4.5 and 4.0, we show in figure 2 the variation of the parameter
γ0 with respect to θc for three values of the ellipticity parameter β. Note the slow
decrease in γ0 with θc (thus an increase in time). The values of γ0 shown in figure 2
are close to the one predicted by Kaplanski et al. (2012): γ0 = 0.16.

4. Predictions of the model versus direct numerical simulations
4.1. Physical and numerical parameters

The numerical code for solving the incompressible Navier–Stokes equations in
cylindrical coordinates is described by Danaila et al. (2015) (see also Danaila
& Helie 2008; Danaila, Vadean & Danaila 2009). The physical and numerical
parameters used in our simulations are summarised below. The vortex ring was
generated numerically by prescribing an appropriate axial velocity profile at the inlet
section of the computational domain. This simulates the velocity profile produced by
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FIGURE 2. (Colour online) The model parameter γ0 for two values of θc0 and three values
of the ellipticity parameter β.

a vortex ring generator of piston/cylinder type. The main physical parameter of the
flow is the Reynolds number based on the diameter D of the vortex generator and
the mean injection velocity U0:

ReD = U0D
ν
. (4.1)

Using the time scale t0 = D/U0, the non-dimensional time used in the simulations
is defined as τ = tU0/D. We consider only short injection times, as in experiments
performed by Stewart et al. (2012). This allows us to prescribe the inflow velocity
using the model suggested by Danaila et al. (2009):

Uin(r, τ )=U0Up(τ )UCL(τ )Ub(r, τ ), 0< τ 6 τoff , (4.2)

where Up(τ ) is the piston velocity program (normalised by its maximum value U0),
UCL(τ ) takes into account the time evolution of the centreline velocity,

UCL(τ )= 1

1− 8√
πReD

√
τ + 8

ReD
τ

(4.3)

and Ub(r, τ ) describes the radial dependence of the profile

Ub(r, τ )= 1
2

{
1+ tanh

[
1

4Θ(τ)

(
1− r

Rjet(τ )

)]}
, (4.4)

Θ(τ)=
√

2− 1√
π

B(τ ), Rjet(τ )= 1
2
− 0.477B(τ ), B(τ )= 2√

ReD

√
τ . (4.5a−c)

For the piston velocity program we used the model suggested by Zhao, Steven &
Mongeau (2000):

Up(τ )=


1
2

[
1− cos

(
π
τ

τ1

)]
, τ 6 τ1

1
2

[
1+ cos

(
π
τ − τ1

τ2 − τ1

)]
, τ1 < τ 6 τ2 ≈ τoff .

(4.6)
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FIGURE 3. (Colour online) Piston velocity Up(τ ) used for the direct numerical simulation
cases described in table 1. Case 1 refers to the recent experiments by Stewart et al.
(2012).

τ1 τ2 τoff Lp/D

Case 1 1.57 2.26 2.27 1.130
Case 2 0.80 1.15 1.16 0.575

TABLE 1. Parameters τ1, τ2, τoff of the injection program (4.6) and piston stroke ratios
Lp/D=

∫ τoff

0 Up(τ ) dτ used for Cases 1 and 2 of direct numerical simulations.

Function (4.6) gives a good approximation of the piston velocity Up(τ ) observed by
Stewart et al. (2012).

We consider the following two cases described in table 1. Case 1 (see figure 3, the
solid curve) corresponds to experiments by Stewart et al. (2012) and was considered
by Danaila et al. (2015) to test the VRC model. It will be used to compare the two
confined vortex ring models. A shorter injection program was considered for Case 2
(see figure 3, the dashed curve), giving an approximatively two times smaller piston
stroke ratio Lp/D. Case 2 is expected to produce vortex rings with less elongated
cores. Note that these stroke ratios are lower than the so-called formation number
of the vortex ring, reported to be in the range 3.6 to 4.5 (see Gharib, Rambod &
Shariff 1998; Krueger & Gharib 2003; Dabiri & Gharib 2005). This implies that all
the vorticity produced by the vortex generator is expected to be engulfed by the vortex
ring.

In all simulations the Reynolds number was set to ReD= 3400, as in Danaila et al.
(2015), since this relatively high value proved challenging in testing the VRC model.
The length of the computational domain was taken as Ld = 8, which allowed us
to avoid the vortex ring coming close to the downstream boundary. The grid was
uniform in both axial and radial directions with a refined grid size δr = δx = 0.01
which ensures grid convergence of the results. Tests with a stretched grid in the radial
direction, such that at least 30 grid points are clustered in the vorticity layer at the
inflow, showed identical results. The time step was set to δτ = 0.001, which is below
the admissible value imposed by the stability requirement of the numerical scheme.
Time step refinement tests showed negligible differences in the results obtained for
lower δτ .
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4.2. Post-processing and comparison procedure
The numerically generated vortex ring forms rapidly due to very small piston stroke
ratios. During the injection phase, a negative vorticity layer is generated at the
lateral wall, with intensity depending on the confinement. After the injection stops
(τ > τoff ), a stopping vortex forms at the inlet section. To properly separate the vortex
ring both from the vorticity layer at the wall and from the stopping vortex, we
designed a special post-processing program, based on the free finite-element solver
FreeFem++ (see Hecht 2012, 2016). The velocity field obtained from the direct
numerical simulations (DNS) using second-order finite-difference schemes is easily
represented as a finite-element field by splitting the rectangular finite-difference cell
into two triangles. The DNS values at the computational nodes are then used to
completely represent the velocity field as a P1 (piecewise linear) function on the
triangular mesh. This procedure avoids interpolations between the DNS field and
its representation on the finite-element grid. It is also consistent with the second
order spatial accuracy of the Navier–Stokes solver. The post-processing program
then identifies all closed contours for the prescribed threshold of ω/ωmax, selects
the unique contour around the vortex ring centre to define the vortex ring domain
DVR and then meshes this new domain with triangles. The interpolation between
different finite-element meshes is also P1, preserving the order of the accuracy of the
finite-element representation. Since the initial finite-difference mesh is very refined,
the resulting interpolation errors have no impact upon the integral values computed in
the post-processing part.The advantage of this finite-element post-processing is that it
enables us to represent accurately and smoothly the boundary of the vortex core and
then to use high-order (up to seventh-order) Gauss methods to compute the integral
characteristics (circulation, impulse, energy). For example, flow circulation and energy
are computed as

Γ =
∫∫

DVR

ω dr dx, E=π

∫∫
DVR

ωΨ dr dx. (4.7a,b)

The time evolution of the circulation Γ defined by (4.7) is shown in figure 4(a)
for a confinement parameter Dw/D = 3, with Dw being the diameter of the tube.
Figure 4(b,c) illustrate the vortex ring domain DVR computed with the post-processing
program as the contour for which ω/ωmax = 0.05.

After the separation of the vortex ring domain DVR at a given time instant τ = τf ,
we can use a nonlinear fit of the DNS vorticity with the VRE model (see (2.13)).
Remembering that I1(z) ≈ exp(z)/

√
2πz for large z, the vorticity distribution (2.13)

can be approximated as:

ωef = Γef

π

(
R0f

r

)1/2 1
2βL2

ef
exp

(
− 1

2L2
ef
(r− R0f )

2 − 1
2(βLef )2

(x− X0f )
2

)
. (4.8)

Since FreeFem++ is interfaced to the state-of-the-art optimiser Ipopt, using the interior
point minimisation method suggested by Wächter (2002) and Wächter & Biegler
(2006), we use a nonlinear fit procedure inside the finite-element post-processing
to compute the five independent parameters in (4.8): Γef , R0f , X0f , 1/2L2

ef , 1/2β2L2
ef .

We finally compute θef = R0f /Lef to complete the definition of the corresponding
theoretical vortex ring. Formula (2.13) is then used to reconstruct the theoretical
vorticity field ω(r, x) and compute integral characteristics in the same way as in DNS
(taking into account only the vorticity of the vortex core for which ω/ωmax > 0.05).
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FIGURE 4. (Colour online) Results of the direct numerical simulation of a confined vortex
ring for Dw/D= 3 and ReD = 3400. (a) Time evolution of the vortex ring circulation for
the cases described in table 1: Case 1 (Lp/D = 1.13, solid curve) and Case 2 (Lp/D =
0.575, dashed curve). Contours of vorticity ω/(U0/D) corresponding to: (b) Case 2, τ = 6
and (c) Case 1, τ = 15. In (b,c) the boundaries of the vortex ring domain DVR, defined
as the contour of ω= 0.05ωmax, are plotted as thick black contours.

4.3. Assessment of the new model
Figure 4 shows the time evolution of the circulation Γ for the two cases shown
in table 1. We focus on the case of the confined vortex ring with ReD = 3400 and
Dw/D= 3, for which we expect an improvement in theoretical predictions with respect
to the VRC model presented in Danaila et al. (2015). After rapid increase during
the injection phase, the circulation attains a small plateau and then starts to decrease
during the post-formation phase. The decrease rate of the circulation induced by the
presence of the lateral wall was investigated experimentally by Stewart et al. (2012)
and numerically by Danaila et al. (2015). For the comparison between the vortex
ring models, we selected time instants in the post-formation phase of the vortex ring:
τ =15 for Case 1 (the same was used by Danaila et al. (2015) to test the VRC model)
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(a)
Case 1 Vortex ring parameters Computed integrals

τf = 15 R0f X0f Le or Lc θe or θc β λ= θe

θc
Γf Ef

DNS data 0.565 3.935 — — — — 0.6755 0.1387
VRE model (elliptic) 0.551 3.937 0.1069 5.1536 1.339 1.16 0.6912 0.1447
VRC model (circular) 0.556 3.937 0.1253 4.4383 — — 0.6937 0.1452

(b)
Case 2 Vortex ring parameters Computed integrals

τf = 6 R0f X0f Le or Lc θe or θc β λ= θe

θc
Γf Ef

DNS data 0.445 1.385 — — — — 0.4537 0.0568
VRE model (elliptic) 0.443 1.389 0.0754 5.878 1.274 1.30 0.4500 0.0569
VRC model (circular) 0.445 1.389 0.0856 5.204 — — 0.4494 0.0567

TABLE 2. Parameters describing the geometry of the vortex ring used in models VRE
(elliptic) and VRC (circular) for cases described in table 1. Vortex ring parameters
(R0f ,X0f ,L, θ) are computed by a nonlinear fit of (4.8) using DNS data. Integral quantities
(circulation Γf and energy Ef ) are then computed from models by reconstructing the
vorticity field ((2.10) and (2.13)) and applying the same post-processing procedure as for
the DNS fields (see § 4.2). ReD = 3400, Dw/D= 3.

and τ = 6 for Case 2. The corresponding vortex ring vorticity contours are shown in
figure 4. The results of the fit with both models VRE (elliptic core) and VRC (circular
core) are summarised in table 2.

As expected, Case 2 produces a vortex ring which is not very elongated (see
figure 4b), but has large vorticity. As can be seen from table 2(b), the values of the
circulation Γf and energy Ef computed from (4.7) are very close to DNS values, for
both VRE and VRC models. A more detailed comparison of the models is offered by
the plots of the vorticity and streamfunction distributions. Figure 5(a,c) show that the
VRE model allows more accurate description of the vorticity distribution of the vortex
core than the VRC model. At the same time, the prediction of the streamfunction
distribution is only slightly improved in the VRE model, confirming the hypothesis
that the streamfunction is not sensitive to the details of the vorticity distribution (see
figure 5b,d).

The vortex ring in Case 1 (see figure 4c) is more elongated (β ≈ 1.34) than in
Case 2. Figure 6 shows that the fit with the VRE model offers a more accurate
description of both vorticity and streamfunction distributions when compared to the
VRC model. The integral quantities in table 2 display similar values for τ = 15. Note
that the position of the vortex centre (R0f , X0f ) and the circulation Γef needed in the
model (see (2.13)) are not taken from DNS but computed using the global fitting
procedure. This explains why, in figures 5 and 6, the centres of the fitted vortices
are slightly shifted when compared to the DNS values. The elliptic shape assumed in
our model approximates reasonably accurately the geometry of the DNS vortex ring,
but this approximation is not perfect. The actual shape of vortex rings deviates from
the theoretical elliptic one.

A different fitting procedure was also tested: the values for (R0f , X0f , Γef ) were
taken from DNS and the remaining parameters were fitted by a nonlinear procedure,
one parameter (Lc) for the circular VRC model and two parameters (Lef and β)
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FIGURE 5. (Colour online) Contours of normalised vorticity ω/ωmax (a,c) and
corresponding normalised streamfunction ψ/ψmax (b,d), predicted by DNS (solid curves),
the VRC (circular) model (a,b) and VRE (elliptic) model (c,d) (dashed curves). The
values of ω/ωmax and ψ/ψmax are shown from 0.1 to 0.9 with increments of 0.1. Case 2,
Lp/D= 0.575, ReD = 3400, Dw/D= 3, τ = 6.

for the elliptic VRE model. This new fitting procedure has the advantage of being
very fast and more convenient for a practical application of the model to describe
actual experimental or numerically generated vortex rings. It can also be useful for
the reconstruction of the velocity field generated around a vortex ring when only
incomplete measurements of the velocity are available (see Zhang & Danaila 2012;
Danaila & Protas 2015). Figure 7 illustrates the obtained results for Case 1: the centre
of the vortex is more accurately described with this partial fitting procedure, but only
for the elliptic vortex model. The obtained values for the geometric parameters are
very similar (compared to values displayed in table 2): θc = 4.556 (for the VRC
model) and θe = 5.19, β = 1.28 (for the VRE model).
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FIGURE 6. (Colour online) Contours of normalised vorticity ω/ωmax (a,c) and
corresponding normalised streamfunction ψ/ψmax (b,d), predicted by DNS (solid curves),
the VRC (circular) model (a,b) and VRE (elliptic) model (c,d) (dashed curves). The
values of ω/ωmax and ψ/ψmax are shown from 0.1 to 0.9 with increments of 0.1. Case 1,
Lp/D= 1.13, ReD = 3400, Dw/D= 3, τ = 15.

To push the comparison procedure further and to compare the two fitting procedures,
we predicted the time evolution of the energy E and translational velocity U, using the
power law (2.7) for both θc and θe. More specifically, after fitting the DNS vortex with
the prediction of the model at τ = τf , we assumed that the model parameter depends
on time as:

θe(τ )= (θe)f

(τf

τ

)1/2
, β = const., τ > τf . (4.9a,b)
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FIGURE 7. (Colour online) Same legend as in figure 6. Results obtained using a partial
fitting procedure for the parameters of the models: (R0f ,X0f , Γef ) are taken from DNS and
only one parameter (Lc) for the circular VRC model and two parameters (Lef and β) for
the elliptic VRE model fitted by a nonlinear procedure.

Vorticity and streamfunction fields were then predicted for each time instant and the
energy was computed from (4.7). The values of the translational velocity predicted by
the model were computed from the equation (see Helmholtz 1867; Lamb 1932):

UVRE = R0f

Γf

∫ ∞
−∞

∫ Rw

0

(
Ψ w

VRE − 6x
∂Ψ w

VRE

∂x

)
ωVRE dr dx

/(
2
∫ ∞
−∞

∫ Rw

0
r2ωVRE dr dx

)
.

(4.10)
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FIGURE 8. (Colour online) Time evolution of energy E (a) and translational velocity U
(b) of the vortex ring as computed by DNS (solid curve) and predicted by models: VRC
(circular) model (dashed curve) and VRE (elliptic) model (dashed-dotted curve). Case 1,
Lp/D = 1.13, ReD = 3400, Dw/D = 3. Vortex ring geometric parameters are fitted from
DNS only at time instant τ = 15: (a,b) full fitting procedure (fit of four parameters for
the VRC model and five parameters for the VRE model); (c,d) partial fitting procedure
(fit of one parameter for the VRC model and two parameters for the VRE model).

The non-dimensional translational velocity of the vortex ring was computed from DNS
data as:

UDNS = dXω
dτ

, Xω =
∫ ∞
−∞

∫ Rw

0
r2xω dx dr

/∫ ∞
−∞

∫ Rw

0
r2ω dx dr, (4.11a,b)

where Xω is the streamwise coordinate of the vorticity centroid (see Saffman 1970).
We display in figure 8 the model predictions for the time evolution of the energy E

and translational velocity U for Dw/D= 3. For this case, the influence of the boundary
layer generated at the lateral wall is weak during the post-formation phase, which is
in agreement with the hypothesis of the model. As a consequence, the translational
velocity predicted by the VRE model is closer to DNS results than the prediction
of the VRC model. This result is consistent with the results of Kaplanski et al.
(2012) showing that the elliptic vortex ring model allows for better predictions of
the translational velocity of the unbounded vortex ring, when compared to previously
developed models (Fukumoto & Moffatt 2008).
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FIGURE 9. (Colour online) Time evolution of the parameters describing the vortex ring
geometry during the post-formation phase. Parameters θc, θe are related to the viscous
length of the model (2.14), while β >0 and λ>0 describe the elongation and compression
along axes x and r, respectively. All parameters are fitted from DNS data for Case 1,
Lp/D= 1.13, ReD = 3400, Dw/D= 3.

Figure 8 also compares the accuracy of the model predictions when different fitting
procedures are used. As one would expect, the full fitting procedure (figure 8a,b)
gives a better approximation of the time evolution of both energy and translational
velocity. However, the partial fitting procedure (which is faster and very easy to
implement) offers a fairly good approximation (figure 8c,d), suggesting that the
model is sufficiently robust for the description of actual vortex ring flows.

Figures 6 and 8 show that the new model offers a more accurate description of
the geometry of the vortex core and a more accurate prediction of the translational
velocity. This is expected to be particularly important for practical applications,
including those in gasoline internal combustion engines where vortex ring type flow
is used to form a kernel for the ignition of a combustible mixture (Heywood 1988).

4.4. Vortex ring geometry and the effect of the confinement
The new VRE model was applied to describe the vortex ring geometry during the
post-formation phase. The results for Cases 1 and 2 turned out to be qualitatively
similar; we show here only the results referring to Case 1. Figure 9(a) shows that
parameters θc, θe, describing viscous effects (see (2.14)), slowly decrease during the
post-formation phase, indicating that the vortex ring grows by viscous dissipation. The
elongation of the vortex ring, quantified by parameter β, increases over time, while
the compression λ is quasi-constant during a long period of time (see figure 9b).

The influence of the confinement ratio Dw/D on the time evolution of parameters β
and λ is shown in figure 10. Note that the evolution of these parameters reflects the
interaction of the vortex ring with the lateral wall. For high confinements (Dw/D= 2)
the vortex ring continuously elongates and β increases quasi-linearly. The rate of
increase of β diminishes for lower confinements (Dw/D= 3). Note that in predicting
the time evolution of the energy and translational velocity in figure 8 we assumed
that β was constant in time (see (4.9)), to facilitate the application of the model for
actual vortex rings. Calculations with β(τ) represented by heuristic power laws (see
also Kaplanski et al. 2012) can result in slightly improved values for the predicted
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FIGURE 10. (Colour online) Effect of confinement Dw/D on time evolution of parameters
β > 0 and λ> 0 describing the extension and compression along axes x and r, respectively.
All parameters are fitted from DNS data for Case 1, Lp/D= 1.13, ReD = 3400.

integral characteristics. Lower variation rates are observed in figure 10(b) for the
compression coefficient λ. The influence of the confinement on β and λ can be
considered negligible for Dw/D > 3. This observation is in agreement with the
hypothesis of the asymptotic analysis presented in § 3.1. It is also interesting to note
from figure 10(a) that the estimate β = 1.4 inferred from the asymptotic analysis is
compatible with the values of β fitted from DNS data for Dw/D > 3.

5. An heuristic relation between vortex ring energy and circulation
In this section, we will show that the model developed above can be applied in an

area not directly related to vortex ring confinements.
Recently, Krieg & Mohseni (2013) demonstrated that jet flows created from

cylinder–piston mechanisms enter the reservoir with nearly parallel streamlines,
whereas jets ejected through a circular orifice in a flat plate have a radial component
of velocity, directed towards the axis. These authors pointed out that the converging
radial velocity significantly increases the translational velocity of the produced vortex
ring and proposed the well tested heuristic relation between its dimensionless energy
Ed = E/(M1/2Γ 3/2) and circulation Γd = Γ /(M1/3U2/3), where M is the impulse:

Γd
3/2 = c1 + c2/Ed, (5.1)

for a wide range of experimental results, where c1 = 1.13 and c2 = 0.52. This
relation provides a reliable tool to describe vortex rings at the initial stage of
their development, when the identification of the pinch-off moment is difficult both
numerically and experimentally. It allows us to approximate the translational velocity
of the vortex ring (U) as a function of the total circulation (Γ ), impulse (M) and
kinetic energy (E) of the vortex system by the following relation:

U = Γ 3/2E
c1EM1/2 + c2MΓ 3/2

. (5.2)

Krieg & Mohseni (2013) showed that the Norbury family of vortex rings (Norbury
1973) satisfy (5.1) for a wide range of dimensionless core radii α.
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FIGURE 11. (Colour online) The plot of Γ 3/2
d versus 1/Ed, predicted by (5.1) (linear fit),

and a set of values of Γ 3/2
d and 1/Ed predicted by our model for various β, λ and Dw/D.

Figure 11 shows the plot of Γ 3/2
d versus 1/Ed, for different vortex rings modelled

with the present approach (confined elliptic, unconfined circular and unconfined
elliptic). The values of Γd and Ed correspond to the range of L = R0/θe =
0.0952381 − 0.285714 and θe = 3.5 − 10.5 (R0 = 1). Our aim is to find a set of
geometric parameters for the vortex ring in order to obtain a linear variation of Γ 3/2

d
versus 1/Ed, as predicted by (5.1). As can be seen in this figure, the model with a
circular core cannot be used to describe such vortex rings, while the elliptic vortex
model could potentially model such flows. For both confined and unconfined elliptic
vortices, the values of the geometrical parameters fitted to obtain curves describing
the linear variation are indicated in the figure. We consider this to be an important
generalisation of the above-mentioned result presented by Krieg & Mohseni (2013)
as our model is expected to describe the geometry of vortex rings more accurately
than does the Norbury family of vortex rings. This further supports the importance
of the new model described in our paper.

6. Summary and discussion
We suggested a new model that takes into account the elongated (elliptical) shape of

confined vortex rings. The vorticity ωVRE and streamfunction ΨVRE distributions based
on the unconfined vortex ring model suggested in Kaplanski et al. (2012) were used in
the analysis. Using Brasseur’s method, a wall-induced streamfunction correction Ψ 0

VRE
was analytically derived. The total streamfunction of the flow Ψ w

VRE was presented as
Ψ w

VRE =ΨVRE −Ψ 0
VRE.

The new model was shown to describe accurately the geometry of the confined
vortex ring and the time evolution of the vortex ring energy when compared with
the results of direct numerical simulations. For large deformations of the vortex core,
occurring for high confinements, the elliptical-core vortex ring model allows us to
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better predict the time evolution of the translational velocity than the circular vortex
core model suggested by Danaila et al. (2015). This result was expected, remembering
that the model derived by Kaplanski et al. (2012) for an unconfined vortex ring with
elliptical core offered a better estimation of the translational velocity at the whole
post-formation stage when compared with experimental data presented by Weigand &
Gharib (1997).

It is suggested that our model can be used to describe the deformation of the
vortex ring during the post-formation phase. For long-time evolution, we derived a
generalisation of the well-known Rott & Cantwell (1993) formula for the drift velocity
of the vortex ring by taking into account the influence of the ellipticity parameter.
When compared to experimental observations, it allows us to extract the value of the
ellipticity parameter β and thus to describe actual vortex rings with the present model.
The fit of numerically or experimentally generated vortex rings with this model gives
a synthetic view of the vortex elongation and compression along the longitudinal
and radial axis. Two fitting procedures are suggested, computing all parameters (full
fitting) or only geometrical parameters (partial fitting). The latter approach is very
fast and easy to implement which makes it appropriate for practical applications
involving the description of actual vortex rings or the reconstruction of their velocity
field from incomplete measurements. Since the model is shown to be robust with
respect to the fitting procedure, it is expected to be useful in practical applications
where an accurate estimation of the vortex ring positions and geometry are required
(e.g. applications in gasoline internal combustion engines, see Begg et al. (2009)). It
is shown that the predictions of the model support the recently suggested heuristic
relation (Krieg & Mohseni 2013) between the energy and circulation of vortex rings
in the case, where the injection velocity has a converging radial component. This is
believed to be an interesting feature of the model and potentially useful for practical
applications.

The analysis presented in this paper was focused on elongation parameters β > 1
(i.e. ε0 > 0 in (2.15)) and confinement parameter 1<Dw/D 6∞, but the new model
could be regarded as a unified theoretical framework for the following models: the
VRE confined elliptic vortex ring (β > 1), the VRC confined circular vortex ring
(β = 1) and the unconfined elliptic vortex ring (when Dw/D→∞, correction (3.34)
tends to zero). Figure 12 illustrates three possible vortex core geometries obtained for
typical values of parameters β and Dw/D.
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Appendix A. Proof of (3.30) for arbitrary p

In what follows the following identity will be proven:∫ ∞
0
µ2p exp(−|x̃|µ)J0(˜̃rµ) dµ= 2(−1)p

π

∫ ∞
0
µ2pK0(˜̃rµ) cos(µ ˜̃x) dµ. (A 1)
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FIGURE 12. (Colour online) An illustration of the models for confined and unconfined
vortex rings with elliptical and circular cores. Isocontours of the streamfunction
Ψ/Ψmax = 0; 0.1 for β = 1.9, Dw = 3 (solid curve), β = 1, Dw/D = 3 (dashed curve)
and β = 1, Dw/D→∞ (dot-dashed curve) with R0 = 1, θ = 3. The regions of vorticity
ω/ωmax > 0.05 for vortex rings with elliptical (horizontal stripes) and circular (vertical
stripes) cores.

The left and right parts of (A 1) can be calculated using Mathematica (2007) and
presented in closed forms as:

I1 = |x̃|−1−2p
Γ (1+ 2p)2F1

(
1/2+ p, 1+ p; 1; − r̃2

x̃2

)
, (A 2)

I2 = (−1)p22p

π
r̃−1−2pΓ (1/2+ p)22F1

(
1/2+ p, 1/2+ p; 1/2; − x̃2

r̃2

)
, (A 3)

where

2F1(a, b; c; z)=
∞∑

k=0

(a)k (b)k
(c)k

zk

k! (A 4)
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is the generalised hypergeometric function and Γ (x) is the gamma function. The
generalised hypergeometric function is presented as (Mathematica 2007):

2F1(a, b; c; z) = Γ (b− a)Γ (c)
Γ (b)Γ (c− a) 2F1

(
a, a− c+ 1; a− b+ 1; 1

z

)
+ Γ (a− b)Γ (c)
Γ (a)Γ (c− b) 2F1

(
b, b− c+ 1; −a+ b+ 1; 1

z

)
. (A 5)

This allows us to present I1 (see (A 2)) in the following form

I1 = |x̃|−1−2p
Γ (1+ 2p)

[(
r̃2

x̃2

)−1−p
Γ (−1/2)Γ (1)

Γ (−p)Γ (1/2+ p) 2F1

(
1+ p, 1+ p; 3/2; − x̃2

r̃2

)

+
(

r̃2

x̃2

)−1/2−p
Γ (1/2)Γ (1)

Γ (1/2− p)Γ (1+ p) 2F1

(
1/2+ p, 1/2+ p; 1/2; − x̃2

r̃2

)]
. (A 6)

Taking into account that Γ (−p) = ∞̃; p ∈ N (∞̃ is complex infinity (Mathematica
2007)), we can ignore the first term in the square brackets. Remembering that
Γ (1)= 1, and Γ (1/2)=√π we obtain, after tedious but straightforward calculations

I1 =
√

πΓ (1+ 2p)
Γ (1/2− p)Γ (1+ p)

r̃−1−2p
2F1

(
1/2+ p, 1/2+ p; 1/2; − x̃2

r̃2

)
. (A 7)

Remembering that Γ (z)Γ (z+1/2)=√π21−2zΓ (2z) for z=p+1/2 (see Abramowitz
& Stegun 1964) we can write:

Γ (1+ 2p)
Γ (1+ p)

= 22pΓ (1/2+ p)√
π

. (A 8)

Using the relations

1
Γ (1/2− p)

= (2p− 1)!!
(−2)p

√
π
, Γ (1/2+ p)=√π

(2p− 1)!!
2p

, (A 9a,b)

we can estimate I1 as

I1 = (−1)p(2)2p

π
Γ (1/2+ p)2r̃−1−2p

2F1

(
1/2+ p, 1/2+ p; 1/2; − x̃2

r̃2

)
. (A 10)

Thus, integral I1 is identical to I2 and (3.30) is proven.
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