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Abstract

A high accuracy numerical model is used to simulate an alternate melting and
solidification cycle of a phase change material (PCM). We use a second order (in time and
space) finite-element method with mesh adaptivity to solve a single-domain model based
on the Navier-Stokes-Boussinesq equations. An enthalpy method is applied to the energy
equation. A Carman-Kozeny type penalty term is introduced in the momentum equation
to bring the velocity to zero inside the solid region. The mesh is dynamically adapted
at each time step to accurately capture the interface between solid and liquid phases,
the boundary-layer structure at the walls and the multi-cellular unsteady convection in
the liquid. We consider the basic configuration of a differentially heated square cavity
filled with an octadecane paraffin and use experimental and numerical results from the
literature to validate our numerical system. The first study case considers the complete
melting of the PCM (liquid fraction of 95%), followed by a complete solidification. For
the second case, the solidification is triggered after a partial melting (liquid fraction of
50%). Both cases are analysed in detail by providing temporal evolution of the solid-
liquid interface, liquid fraction, Nusselt number and accumulated heat input. Different
regimes are identified during the melting-solidification process and explained using scaling
correlation analysis. Practical consequences of these two operating modes are finally
discussed.
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Nomenclature

c Specific heat, J/(kg K)
C Dimensionless specific heat
CCK Penalty constant
fB Boussinesq force
Fo Fourier number
g Gravitational acceleration, m/s2

H Cavity height, m
h Enthalpy, J/kg
hsl Latent heat of fusion, J/kg
k Thermal conductivity, W/(m K)
K Dimensionless thermal conductivity
Lf Liquid fraction
Pr Prandtl number
Re Reynolds number
Ra Rayleigh number
Ste Stefan number
Nu Nusselt number
p Pressure, N/m2

Q0 Accumulated heat input
t, τ Dimensionless times
tϕ Physical time, s
T Temperature, K

ũ Velocity, m/s
u Dimensionless velocity
x̃ Coordinates, m
x Dimensionless coordinates
Greek
α Thermal diffusivity, m2/s
β Thermal expansion coefficient, 1/K
µ Dynamic viscosity, kg/(m s)
ν Kinematic viscosity, m2/s
ρ Density, kg/m3

θ Dimensionless temperature
Subscripts
ref Reference state
s, l Solid, liquid
h, c Hot, cold
f Fusion
co Cooling
Reference quantities
δT Th − Tf
δTco Tf − Tco
rδ (δTco)/δT

1. Introduction

The fundamental operational mode of latent thermal energy storage (LTES) systems
based on phase-change materials (PCM) is made of alternate melting and solidification
cycles that are not necessarily periodic. Partial melting and/or solidification of the PCM
are often observed in applications and, in particular, in applications for buildings (Zhu
et al., 2009; Ascione et al., 2014). Using the total latent heat storage potential offered by
the PCM in energy storage requires a complex design process. This could benefit from
accurate numerical simulations of such incomplete charging/discharging cycles. A wide
range of recent applications is concerned by such modelling issues, including thermal
energy storage (e. g. for solar power generation) and passive temperature control (e. g.
for modern portable electronics) devices. For a review of various applications of PCMs
with different melting temperatures in thermal energy storage systems, see recent reviews
by Agyenim et al. (2010) and Kalnæs and Jelle (2015).

Actual challenges in the mathematical and numerical description of a melting-solidifica-
tion cycle include i) the derivation of a realistic theoretical framework, using transport
equations for different involved quantities (velocity, temperature, viscosity, density) and ii)
the design of robust, accurate and efficient numerical methods for solving these equations,
for different initial and boundary conditions.

As far as point i) is concerned, the solution of the Stefan problem has been provided
by Rubinstein (1947). Later, other important physical phenomena have been accounted
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for: gravity effects, convection in the liquid phase, the presence of a mushy region
containing both solid and liquid parcels at the interface between the two phases, etc. For
a comprehensive review of these approaches, see Kowalewski and Gobin (2004) and Faghri
and Zhang (2006). A historical review of the role played by convection in phase-change
problems is provided by e.g., Yao and Prusa (1989). In particular, the natural convection
in the liquid was proved to play an important role in the heat transfer between phases and
in the propagation of the melting/solidification front (Morgan, 1981; Voller and Prakash,
1987; Jany and Bejan, 1988; Evans et al., 2006; Vidalain et al., 2009; Wang et al., 2010a).
As a consequence, modern simulations of phase-change systems are dealing with the
Navier-Stokes equations for the liquid phase, using the Boussinesq approximation for
thermal effects.

Single domain approaches are very convenient for numerical implementations, since
the same system of Navier-Stokes-Boussinesq equations is solved inside both liquid and
solid phases. Two ingredients are necessary to make possible the use of the single domain
model. First, the velocity inside the solid phase has to be set to zero. This is achieved by
directly setting the velocity to zero in finite-volume methods (e. g. , Wang et al. (2010a,b))
or by using penalty models in finite-elements methods, based on viscosity (Danaila et al.,
2014) or Carman-Kozeny terms (Belhamadia et al., 2012; Zhang et al., 2015; Mencinger,
2004). Second, the energy equation is written using an enthalpy-based model (Voller
et al., 1987; Cao et al., 1989; Cao and Faghri, 1990). An important feature of the enthalpy
method is its capability to deal with both mushy and single point phase changes. Indeed,
in case of non-isothermal phase change, a mushy zone between the liquid and the solid
phases characterizes the system. In case of pure materials, the phase change occurs at a
fixed temperature; however an artificial mushy-zone is introduced between the solid and
the liquid parts, just to regularize the enthalpy and other discontinuous parameters.

The challenge for numerical systems solving the single-domain Navier-Stokes-Boussinesq
model is to accurately capture the moving solid-liquid interface. The problem is even
more challenging when several melting-solidification fronts, with distorted shapes are
present (e. g. the solidification after a partial melting). When fixed uniform meshes
are used, which is the case of a great majority of existing finite-volume codes, the grid
density has to be considerably increased in the entire domain, making the simulation very
expensive. When a trade-off between accuracy and computational cost is sought, the fixed
grid approach allows to place only a few computational cells inside the regularization
region.

Dynamical mesh adaptivity becomes in this context a valuable tool to concentrate the
grid refinement effort only in regions displaying high gradients of the computed variables
(melting-solidification fronts, thermal or viscous boundary layers). For the classical
two-phase Stefan problem, Belhamadia et al. (2004a) suggested an anisotropic mesh
adaptation algorithm based on solution-dependent metrics. The authors extended their
algorithm for the three-dimensional simulation of the same problem (Belhamadia et al.,
2004b) and showed that the use of locally adapted meshes with strong anisotropy was very
effective in reducing the number of computational nodes for such phase-change systems
without convection. To simulate melting or solidification problems with convection,
Danaila et al. (2014) recently suggested a dynamical mesh adaptation algorithm based
on metrics control and implemented with the FreeFem++ software (Hecht et al., 2007;
Hecht, 2012). The advantage of this adaptive finite-element method, which will be also
used in the present study, is to make possible, with reasonable computational cost, the
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re-meshing of the computational domain at each time step. A very refined discretization
of the regularization zone between solid and liquid phases is thus obtained, while regions
with low gradients are de-refined in order to balance the overall computational effort.

The previously mentioned modern numerical approaches were mostly applied to
simulate separately melting or solidification problems and only recently for alternate
melting and solidification cycles (Wang et al., 2010b). However, cyclic or periodic, melting
and solidification problems have attracted considerable attention in the literature. Ho
and Chu (1993) and Voller et al. (1996) studied numerically periodic melting in a square
enclosure. Recently, Hosseini et al. (2014) presented experimental studies for the melting
and the solidification of a cylindrical PCM during a charging and discharging process and
Chabot and Gosselin (2017) studied analytically the effect of an alternate heating and
cooling in a cylindrical PCM, with periodic boundary conditions.

The present contribution is scoped to offer an accurate numerical description of the
alternate melting and solidification of a typical PCM. We use a finite-element numerical
system with second-order accuracy in time and space to solve the single-domain model
based on Navier-Stokes equations with Boussinesq approximation. The main advantage
of our method is that the mesh adaptivity algorithm could be applied each time step.
The mesh is thus dynamically refined with respect to velocity and temperature variables,
allowing to accurately capture the interface between solid and liquid phases, the boundary-
layer structure at the walls and the details of the unsteady convection cells in the liquid.

We simulate a typical PCM configuration represented by a differentially heated square
cavity filled with an octadecane paraffin. This is a well-established benchmark documented
experimentally by Okada (1984) and extensively used to validate numerical codes (Wang
et al., 2010a; Jany and Bejan, 1988; Mencinger, 2004). First, we simulate the melting
phase and use this case to validate our numerical system against experimental and
previously reported numerical data. Second, we consider two operating cases for the
solidification process. In the first study case the solidification starts after a complete
melting of the PCM (liquid fraction of 95%), while in the second case after a partial
melting (liquid fraction of 50%). All cases are analysed in detail by providing temporal
evolution of solid-liquid interface, liquid fraction, Nusselt number and accumulated heat
input. Different heat transfer regimes are identified and explained using scaling correlation
theory. Several practical implications for the two operating modes are finally drawn.

The paper is organized as follows. Section 2 introduces the governing equations.
Section 3 presents the numerical system. The final section 4 is devoted to extensive
analysis of the results for the two operating cases.

2. Governing equations

We consider a solid-liquid system placed in a two-dimensional square cavity of height
H. In the following, subscripts s and l will refer to the solid and liquid phases, respectively.

For the numerical implementation, it is convenient to adopt a single-domain approach
to describe both phases using the same system of equations. The model is based on the
Navier-Stokes equations with Boussinesq approximation, which is the natural description
of the fluid flow with natural convection. A penalty term is added to the momentum
equations to bring the velocity to zero inside the solid region. For the energy conservation
equation, an enthalpy method is used to model the phase change process. The single-
domain model is described in detail in the following sections.
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2.1. Enthalpy method
The phase change process is modelled using an enthalpy method (Voller et al., 1987;

Cao et al., 1989; Cao and Faghri, 1990) with temperature-based formulation. We start
from the energy equation:

∂(ρh)
∂tϕ

+∇ · (ρhũ)−∇ · (k∇T ) = 0, (1)

where tϕ is the physical time, h the enthalpy, ρ the density, ũ the velocity vector, T the
temperature and k the thermal conductivity. To make Equation (1) valid for the entire
domain containing both liquid and solid phases, the total enthalpy h is regarded as the
sum of the sensible heat and the latent heat:

h = c(T + s(T )), (2)

with c the local specific heat. The function s(T ) is introduced to model the jump of
the enthalpy due to the phase change and is theoretically a Heaviside step function
depending on the temperature: it takes the zero value in the solid region and a large
value in the liquid, equal to hsl/c, with hsl the latent heat of fusion. Linear (Voller et al.,
1987; Wang et al., 2010a) or smoother functions (Danaila et al., 2014) can be used to
regularize s(T ) and also the jump of material properties (from solid to liquid). In this
paper we use a regularization of all step-type functions by a continuous and differentiable
hyperbolic-tangent function suggested by Danaila et al. (2014) (see below). We assume
moreover that the undercooling phenomenon is negligible (see also Wang et al. (2010b);
Kowalewski and Gobin (2004)).

Equation (1) can be further simplified by considering the following assumptions: (i)
the density difference between solid and liquid phases is negligible, i. e. ρl = ρs = ρ is
constant; (ii) the regularization zone is narrow and the velocity inside this zone is very
low. Consequently, the final expression of the energy equation is obtained by combining
(2) and (1) and neglecting the convection term ∇ · (csũ)1:

∂ (cT )
∂tϕ

+∇ · (cT ũ)−∇ ·
(
k

ρ
∇T
)

+ ∂ (cs)
∂tϕ

= 0. (3)

Furthermore, the essential feature of the current approach is that the phase change front is
not tracked explicitly but is instead recovered a posteriori from the computed temperature
field.

2.2. Navier-Stokes equations with Boussinesq approximation
The natural convection in the liquid part of the system is modelled using the incom-

pressible Navier-Stokes equations, with Boussinesq approximation for buoyancy effects.
To make this model valid for both liquid and solid phases, the momentum equation is
modified as follows:

∂ũ

∂tϕ
+ (ũ · ∇)ũ + 1

ρ
∇p− µl

ρ
∇2ũ− fB(T )ey = A(T )ũ, (4)

1In the liquid phase, ∇ · (csũ) = hsl∇ · ũ = 0; in the solid phase, s = 0; in the regularization region, it
is assumed that ũ = 0.
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where p denotes the pressure, µl the dynamic viscosity of the liquid (assumed to be
constant) and fB(T ) the Boussinesq force. The penalty term A(T )ũ is artificially
introduced in (4) to extend this equation in the solid phase, where the velocity, pressure,
viscosity and Boussinesq force are meaningless. Consequently, A(T ) is modelled to vanish
in the liquid, where the Navier-Stokes-Boussinesq momentum equation is recovered. A
large value of A(T ) is imposed in the solid, reducing the momentum equation (4) to
A(T )ũ = 0, equivalent to ũ = 0. Exact expressions for fB and A will be given in the
next section.

Finally, the conservation of mass in the liquid phase is expressed by the continuity
equation:

∇ · ũ = 0. (5)

2.3. Final system of equations for the single-domain approach
It is convenient to numerically solve a dimensionless form of the previous equations.

Using the cavity height H as length scale and a reference state (ρ,Vref ,Tf ), we can define
the following scaling for the space, velocity, temperature and time variables:

x = x̃

H
, u = ũ

Vref
, θ = T − Tf

δT
, t = Vref

H
tϕ, (6)

Temperatures Th (hot) and Tc (cold) will be used to set isothermal walls of the cavity.
The difference δT = Th − Tf , with Tf the temperature of fusion, is considered as the
representative temperature scale for the natural convection onset in the liquid region.
As far as the solidification process is concerned, a distinct discussion will be provided in
section 4.3. Thus δT is used to define the Rayleigh number of the flow:

Ra = gβH3δT

νlαl
, (7)

where α = k/(ρc) is the thermal diffusivity and β the thermal expansion coefficient. Note
that the reference temperature in this scaling is Tf , resulting in θf = 0. This simplifies
the identification of the regularization zone, defined for −ε ≤ θ ≤ ε.

Finally, the dimensionless system of equations to be solved in both liquid and solid
regions can be written as:

∇ · u = 0, (8)
∂u

∂t
+ (u · ∇)u +∇p− 1

Re
∇2u− fB(θ) ey −A(θ)u = 0, (9)

∂ (Cθ)
∂t

+∇ · (Cθu)−∇ ·
(

K

RePr∇θ
)

+ ∂ (CS)
∂t

= 0, (10)

where the linearised (Boussinesq) buoyancy force (fB), the Reynolds (Re) and Prandtl
(Pr) numbers are defined as:

fB(θ) = Ra
PrRe2 θ, Re = ρVrefH

µl
= VrefH

νl
, Pr = νl

αl
. (11)

Non-dimensional conductivity and specific heat are functions of the temperature θ,

K(θ) = k

kl
, C(θ) = c

cl
, (12)
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and have to take into account the variation of material properties between the solid and
the liquid regions.

In the energy equation (10), the non-dimensional function S = s/δT , introduced by the
enthalpy model, is regularized across the regularization region using a hyperbolic-tangent
function (Danaila et al., 2014):

S(θ) = Sl + Ss − Sl
2

{
1 + tanh

(
θr − θ
Rr

)}
, (13)

where θr is the central value around which we regularize (typically θr = θf = 0) and Rr
the smoothing radius (typically Rr = ε). Note that Ss = 0 and

Sl = hsl/cl
δT

= 1
Ste

, (14)

where Ste is the Stefan number. Regularizations similar to (13) are used to model the
variation inside the regularization region of functions (12) defining material properties.

Finally, the penalty term in the momentum equation (9) takes the form (Belhamadia
et al., 2012; Kheirabadi and Groulx, 2015):

A(θ) = −CCK(1− ϕ(θ))2

ϕ(θ)3 + b
, (15)

where ϕ(θ) is a phase-change variable, which is 1 in the fluid region and 0 in the solid.
Inside the regularization region, ϕ(θ) is regularized using a hyperbolic-tangent function
similar to (13). The constant CCK is set to a large value (as discussed below) and the
constant b = 10−6 is introduced to avoid division by zero.

3. Numerical method

To solve the system of equations (8)-(10) we use a finite-element method that was
implemented using the open-source software FreeFem++ (Hecht et al., 2007; Hecht, 2012),
using a large variety of triangular finite elements to solve partial differential equations.
FreeFem++ is an integrated product with its own high level programming language and
a syntax close to mathematical formulations, making the implementation of numerical
algorithms very easy. Among the numerous numerical tools offered by FreeFem++, the
use of the powerful mesh adaptivity function proved mandatory in this study to obtain
accurate results within reasonable computational time. The numerical code was optimized
to afford the mesh refinement every time step: the mesh density was increased around
the phase change interfaces, offering an optimal resolution of the large gradients of all
regularized functions (S,K,C,LF ), while the mesh was de-refined (larger triangles) in
the solid part, where a coarser mesh could be used. A simulation using a globally refined
mesh would require a prohibitive computational time for an equivalent accuracy of the
melting front resolution. Similar algorithms based on FreeFem++ were successfully used
for solving different systems of equations with locally sharp variation of the solution, such
as Gross-Pitaevskii equation (Danaila and Hecht, 2010; Vergez et al., 2016) or Laplace
equations with nonlinear source terms (Zhang and Danaila, 2013).

The space discretization is based on Taylor-Hood finite elements, approximating the
velocity with P2 Lagrange finite elements (piecewise quadratic), and the the pressure
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with the P1 finite elements (piecewise linear). The temperature and the enthalpy are
discretized using P1 finite elements. The weak formulation of (8)-(10), necessary for the
finite-element implementation is described in detail in Danaila et al. (2014). There are
two novelties in the present numerical approach, when compared to Danaila et al. (2014):
(i) we use an approach based on the Carman-Kozeny model to bring the velocity to zero
inside the solid phase, as described in the previous section, instead of the viscosity penalty
method (imposing a large value of the viscosity in the solid); (ii) we increase the time
accuracy of the algorithm by replacing the first-order Euler scheme with the second-order
Gear (BDF2) scheme (see also Belhamadia et al. (2012)),

dφ

dt
' 3φn+1 − 4φn + φn−1

2δt , (16)

computing the solution φn+1 at time tn+1 = (n + 1)δt by using two previous states
(φn,φn−1). We use this scheme to advance in time both velocity (φ = u) and temperature
fields (φ = θ). The other terms in equations (8)-(10) are treated implicitly (i. e. taken at
time tn+1). The resulting non-linear equations are solved using a Newton algorithm.

3.1. Mesh adaptivity
Mesh adaptivity by metric control is a standard function offered by FreeFem++ (Hecht,

2012). The key idea for the mesh adaptivity (see also Castro-Diaz et al. (2000); Hecht and
Mohammadi (1997); George and Borouchaki (1998)) is to modify the scalar product used
in an automatic mesh generator to evaluate distance and volume, in order to construct
equilateral elements according to a new adequate metric. The scalar product is based
on the evaluation of the Hessian H of the variables of the problem. Indeed, for a P1
discretization of a variable χ, the interpolation error is bounded by:

E = |χ−Πhχ|0 ≤ c sup
T∈Th

sup
x,y,z∈T

|H(x)|(y − z, y − z) (17)

where Πhχ is the P1 interpolate of χ, |H(x)| is the Hessian of χ at point x after being
made positive definite. We can infer that, if we generate, using a Delaunay procedure
(e.g. George and Borouchaki (1998)), a mesh with edges close to the unit length in the
metric M = |H|

(cE) , the interpolation error E will be equally distributed over the edges ai
of the mesh. More precisely, we have

1
cE
aTiMai ≤ 1. (18)

The previous approach could be generalized for a vector variable χ = [χ1,χ2]. After
computing the metrics M1 and M2 for each variable, we define a metric intersection
M =M1 ∩M2, such that the unit ball of M is included in the intersection of the two
unit balls of metrics M2 and M1 (for details, see the procedure defined in Frey and
George (1999)).

For the cases considered in this study, we used five metrics intersection to adapt the
mesh, based on Sn+1,Sn,Tn+1,Tn, un+1. To reduce the impact of the interpolation on
the global accuracy for time-depending problems, we consider the metrics computed from
actual (at tn+1) and previous (at tn) values, for the same variable used for adaptivity
(see also Belhamadia et al. (2004a)). The anisotropy of the mesh is a parameter of the
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algorithm and it was set to values close to 1. This is an inevitable limitation since we
also impose the minimum edge-length of triangles to avoid generating a too large number
of nodes.

Some examples of the adapted mesh generated during the computation of the solid-
ification phase are given in section 4.3. The method is able to accurately capture the
liquid-solid interface during the melting process and the two solidification fronts appearing
during the solidification of the PCM. Mesh adaptivity is performed at each time step and
offers a refined discretization of the regularization region where sharp gradients have to
be accurately captured. The number of triangles for the melting case is Nt = 12, 000 and
Nt = 17, 000 for the solidification phase. Non-adapted grids offering the same spatial
resolution everywhere inside the computational domain would have resulted for the two
cases in Nt = 9.94 · 1010 and Nt = 10 · 1010 triangles, respectively. Consequently, mesh
adaptivity greatly helps in reducing the computational time.

4. Results

The basic configuration considered in this study is that used in the experimental
study of Okada (1984). It consists of a differentially heated square cavity (see Figure
1a), filled with an octadecane paraffin. The physical (non-dimensional) parameters are:
Ra = 3.27 · 105, Pr = 56.2 and Ste = 0.045. We numerically investigate the following
cases:

x

y

0 1
0

1
(a)

x

y

0 1
0

1
(b)

liquid

solid

x

y

0 1
0

1

solid

liquid

(c)

Figure 1: Sketch of the computational domain and boundary conditions. General configuration (panel a)
with isothermal (θ = cst.) vertical (x = 0 and x = 1) walls and adiabatic (∂θ/∂n = 0) top and bottom
walls. Configuration for the melting phase (panel b) with a hot left wall (θ = θh > 0) and a cold right
wall (θ = θc < 0), followed by a solidification phase (panel c), when the temperature of the left wall is
cooled to θ = θco < 0.

(i) First we proceed to the validation of our numerical method on the basis of the
melting of the PCM. The material is initially solid (θ0 = −0.01) and melts progressively
starting from the left boundary, maintained at the hot temperature θh = 1. The right
boundary is also isothermal with cold temperature θc = −0.01. This case is a well
established benchmark used to validate numerical codes for phase-change systems. Three
simulations are carried out to demonstrate the accuracy and the robustness of our method.
The first validation case reproduces the experimental study of Okada (1984), the second
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corresponds to the experimental investigation of Gong et al. (2015) and the last considers
the numerical simulations presented in Bertrand et al. (1999). For the last cases, the
melting front, the Nusselt number and the liquid fraction provided by our code are
compared with experimental and numerical results.

(ii) The melting of the PCM (Figure 1b). Having validated our code, we pay a closer
attention to other physical characteristics of the melting, such as the temporal evolution
of the temperature distribution in the cavity, the Nusselt number, etc. We discuss and
compare our results with those previously published: experimental (Okada, 1984) and
numerical (Okada, 1984; Wang et al., 2010a; Ma and Zhang, 2006; Danaila et al., 2014).
The scaling formulae suggested by Jany and Bejan (1988) are used to validate the Nusselt
number of our simulation. This is described in Section 4.2.

(iii) After the complete melting of the PCM (i. e. the melting front is very close to the
right wall and the liquid fraction is 0.95), we trigger the solidification process by cooling
the left-wall below the fusion temperature, at a temperature θco, whilst the right wall is
still kept at θc = −0.01. Note that, as discussed later, θco and θc are not necessarily equal.
The solid phase will propagate into the cavity from both left and right sides (Figure 1c).
This case is computationally challenging, since two melting/solidification fronts have to
be accurately followed during the simulation. The process is simulated up to the complete
solidification of the PCM and the non-trivial evolution of the liquid phase is depicted in
detail. This case is described in Section 4.3.1.

(iv) This case is similar to the previous one, but the solidification starts after a partial
melting of the PCM (i. e. the melting front is located approximatively at half distance
between the two vertical walls and the liquid fraction is 0.5). The analysis of this case
attempts to provide answers about the effectiveness of different possible functioning cycles
of the PCM. This case is described in Section 4.3.2.

4.1. Numerical validation
We validate our numerical method against experimental and numerical studies of the

melting of the octadecane PCM available in the literature. Three cases are investigated.
The first consists of an experimental study of the melting of the PCM in a differentially
heated square cavity of height H = 1.5 cm by Okada (1984). The second reproduces
the melting of the PCM included in a transparent building brick of height H = 15.2 cm,
investigated experimentally and numerically by Gong et al. (2015). The last compares our
results with various numerical methods, presented by Bertrand et al. (1999), simulating
the melting of octadecane, considering a higher value of the Rayleigh number.
For the simulation of the melting process (Figure 1b), we use the following choice for the
scaling introduced in §2.3, equations (6) and (11):

Vref = νl
H
⇒ t = tϕ

νl
H2 ⇒ Re = 1. (19)

Moreover, a second dimensionless time τ is introduced in order to assess our results with
respect to the numerical data of Bertrand et al. (1999) and the analytical correlation of
Jany and Bejan (1988):

τ = Ste · Fo = Ste · αtϕ
H2 = Ste · t

Pr
, (20)

where Fo is the Fourier number.
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Figure 2: Location of the interface during the melting of the PCM. (a) Comparison with experimental
data of Okada (1984) and numerical results of Danaila et al. (2014) and Wang et al. (2010a) for two
time instants (τ = 0.032 and 0.063). Benchmark 1: Ra = 3.27 · 105, Pr = 56.2 and Ste = 0.045 (b)
Comparison with both experiment and simulation of Gong et al. (2015) for five time instants (τ = 0.0002,
0.00050, 0.00067, 0.00125, 0.00252). Benchmark 2: Ra = 2.48 · 108, Pr = 50 and Ste = 0.072.

We first examine the location of the interface obtained in our simulations. The
comparison with the experimental results of Okada (1984) and Gong et al. (2015) is
presented in Figure 2. The experimental study of Okada (1984) in Figure 2(a) consists
of a differentially heated square cavity of dimensions 1.5 cm × 1.5 cm, filled with an
octadecane paraffin. The non-dimensional parameters are: Ra = 3.27 · 105, Pr = 56.2
and Ste = 0.045 (Benchmark 1).

For two particular time instants (τ = 0.032 and τ = 0.063), we could compare our
results to available experimental (Okada, 1984) and numerical (Okada, 1984; Wang et al.,
2010a; Danaila et al., 2014) data. In the experimental set up of Okada (1984), the author
has reported that the top of the PCM was not perfectly insulated and consequently the
growth of the experimental upper melting front was delayed. In Figure 2(a), for the two
time instants τ = 0.032 and τ = 0.063, the current work agrees well with the experimental
results of (Okada, 1984) at the bottom part of the melting front. However, our results
overestimate the location of the front in the top part of the cavity, which could be related
to the experimental heat loss mentioned by the author.

Moreover, our results are qualitatively in a better agreement with experimental data
than previously published numerical results. This is a direct consequence of the precise
tracking of the melting front achieved by the mesh adaptivity performed at each time
step. This assessment also allowed us to finely tune the value of the constants used in the
model (15). Even though it is generally assumed that a large value for CCK must be set,
the exact value of this constant could influence the accuracy of the results (Kheirabadi
and Groulx, 2015; Kumar and Krishna, 2017). This choice of the value of this constant is
a still open problem. Very good agreement with the experimental result of Okada (1984)
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is obtained for CCK varying in the range [106, 108]. Nevertheless, imposing a too large
value CCK = 1010 results in artificially slowing the propagation of the melting front. We
set for all subsequent simulations CCK = 106.
Figure 2(b) illustrates the interface location in the experiment and simulations of Gong
et al. (2015), who studied the melting of an octadecane PCM inside a transparent building
brick of dimensions 15.2cm×3cm. Their numerical simulation has been performed using
a Lattice Boltzmann method. The non-dimensional parameters were: Ra = 2.48 · 108,
Pr = 50 and Ste = 0.072 (Benchmark 2). The difficulty here compared to the first
validation case is the presence of a stronger natural convection flow in the fluid due to
the high value of the Rayleigh number. The location of the interface is compared for five
particular time instants: τ = 0.0002, 0.00050, 0.00067, 0.00125 and 0.00252. We notice a
very good agreement with the numerical and the experimental data of Gong et al. (2015).

A last validation case is also investigated to test the robustness of the method. The
physical parameters are: Ra = 108, Pr = 50 and Ste = 0.1 (Benchmark 3). Bertrand
et al. (1999) compiled results provided by five different authors (Lacroix, Le Quéré,
Gobin-Vieira, Delannoy and Binnet-Lacroix). Results provided by these authors will be
hereafter referred to as (say) ’Lacroix, from Bertrand et al. (1999)’. They have attempted
a first comparison by taking several numerical methods to compute the basic configuration
presented in this section. Two investigators among the five failed to predict the process
and showed unrealistic behaviors (see Figures 3 and 4): Lacroix and Delannoy seem
to be insufficiently converged (Figure 3), and Binet-Lacroix overestimates the average
Nusselt number by more than 30% (Figure 4). Hence, this collection of results allows us
to compare our numerical method and check whether or not realistic results are obtained
for complex physical configurations.
We further inspect the melting front, the temporal evolution of the liquid fraction Lf and
the Nusselt number Nu at the left wall (x = 0), for each of the five methods presented
by Bertrand et al. (1999). For the liquid fraction, the initial solid state corresponds to
Lf = 0, while Lf = 1 indicates the complete melting of the PCM. The average Nusselt
number Nu at x = 0 left boundary is defined as follows:

Nu =
∫ 1

0

(
∂θ

∂x

)
x=0

dy. (21)

The phase-change interface for four time steps, τ = 5 · 10−4, τ = 2 · 10−3, τ = 6 · 10−3

and τ = 1 · 10−2 is represented in Figure 3. Our results are for each case in fairly good
agreement with those of Gobin and those of Le Quéré. Gobin used a front-tracking
method using a coordinate transformation with a finite volume method with a 62× 42
grids. Le Quéré solved a single domain model using a second order scheme with a finite
volume method with a 192× 192 grids (Gobin and Le Quéré (2000)).
The time evolution of the Nusselt number and the liquid fraction are presented in Figure
4. A very good agreement is obtained with Gobin and Le Quéré. A relative difference,
less than 2% is noticed for the Nusselt number, and a dispersion, smaller than 4%, for
the liquid fraction.
The high value of the Rayleigh number Ra = 108 results in a very demanding numerical
test. The high velocity, inducing a very narrow thermal boundary layer can lead to
unrealistic results and some numerical methods have failed. The interest of the mesh
adaptation is clearly evidenced since we initially use only 40× 40 grid points.
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Figure 3: Melting of a PCM (Benchmark 3). Location of the solid-liquid interface at dimensionless time
(panels a to d) τ = 0.0005, τ = 0.002, τ = 0.006 and τ = 0.01, compared with five simulations presented
by Bertrand et al. (1999). Ra = 2 · 108, Pr = 50 and Ste = 0.1.
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Figure 4: Time evolution of the Nusselt number (a) and the liquid fraction (b) compared with five
simulations presented by Bertrand et al. (1999). Ra = 2 · 108, Pr = 50 and Ste = 0.1.
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4.2. Melting of the PCM
After the validation of the code, we now pay a closer attention to the time evolution of

different physical parameter of the system, during the melting phase. We recall that the
reference temperature is the fusion temperature and thus θf = 0. The regularization range
is defined for −ε1 ≤ θ ≤ ε2, with ε1 = ε2 = 0.01. For this case, the physical properties of
the material are identical in both liquid and solid phases, and, consequently, we obtain
from (12) that C(θ) = 1 and K(θ) = 1. This choice of the scaling was made to have the
same set of parameters as in previous numerical simulations of this case (Okada, 1984;
Wang et al., 2010a; Ma and Zhang, 2006; Danaila et al., 2014). The physical parameters
correspond to the basic configuration presented in Figure 1: Ra = 3.27 · 105, Pr = 56.2
and Ste = 0.045.

4.2.1. Time evolution
We start by analysing the time evolution of the melting process. At τ = 0, the material

is solid and the initial temperature is set to θ = θ0 = −0.01 everywhere inside the cavity.
Then, the temperature of the left wall is suddenly increased to θh = 1, while the right
wall is maintained at the same cold temperature θc = −0.01. The material starts to melt,
with a melting front (identified by the iso-line θ = θf = 0) propagating from the left to
the right side of the domain. The time evolution of the phase-change system is depicted
in Figure 5 for representative time instants, also reported in previous studies.

From Figure 5, we can easily identify three different regimes describing the time
evolution of the melting process.

• From τ = 0 to τ = 0.004 (Figure 5a), we note the vertical shape of the melting front,
well predicted by the classical conduction model of Stefan (1891). This indicates
that, at this stage, heat transfer is dominated solely by conduction.

• Between τ = 0.016 to τ = 0.032 (Figure 5b), the natural convection in the liquid
phase starts to alter the shape of the melting front. A mixed conduction and
convection regime rules the heat transfer. Convection mainly affects the upper
part of the fluid motion, while conduction still dominates in the lower part. As
the volumetric thermal expansion coefficient β is positive, we expect a clockwise
circulation of the liquid inside the convection cell, as noted by Jany and Bejan
(1988). This also makes the liquid-solid interface to move faster at the top of the
cavity, explaining the deformed shape of the melting front, which is a signature of
the convection effects (see also Kowalewski and Gobin (2004)).

• After τ = 0.032 (Figure 5c-d), natural convection dominates the heat transfer
process and impacts radically the shape and motion of the solid-liquid interface.
The melting front line exhibits four distinct regions characterized by different slopes
with respect to the vertical axis. The largest slope is observed at the top of the
cavity and is related to the particular shape of the convection cell. Note that top
and bottom parts of the interface are normal to the cavity boundaries because of
the imposed adiabatic boundary conditions.

• After τ = 0.08 the melting front is nearly touching the right wall of the cavity,
firstly at the top (Figure 5e) of the cavity. The melting process continues and the
fluid progressively fills the cavity, with a melting front deforming into a vertical line.
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Figure 5: Complete melting of the PCM. Temperature iso-lines and streamlines in the liquid phase. The
solid part is represented in blue and corresponds to the region of temperature θ ≤ θf = 0. Time instants
(panels a to f): τ = 0.004; 0.016; 0.032; 0.063; 0.08; 0.2. Ra = 3.27 · 105, Pr = 56.2 and Ste = 0.045.
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The simulation of the melting process is stopped at τ = 0.2 (Figure 5f), when it
is numerically difficult to separate the melting front from the right wall boundary.
At this time instant, the fluid fraction reaches the value of 0.95 and the melting of
the PCM is considered to be complete, even though a small region of solid PCM
remains at the lower right bottom of the cavity. Note from Figure 5f the existence in
the fluid of two recirculating zones instead of a single one observed during previous
stages.

4.2.2. Scaling analysis
The melting of the octadecane was theoretically studied by Jany and Bejan (1988).

Combining scaling theory and numerical modelling, they suggested closed-form correlations
for the temporal evolution of the average Nusselt number (Nu) defined at the hot boundary
(x = 0), under the form:

Nu(τ) = 1√
2τ

+
[
c1Ra1/4 − 1√

2τ

] [
1 +

(
c2Ra3/4τ3/2

)n]1/n
. (22)

The values of the constants were fitted from numerical data: c1 = 0.27, c2 = 0.0275, and
n = −2.

In Figure 6 we compare the time evolution of the Nusselt number obtained from our
numerical data (see Figure 1) to experimental results of Okada (1984) and predictions
obtained from the correlation (22). Our results perfectly fit the theoretical prediction
of Jany and Bejan (1988). They are also in good agreement with experimental data,
suggesting, however, that very accurate measurements and numerical simulations are
needed to validate theoretical scaling analysis.

The time evolution of the Nusselt number can be correlated with the different heat
transfer regimes analysed in the previous section:

1. A pure conduction regime for τ & 0 (corresponding to Figure 5a), characterized by
the law Nu ∼ (2τ)−1/2. Since the temperature gradient has initially huge values
because of the sudden increase of the temperature of the left wall, the Nusselt
number rapidly decreases during the first stage of the flow evolution. The evolution
law Nu ∼ τ−1/2 can be also obtained from the Neumann exact solution supported
by Grigull and Sandner (1984). The signature of this conduction regime is the slow
heat transfer characterized by a monotonic decrease of the Nusselt number, down
to a minimum corresponding to τ ∼ Ra−1/2 = 0.02.

2. A mixed conduction-convection regime for 0.02 ≤ τ ≤ 0.05 (illustrated in Figure
5b). The influence of the Rayleigh number in (22) starts to be important and a
good approximation for this regime is: Nu ∼ τ−1/2 +Ra τ3/2.

3. A convection dominated regime for τ > Ra−1/2 (corresponding to Figures 5c-e). In
the asymptotic limit of large τ , the simplified law Nu ∼ Ra1/4 is obtained. The
plateau at the value of Ra1/4 corresponds to the pure convective transfer and is
observed in Figure 6 for 0.05 ≤ τ ≤ 0.1. Numerical results show a slight decrease
of the Nu in the final stage (τ ≥ 0.1), when the melting front starts to touch the
right wall of the cavity (see Figures 5e-f). The correlation model of Jany and Bejan
(1988) is not valid for this late evolution of the melting process.

Another important basic quantity describing the melting process is the liquid fraction
Lf . The time evolution of the liquid fraction (Figure 7a) displays three regimes during
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Figure 6: Complete melting of the PCM. Time evolution of the average Nusselt number defined at the
hot (left) wall (cf. Eq. (21)) (solid line). Comparison with the experimental results of Okada (1984)
(dashed line) and the predictions using the correlation (22) suggested by Jany and Bejan (1988) (dash-dot
line). Ra = 3.27 · 105, Pr = 56.2 and Ste = 0.045 (Benchmark 1).

the melting process. Lf initially grows as τ1/2, which is a typical law for a conduction-
dominated heat transfer. Then, a linear evolution is observed, until the melting front
reaches the right wall. This linear regime corresponds to the quasi-steady state observed
in the evolution of the Nusselt number (Figure 6).

Using the asymptotic limits of Eq. (22) for τ → 0 (pure conduction) and τ → ∞
(pure convection), Jany and Bejan (1988) suggested the following correlation law for the
time evolution of the liquid fraction:

Lf (τ) =
[(√

2τ
)5

+
(
c1Ra1/4τ

)5
]1/5

, (23)

where c1 = 0.27 is the same constant as in (22). We compare in Figure 7b our numerical
results with the predictions based on (23) within the validity domain of the analysis, i. e.
before the melting front reaches the right wall of the cavity. A very good agreement is
found with theoretical predictions and also with previously published numerical results
(Wang et al., 2010a).

4.2.3. Influence of the Rayleigh number
To assess on the influence of the Rayleigh number on the evolution of the melting

process, we performed two other simulations by multiplying the initial value of Ra =
3.27 · 105 by a factor of 5 and 10, respectively. The exact values are: Ra = 1.62 · 106 and
Ra = 3.27 · 106. First, we increase the height H of the cavity by a factor of 3

√
5 and 3

√
10

and consider the same δT . Thus the Stefan number Ste is kept constant. Second, we
increase the temperature difference parameter δT by keeping H constant. It corresponds
of an increased value of the Stefan number by a factor of 5 and 10: Ste = 0.223 and
Ste = 0.45. Figures 8 and 9 show the temporal evolution of the liquid fraction Lf , and
the average Nusselt number defined at the hot wall. The same heat transfer regimes
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Figure 7: Complete melting of the PCM (Benchmark 1). (a) Time evolution of the liquid fraction for the
complete melting of the PCM. (b) Comparison of our results (solid line) with the numerical results of
Wang et al. (2010a) (dashed line) and the predictions using the correlation (23) suggested by Jany and
Bejan (1988) (dash-dot line).

described previously are observed for each case: conduction, mixed conduction-convection
and convection.

Figure 8(a) indicates that increasing the Rayleigh number by keeping δT constant
induces a slower melting rate. This is the expected behaviour since the size of the PCM
is increased by a factor of 2, and the velocity u is hence decreased to satisfy the condition
Re = 1. We note however a non-monotonic variation of the time necessary to melt a
fixed value of fluid. For instance, to achieve Lf = 0.5 (50% of the volume is melted), an
increase of Ra by a factor of 10 leads to a growth of the melting time by a factor of 1.7.
Nonetheless, when Ra is 5 times larger, the necessary time only increases by a factor of 2.
This is most likely due to the non-linear intricacies of the problem and requires further
investigation. Furthermore, the Nusselt number reported in Figure 8(b) shows that the
higher the Rayleigh number is, the higher is the Nusselt number. This observation is
consistent, since the temperature gradient is integrated along a greater heated wall.

Figure 9(a) shows that by increasing the value of δT (and consequently increasing
the Rayleigh number and the Stefan number), the PCM melts faster. We note that
the height H of the cavity is kept constant, hence the natural convection flow in the
melted PCM is enhanced when the Rayleigh number is increased. As a consequence, the
convection-dominated regime is reached earlier, as shown by the shift of the minimum of
the Nu to lower values of tϕ (Figure 9(b)). This evolution is also observed for the liquid
fraction. As expected, an increase of the Rayleigh and Stefan numbers is followed by
an enhancement of the heat transfer during the melting, and consequently an improved
efficiency of the PCM.
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evolution of the average Nusselt number defined at the hot (left) wall (a) and liquid fraction (b). The
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Figure 9: Complete melting of the PCM. Influence of the value of the Rayleigh number (Ra) on the time
evolution of the average Nusselt number defined at the hot (left) wall (a) and liquid fraction (b). The
reference case (Ra = 3.27 · 105) is represented by red continuous lines. The value of the Ra and Ste were
increased by a factor of 5 and 10, respectively.
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4.3. Solidification of the PCM
After the melting of the PCM, we simulate the solidification process. We consider two

cases:
– case CM: solidification after a Complete Melting of the material (Lf = 0.95, Figure 5f)
and
– case PM: solidification after a Partial Melting (Lf = 0.5, Figure 5d).

As emphasized previously, the natural convection occurring in the melting PCM is
driven by the temperature difference δT = Th − Tf . The dimensionless number that
depicts the ratio between the forces creating and those refraining motion, is the Rayleigh
number, which appears in the dimensionless form of the Navier-Stokes equations with
Boussinesq approximation (section 2). The higher is its value, the more intense is the
heat transfer. Conversely, during the solidification, the phase-change is handled by the
discharged temperature Tco, where the subscript ’co’ stands for ’cooling’. In the geometry
discussed in this paper, this represents the temperature of the left wall. Thus, the
relevant temperature difference in the solid phase of the PCM is δTco = Tf − Tco and the
dimensionless temperature in the solid phase should be defined with respect to this δTco.
It is then obvious, for Eqs. (7) and (11), that the Rayleigh number should be defined using
the same temperature difference. However, because the Rayleigh number, as emphasized
earlier, amounts for the motion created by hot temperature difference, we choose to keep
the same definition for the Rayleigh number as for the melting case, still relevant for the
melted core of the flow, where the persisting motion acts as a boundary condition for the
solidification process. Under these conditions, in regard with the solidification process,
we introduce a new parameter, rδ = δTco/(Th − Tf ), the normalised temperature is with
respect to Tf − Tco and the relevant Rayleigh number will then Raco = rδ ×Ra, where
Raco is the pseudo-Rayleigh number for solidification with a melted boundary. In the
following, we will describe the process of solidification using three different values of rδ.
A new scaling is moreover introduced:

Vref = αl
H
⇒ t = tϕ

νl
H2 Pr ⇒ Re = 1

Pr. (24)

The solidification stage is indeed a slower process compared to the melting, therefore the
use of an adapted scaling is more relevant. This leads to a different time scaling for each
cycle.

The simulation of the solidification process starts by imposing at the left-wall a
constant (cooling) temperature.

The solid phase will propagate into the cavity from both left and right sides, which
makes this case computationally challenging. The mesh adaptivity capabilities of our
numerical code made possible to accurately track the two solidification fronts identified
by the iso-line θ = 0. In the discussion below, the solidification process starts at physical
time tϕ = 185 min (corresponding to τ = 0.2) for case CM and at tϕ = 59 min (τ = 0.06)
for case PM.

4.3.1. Solidification after a complete melting. Case CM.
The simulation continues from the state corresponding to Figure 5 at tϕ = 185 min

(τ = 0.063) and solidification follows after a complete melting. Figure 10 shows the
evolution of the PCM during the solidification process. At tϕ = 185 min (Figure 10a), the
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Figure 10: Solidification of the PCM after a complete melting. Temperature iso-lines in the liquid phase.
The solid part is represented in blue and corresponds to the region of temperature θco ≤ θf = 0. Time
instants (panels a to e): tϕ = 185 min, tϕ = 231 min, tϕ = 300 min, tϕ = 430 min and tϕ = 510 min.
The adapted mesh corresponding to tϕ = 300 min is plotted in panel (f). Raco = 3.27 · 105.
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liquid fraction is Lf = 0.95 and the melting/solidification front is close to the right wall
of the cavity. Setting a low temperature θco = −1 at the left wall, while the right wall is
maintained at a constant temperature (θright = −0.01 ≤ θf ) triggers the formation of
a second solidification front, propagating from the left side of the domain. Figures 10b
and 10c illustrate the left part of the cavity solidifying at a faster rate because of the
very low temperature imposed at the left wall, inducing a non symmetric evolution of the
solid-liquid interfaces. The solid part is represented in blue and corresponds to the region
of temperature θ ≤ 0. The signature of the conductive heat transfer is characterized by
the vertical shape of the left front. Inside the liquid, the initial convection cells facilitate
the heat transfer from the boundaries, resulting in a very rapid decrease of the fluid
temperature. Temperature gradients being smoothed out during this first stage, the
influence of the convection inside the liquid region is considerably reduced. As a result, the
velocity inside the liquid is reduced to very low values. From tϕ = 430 min (Figure 10d),
the shape of both interfaces is almost symmetrical. This is a signature of a conduction
dominated process. At tϕ = 510 min (Figure 10e) the liquid region starts to shrink at the
bottom side of the cavity. This process is accelerated and finally the liquid is trapped
in a thin pocket and disappears completely through the top of the cavity (Figure 10e).
The complete solidification ends at tϕ = 530 min, i. e. the liquid fraction is Lf = 0. The
adapted mesh, refined along the two solidification fronts, at tϕ = 300 min is reported in
Figure 10f, illustrating the efficiency of the adaptive mesh tool.

4.3.2. Solidification after a partial melting. Case PM.
In this case, the solidification starts from the state corresponding to Figure 11a at

tϕ = 59 min (τ = 0.032), when the liquid fraction is Lf = 0.5. The temperature of the
left wall is suddenly lower at θco = −1 as in the previous solidification simulation. The
time evolution of the process is illustrated in Figures 11a-e, while the adapted mesh
corresponding to tϕ = 90 min is plotted in Figure 11f. As in the previous case, a second
solidification front starts to propagate from the left side of the cavity. The straight shape
of the left solid front is always observed while the right solid front is impacted by the
convection cell present in the central liquid region (Figure 11b). The stronger convective
effect is most likely due to the huge temperature difference that occurs over a smaller
space distance (almost half of the volume is occupied by the solid state). This leads
to stronger temperature gradients in the liquid region, and consequently to a stronger
heat transfer. The two fronts merge to form a pocket of fluid which is connected to
the top of the cavity (Figure 11c-e). It is interesting to note that, as in the previous
solidification case, the left part is solidifying at a faster rate, hence the pocket of melted
PCM disappears completely from the right at the top side of the cavity (Figures 11c-e).
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Figure 11: Solidification of the PCM after a partial melting. Temperature iso-lines in the liquid phase.
The solid part is represented in blue and corresponds to the region of temperature θco ≤ θf = 0. Time
instants (panels a to e): tϕ = 59 min, tϕ = 70 min, tϕ = 90 min, tϕ = 131 min and tϕ = 200 min. The
adapted mesh corresponding to tϕ = 90 min is plotted in panel (f). Raco = 3.27 · 105.
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4.4. Analysis of the solidification cycle from two different initial conditions: complete
and partial melting. Cases CM and PM.

The aim of this subsection is to investigate the temporal evolution of some physical
properties of the solidification process, from two different initial conditions: i) completely
melted volume (case CM) and ii) partially melted volume (50% of the fluid is melted,
case PM).

Figure 12 represents the temporal evolution of the liquid fraction, the average Nusselt
number (calculated at the cooled wall and defined similarly to (21)) and the accumulated
heat input Q0, for the two investigated cases. Q0 is defined as follows:

Q0 =
∫ tϕ

0
Nudtϕ, (25)

Simulations for three values rδ = 1, rδ = 5 and rδ = 10 are carried out.
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Figure 12: Temporal evolution of the liquid fraction (Lf ), the Nusselt number Nu, and the accumulated
heat input Q0 during the entire melting-solidification cycle. Case CM (left) and case PM (right).
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Figure 12(a) illustrates the temporal evolution of the liquid fraction Lf for the CM
case. Complete melting occurs for tϕ = 185 min, after which solidification starts, with a
continuous decrease of Lf till complete solidification is achieved. For the lowest value of rδ,
corresponding to Raco = 3.27 · 105, the solidification process ends at tϕ = 530 min. Then,
the higher value of rδ is, the faster is the discharge process, with final times tϕ = 260 min
and tϕ = 230 min for cases Raco = 1.62 · 106 and Raco = 3.27 · 106, i.e. a drop of the
cold boundary temperature by a factor of 5 and 10 respectively. The solidification speed,
quantified by dLf/dtϕ is nearly constant during almost the whole process for each case.
This uniformity of the process indicates that the natural convection flow vanishes during
the solidification, and conduction remains the only heat transfer mode.

Figure 12(b) plots the temporal evolution of Lf for the PM case. As previously
discussed, 50% of the volume is melted, at time tϕ = 59 min, then solidification starts.
Furthermore, noticeable is that, despite that solidification process is started, Lf continues
to increase slightly at the very beginning of the discharge stage, and then decreases
monotonically towards 0 at tϕ = 240 min. The heat stored in the melted PCM continues
to melt the remaining solid PCM until the convection becomes negligible. It is worth
noticing that this behavior is not observed in the complete melting case because of the
imposed temperature at the right wall.

Let us now pay attention to the transfers occurring at the left wall, suddenly submitted
to a lower temperature. This is done through the temporal evolution of the Nusselt
number, and the temporal-integrated values of the Nusselt number, or the accumulated
heat input.

Panels (c) and (d) of the Figure 12 illustrate the Nusselt number for the CM and PM
cases. The three investigated Rayleigh numbers are shown, with clear differences between
them. This difference corroborates with that already reported for the melting case, over
shorter times scales. This indicates that the heat transfer during the solidification process
is fundamentally different from the melting one.

For the CM case, for Raco = 3.27 · 105, the Nusselt number first decreases sharply,
for tϕ ≤ 18 min, then it reaches a plateau at Nu = 7 during the complete melting.
At tϕ = 185 min, solidification starts and Nu suddenly decreases over very short times,
reaching negative values (Nu ≈ −15). It follows an increase of Nu with time, up to reaching
an asymptotic value close to 0 (zero temperature gradients, i.e. uniform temperature at
the left wall). The same mechanism is observed over a shorter time interval when Raco is
increased.

For the PM case, the Nusselt number also decreases sharply to a negative value when
the solidification starts. However, the convection flow remaining in the melted region
influences the heat transfer at the very beginning of the solidification process. The hot
fluid in the middle of the melted PCM is advected by the natural convection flow to
the boundaries and induces a temperature gradient at the left wall, resulting into an
oscilating behavior of the Nusselt number before reaching an asymptotic value. This is
in agreement with the previous comment about the melting continuing in the right part
of the cavity, despite the solidification has started, and the slight increase of the liquid
fraction at the very first time steps of the discharging process.

Both charge and discharge cycles are better illustrated in the time evolution of the
accumulated heat Q0 defined in (25), as it is shown in panels (d) and (e) of Figure 12.
Heat is first stored during the melting stage, corresponding to tϕ ≤ 185 min for CM
(Figure 12(d)) and τ ≤ 59 min for PM (Figure 12(e)), and is then restored during the
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solidification stage.
The CM case indicates higher value of Q0 (Q0 = 1400, for Raco = 3.27 · 105) compared
to the PM case (Q0 = 500), meaning that the CM case is more efficient in terms of
heat storage. However, PM case exhibits well balanced characteristic times between the
solidification and the melting stages for Raco = 3.27 · 105. Besides, when the Ra number
increases, the stored heat is discharged faster.
Moreover, the temperature and the velocity profiles drop sharply during the first step of
the cooling process and become almost equal to zero very early in the whole domain. This
means that conduction dominates the solidification process, and the convection becomes
rapidly negligible. As a consequence, the melting fronts are vertical and have a symmetric
position with respect to the center of the cavity.

5. Final discussion and conclusions

The n-octadecane PCM we simulated in this paper is generally used for buildings
purposes, due to its phase change temperature of 28oC. Zhu et al. (2009) and Kalnæs
and Jelle (2015) listed various applications, starting from free cooling, peak load shifting,
passive building systems and solar energy storage. For each case, the PCM is assumed to
melt during day-time and to solidify during the night-time.

We have developed and validated a numerical tool based on adaptive finite elements
methods to simulate melting and solidification processes of the PCM. Once our tool was
validated against available results, we used it to obtain new physical behaviours of PCM
and therefore to predict their practical use.

It was noticed that, when the same Rayleigh number is used to compare the melting
and solidification cycles, meaning that the charge and the discharge modes occur at the
same δT , the solidification is always slower than the melting. This behavior is linked to
the heat transfer mode leading each of the cycles. Convective heat transfer dominates
indeed the melting process, enhancing thus the heat transfer, while conduction is the
main heat transfer mode during the solidification, resulting to a slower operating process.
However, when the discharge temperature is decreased by a factor of 5, i.e both Raco and
Ste are increased by a factor of 5, the solidification and the melting occur over similar
times.

A first issue that has been brought up by Ascione et al. (2014) is the difficulty of the
PCM systems to completely discharge during night-time. Though, if the PCM does not
solidify entirely, the effectiveness of the system may be considerably reduced. In this case,
to have a shorter cooling period it is not advised to melt the PCM completely.

However, for solar energy storage applications, full melting of the PCM is needed
to utilize its latent heat storage capacity. Hence, a partial melting is not optimal. For
other applications, when shorter discharge time is needed, the use of external cooling
techniques is needed to ensure a colder discharge temperature.
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Gobin, D., Le Quéré, P., 2000. Melting from an isothermal vertical wall. synthesis of numerical comparison

exercise. Computer Assisted Mechanics and Engineering Sciences 7 (3), 289–306.
Gong, W., Johannes, K., Kuznik, F., 2015. Numerical simulation of melting with natural convection based

on lattice boltzmann method and performed with cuda enabled gpu. Communications in Computational
Physics 17 (5), 1201–1224.

Grigull, U., Sandner, H., 1984. Heat conduction. Hemisphere Publishing, New York, NY.
Hecht, F., 2012. New developments in Freefem++. Journal of Numerical Mathematics 20, 251–266.
Hecht, F., Mohammadi, B., 1997. Mesh adaptation by metric control for multi-scale phenomena and

turbulence. AIAA paper 97, 0859.
Hecht, F., Pironneau, O., Hyaric, A. L., Ohtsuke, K., 2007. FreeFem++ (manual). www.freefem.org.

27



Ho, C. J., Chu, C. H., 1993. Periodic melting within a square enclosure with an oscillatory surface
temperature. International journal of heat and mass transfer 36 (3), 725–733.

Hosseini, M. J., Rahimi, M., Bahrampoury, R., 2014. Experimental and computational evolution of a
shell and tube heat exchanger as a pcm thermal storage system. International Communications in
Heat and Mass Transfer 50, 128–136.

Jany, P., Bejan, A., 1988. Scaling theory of melting with natural convection in an enclosure. International
Journal of Heat and Mass Transfer 31 (6), 1221–1235.

Kalnæs, S., Jelle, B., 2015. Phase change materials and products for building applications: a state-of-the-
art review and future research opportunities. Energy and Buildings 94, 150–176.

Kheirabadi, A. C., Groulx, D., 2015. The effect of the mushy-zone constant on simulated phase change heat
transfer. In: Proceedings of CHT-15, ICHMT International Symposium on Advances in Computational
Heat Transfer, Ichmt Digital Library Online. Begel House Inc., pp. 528–549.

Kowalewski, A., Gobin, D., 2004. Phase change with convection: modelling and validation. Springer.
Kumar, M., Krishna, D. J., 2017. Influence of mushy zone constant on thermohydraulics of a pcm. Energy

Procedia 109, 314–321.
Ma, Z., Zhang, Y., 2006. Solid velocity correction schemes for a temperature transforming model for

convection phase change. International Journal For Numerical Methods Heat Fluid Flow 16 (11),
204–225.

Mencinger, J., 2004. Numerical simulation of melting in two-dimensional cavity using adaptive grid.
Journal of Computational Physics 198 (1), 243–264.

Morgan, K., 1981. A numerical analysis of freezing and melting with convection. Computer Methods in
Applied Mechanics and Engineering 28 (3), 275 – 284.

Okada, M., 1984. Analysis of heat transfer during melting from a vertical wall. International Journal of
Heat and Mass Transfer 27, 2057–2066.

Rubinstein, L., 1947. On the solution of stefan’s problem. Bull. Acad. Sci. URSS. Sér. Géograph.
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