
Contents lists available at ScienceDirect

International Journal of Heat and Fluid Flow

journal homepage: www.elsevier.com/locate/ijhff

Numerical modelling of a melting-solidification cycle of a phase-change
material with complete or partial melting
Aina Rakotondrandisaa, Ionut Danailaa, Luminita Danaila⁎,b

a Laboratoire de Mathématiques Raphaël Salem, CNRS UMR 6085, Université de Rouen Normandie, Avenue de l’Université, BP 12, Saint-Étienne-du-Rouvray F-76801,
France
b CORIA, CNRS UMR 6614, Université de Rouen Normandie, Avenue de l’Université, BP 12, Saint-Étienne-du-Rouvray F-76801, France

A R T I C L E I N F O

Keywords:
Phase change
PCM
Melting
Solidification
Navier–Stokes
Boussinesq
FreeFem++
Newton method
Finite element
Mesh adaptivity

A B S T R A C T

A high accuracy numerical model is used to simulate an alternate melting and solidification cycle of a phase
change material (PCM). We use a second order (in time and space) finite-element method with mesh adaptivity
to solve a single-domain model based on the Navier-Stokes-Boussinesq equations. An enthalpy method is applied
to the energy equation. A Carman-Kozeny type penalty term is introduced in the momentum equation to bring
the velocity to zero inside the solid region. The mesh is dynamically adapted at each time step to accurately
capture the interface between solid and liquid phases, the boundary-layer structure at the walls and the multi-
cellular unsteady convection in the liquid. We consider the basic configuration of a differentially heated square
cavity filled with an octadecane paraffin and use experimental and numerical results from the literature to
validate our numerical system. The first study case considers the complete melting of the PCM (liquid fraction of
95%), followed by a complete solidification. For the second case, the solidification is triggered after a partial
melting (liquid fraction of 50%). Both cases are analysed in detail by providing temporal evolution of the solid-
liquid interface, liquid fraction, Nusselt number and accumulated heat input. Different regimes are identified
during the melting-solidification process and explained using scaling correlation analysis. Practical con-
sequences of these two operating modes are finally discussed.

1. Introduction

The fundamental operational mode of latent thermal energy storage
(LTES) systems based on phase-change materials (PCM) is made of al-
ternate melting and solidification cycles that are not necessarily peri-
odic. Partial melting and/or solidification of the PCM are often ob-
served in applications and, in particular, in applications for buildings
(Zhu et al., 2009; Ascione et al., 2014). Using the total latent heat
storage potential offered by the PCM in energy storage requires a
complex design process. This could benefit from accurate numerical
simulations of such incomplete charging/discharging cycles. A wide
range of recent applications is concerned by such modelling issues,
including thermal energy storage (e. g. for solar power generation) and
passive temperature control (e. g. for modern portable electronics) de-
vices. For a review of various applications of PCMs with different
melting temperatures in thermal energy storage systems, see recent
reviews by Agyenim et al. (2010) and Kalnæs and Jelle (2015).

Actual challenges in the mathematical and numerical description of

a melting-solidification cycle include (i) the derivation of a realistic
theoretical framework, using transport equations for different involved
quantities (velocity, temperature, viscosity, density) and (ii) the design
of robust, accurate and efficient numerical methods for solving these
equations, for different initial and boundary conditions.

As far as point (i) is concerned, the solution of the Stefan problem
has been provided by Rubinstein (1947). Later, other important phy-
sical phenomena have been accounted for: gravity effects, convection in
the liquid phase, the presence of a mushy region containing both solid
and liquid parcels at the interface between the two phases, etc. For a
comprehensive review of these approaches, see Kowalewski and
Gobin (2004) and Faghri and Zhang (2006). A historical review of the
role played by convection in phase-change problems is provided by e.g.
Yao and Prusa (1989). In particular, the natural convection in the liquid
was proved to play an important role in the heat transfer between
phases and in the propagation of the melting/solidification front
(Morgan, 1981; Voller and Prakash, 1987; Jany and Bejan, 1988; Evans
et al., 2006; Vidalain et al., 2009; Wang et al., 2010a). As a
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consequence, modern simulations of phase-change systems are dealing
with the Navier–Stokes equations for the liquid phase, using the
Boussinesq approximation for thermal effects.

Single domain approaches are very convenient for numerical im-
plementations, since the same system of Navier–Stokes–Boussinesq
equations is solved inside both liquid and solid phases. Two ingredients
are necessary to make possible the use of the single domain model.
First, the velocity inside the solid phase has to be set to zero. This is
achieved by directly setting the velocity to zero in finite-volume
methods (e. g., Wang et al. (2010a,b)) or by using penalty models in
finite-elements methods, based on viscosity (Danaila et al., 2014) or
Carman-Kozeny terms (Belhamadia et al., 2012; Zhang et al., 2015;
Mencinger, 2004). Second, the energy equation is written using an
enthalpy-based model (Voller et al., 1987; Cao et al., 1989; Cao and
Faghri, 1990). The feature of the enthalpy method is its capability to
deal with both mushy and single point phase changes. Indeed, in case of
non-isothermal phase change, a mushy zone between the liquid and the
solid phases characterizes the system. In case of pure materials, the
phase change occurs at a fixed temperature; however an artificial
mushy-zone is introduced between the solid and the liquid parts, just to
regularize the enthalpy and other discontinuous parameters.

The challenge for numerical systems solving the single-domain
Navier–Stokes–Boussinesq model is to accurately capture the moving
solid-liquid interface. The problem is even more challenging when
several melting-solidification fronts, with distorted shapes are present
(e. g. the solidification after a partial melting). When fixed uniform
meshes are used, which is the case of a great majority of existing finite-
volume codes, the grid density has to be considerably increased in the
entire domain, making the simulation very expensive. When a trade-off
between accuracy and computational cost is sought, the fixed grid ap-
proach allows to place only a few computational cells inside the reg-
ularization region.

Dynamical mesh adaptivity becomes in this context a valuable tool
to concentrate the grid refinement effort only in regions displaying high
gradients of the computed variables (melting-solidification fronts,
thermal or viscous boundary layers). For the classical two-phase Stefan
problem, Belhamadia et al. (2004a) suggested an anisotropic mesh

adaptation algorithm based on solution-dependent metrics. The authors
extended their algorithm for the three-dimensional simulation of the
same problem (Belhamadia et al., 2004b) and showed that the use of
locally adapted meshes with strong anisotropy proved to be very ef-
fective in reducing the number of computational nodes for such phase-
change systems without convection. To simulate melting or solidifica-
tion problems with convection, Danaila et al. (2014) recently suggested
a dynamical mesh adaptation algorithm based on metrics control and
implemented with the FreeFem++ software (Hecht et al., 2007; Hecht,
2012). The advantage of this adaptive finite-element method, which
will be also used in the present study, is to make possible, with rea-
sonable computational cost, the re-meshing of the computational do-
main at each time step. A very refined discretization of the regular-
ization zone between solid and liquid phases is thus obtained, while
regions with low gradients are de-refined in order to balance the overall
computational effort.

The previously mentioned modern numerical approaches were
mostly applied to simulate separately melting or solidification problems
and only recently for alternate melting and solidification cycles
(Wang et al., 2010b). However, cyclic or periodic, melting and solidi-
fication problems have attracted considerable attention in the litera-
ture. Ho and Chu (1993) and Voller et al. (1996) studied numerically
periodic melting in a square enclosure. Recently, Hosseini et al. (2014)
presented experimental studies for the melting and the solidification of
a cylindrical PCM during a charging and discharging process and
Chabot and Gosselin (2017) studied analytically the effect of an alter-
nate heating and cooling in a cylindrical PCM, with periodic boundary
conditions.

The present contribution is scoped to offer an accurate numerical
description of the alternate melting and solidification of a typical PCM.
We use a finite-element numerical system with second-order accuracy
in time and space to solve the single-domain model based on
Navier–Stokes equations with Boussinesq approximation. The main
advantage of our method is that the mesh adaptivity algorithm could be
applied each time step. The mesh is thus dynamically refined with re-
spect to velocity and temperature variables, allowing to accurately
capture the interface between solid and liquid phases, the boundary-

Nomenclature

c specific heat, J/(kg K)
C dimensionless specific heat
CCK penalty constant
fB Boussinesq force
Fo Fourier number
g gravitational acceleration, m/s2

H cavity height, m
h enthalpy, J/kg
hsl latent heat of fusion, J/kg
k thermal conductivity, W/(m K)
K dimensionless thermal conductivity
Lf liquid fraction
Pr Prandtl number
Re Reynolds number
Ra Rayleigh number
Ste Stefan number
Nu Nusselt number
p pressure, N/m2

Q0 accumulated heat input
t, τ dimensionless times
tφ physical time, s
T temperature, K
ũ velocity, m/s
u dimensionless velocity

x̃ coordinates, m
x dimensionless coordinates

Greek

α thermal diffusivity, m2/s
β thermal expansion coefficient, 1/K
μ dynamic viscosity, kg/(m s)
ν kinematic viscosity, m2/s
ρ density, kg/m3

θ dimensionless temperature

Subscripts

ref reference state
s, l solid, liquid
h, c hot, cold
f fusion
co cooling

Reference quantities

δT T Th f
δTco T Tf co
rδ (δTco)/δT
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layer structure at the walls and the details of the unsteady convection
cells in the liquid.

We simulate a typical PCM configuration represented by a differ-
entially heated square cavity filled with an octadecane paraffin. This is
a well-established benchmark documented experimentally by
Okada (1984) and extensively used to validate numerical codes (Wang
et al., 2010a; Jany and Bejan, 1988; Mencinger, 2004). First, we si-
mulate the melting phase and use this case to validate our numerical
system against experimental and previously reported numerical data.
Second, we consider two operating cases for the solidification process.
In the first study case the solidification starts after a complete melting
of the PCM (liquid fraction of 95%), while in the second case after a
partial melting (liquid fraction of 50%). All cases are analysed in detail
by providing temporal evolution of solid-liquid interface, liquid frac-
tion, Nusselt number and accumulated heat input. Different heat
transfer regimes are identified and explained using scaling correlation
theory. Several practical implications for the two operating modes are
finally drawn.

The paper is organized as follows. Section 2 introduces the gov-
erning equations. Section 3 presents the numerical system. The final
Section 4 is devoted to extensive analysis of the results for the two
operating cases.

2. Governing equations

We consider a solid-liquid system placed in a two-dimensional
square cavity of height H. In the following, subscripts s and l will refer
to the solid and liquid phases, respectively.

For the numerical implementation, it is convenient to adopt a
single-domain approach to describe both phases using the same system
of equations. The model is based on the Navier–Stokes equations with
Boussinesq approximation, which is the natural description of the fluid
flow with natural convection. A penalty term is added to the mo-
mentum equations to bring the velocity to zero inside the solid region.
For the energy conservation equation, an enthalpy method is used to
model the phase change process. The single-domain model is described
in detail in the following sections.

2.1. Enthalpy method

The phase change process is modelled using an enthalpy method
(Voller et al., 1987; Cao et al., 1989; Cao and Faghri, 1990) with
temperature-based formulation. We start from the energy equation:

uh
t

h k T( ) ·( ˜) ·( ) 0,+ =
(1)

where tφ is the physical time, h the enthalpy, ρ the density, ũ the ve-
locity vector, T the temperature and k the thermal conductivity. To
make Eq. (1) valid for the entire domain containing both liquid and
solid phases, the total enthalpy h is regarded as the sum of the sensible
heat and the latent heat:

h c T s T( ( )),= + (2)

with c the local specific heat. The function s(T) is introduced to model
the jump of the enthalpy due to the phase change and is theoretically a
Heaviside step function depending on the temperature: it takes the zero
value in the solid region and a large value in the liquid, equal to hsl/c,
with hsl the latent heat of fusion. Linear (Voller et al., 1987; Wang et al.,
2010a) or smoother functions (Danaila et al., 2014) can be used to
regularize s(T) and also the jump of material properties (from solid to
liquid). In this paper we use a regularization of all step-type functions
by a continuous and differentiable hyperbolic-tangent function sug-
gested by Danaila et al. (2014) (see below). We assume moreover that
the undercooling phenomenon is negligible (see also
Wang et al. (2010b); Kowalewski and Gobin (2004)).

Equation (1) can be further simplified by considering the following

assumptions: (i) the density difference between solid and liquid phases
is negligible, i. e. l s= = is constant; (ii) the regularization zone is
narrow and the velocity inside this zone is very low. Consequently, the
final expression of the energy equation is obtained by combining (2)
and (1) and neglecting the convection term ucs·( ˜)1:

ucT
t

cT k T cs
t

( ) ·( ˜) · ( ) 0.+ + =
(3)

Furthermore, the essential feature of the current approach is that the
phase change front is not tracked explicitly but is instead recovered a
posteriori from the computed temperature field.

2.2. Navier-Stokes equations with Boussinesq approximation

The natural convection in the liquid part of the system is modelled
using the incompressible Navier–Stokes equations, with Boussinesq
approximation for buoyancy effects. To make this model valid for both
liquid and solid phases, the momentum equation is modified as follows:

u u u u e u
t

p
µ

f T A T˜ ( ˜· ) ˜ 1 ˜ ( ) ( ) ˜,l
B y

2+ + =
(4)

where p denotes the pressure, μl the dynamic viscosity of the liquid
(assumed to be constant) and fB(T) the Boussinesq force. The penalty
term uA T( ) ˜ is artificially introduced in (4) to extend this equation in
the solid phase, where the velocity, pressure, viscosity and Boussinesq
force are meaningless. Consequently, A(T) is modelled to vanish in the
liquid, where the Navier–Stokes–Boussinesq momentum equation is
recovered. A large value of A(T) is imposed in the solid, reducing the
momentum Eq. (4) to uA T( ) ˜ 0,= equivalent to ũ 0= . Exact expres-
sions for fB and A will be given in the next section.

Finally, the conservation of mass in the liquid phase is expressed by
the continuity equation:

u· ˜ 0.= (5)

2.3. Final system of equations for the single-domain approach

It is convenient to numerically solve a dimensionless form of the
previous equations. Using the cavity height H as length scale and a
reference state (ρ, Vref, Tf), we can define the following scaling for the
space, velocity, temperature and time variables:

x x u u
H V

T T
T

t
V
H

t˜ , ˜ , , ,
ref

f ref= = = =
(6)

Temperatures Th (hot) and Tc (cold) will be used to set isothermal walls
of the cavity. The difference T T T ,h f= with Tf the temperature of
fusion, is considered as the representative temperature scale for the
natural convection onset in the liquid region. As far as the solidification
process is concerned, a distinct discussion will be provided in
Section 4.3. Thus δT is used to define the Rayleigh number of the flow:

Ra g H T ,
l l

3
=

(7)

where k c/( )= is the thermal diffusivity and β the thermal expansion
coefficient. Note that the reference temperature in this scaling is Tf,
resulting in 0f = . This simplifies the identification of the regulariza-
tion zone, defined for .

Finally, the dimensionless system of equations to be solved in both
liquid and solid regions can be written as:

u· 0,= (8)

1 In the liquid phase, u ucs h·( ˜) · ˜ 0sl= = ; in the solid phase, s 0= ; in the
regularization region, it is assumed that ũ 0.=
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u u u u e u
t

p
Re

f A( · ) 1 ( ) ( ) 0,B y
2+ + =

(9)

uC
t

C K
Re

CS
t

( ) ·( ) ·
Pr

( ) 0,+ + =
(10)

where the linearised (Boussinesq) buoyancy force (fB), the Reynolds
(Re) and Prandtl (Pr) numbers are defined as:

f Ra
Re

Re
V H

µ
V H

( )
Pr

, , Pr .B
ref

l

ref

l

l

l
2= = = =

(11)

Non-dimensional conductivity and specific heat are functions of the
temperature θ,

K k
k

C c
c

( ) , ( ) ,
l l

= =
(12)

and have to take into account the variation of material properties be-
tween the solid and the liquid regions.

In the energy Equation (10), the non-dimensional function S s T/ ,=
introduced by the enthalpy model, is regularized across the regular-
ization region using a hyperbolic-tangent function (Danaila et al.,
2014):

S S S S
R

( )
2

1 tanh ,l
s l r

r
= + +

(13)

where θr is the central value around which we regularize (typically
0r f= = ) and Rr the smoothing radius (typically Rr = ). Note that

S 0s = and

S h c
T Ste
/ 1 ,l

sl l= = (14)

where Ste is the Stefan number. Regularizations similar to (13) are used
to model the variation inside the regularization region of functions (12)
defining material properties.

Finally, the penalty term in the momentum Eq. (9) takes the form
(Belhamadia et al., 2012; Kheirabadi and Groulx, 2015):

A C
b

( ) (1 ( ))
( )

,CK
2

3=
+ (15)

where φ(θ) is the phase-change variable, which is 1 in the fluid region
and 0 in the solid. Inside the regularization region, φ(θ) is regularized
using a hyperbolic-tangent function similar to (13). The constant CCK is
set to a large value (as discussed below) and the constant b 10 6= is
introduced to avoid division by zero.

3. Numerical method

To solve the system of Eqs. (8)–(10) we use a finite-element method
that was implemented using the open-source software FreeFem++
(Hecht et al., 2007; Hecht, 2012), using a large variety of triangular
finite elements to solve partial differential equations. FreeFem++ is an
integrated product with its own high level programming language and a
syntax close to mathematical formulations, making the implementation
of numerical algorithms very easy. Among the numerous numerical
tools offered by FreeFem++, the use of the powerful mesh adaptivity
function proved mandatory in this study to obtain accurate results
within reasonable computational time. The numerical code was opti-
mized to afford the mesh refinement every time step: the mesh density
was increased around the phase change interfaces, offering an optimal
resolution of the large gradients of all regularized functions (S, K, C, LF),
while the mesh was de-refined (larger triangles) in the solid part, where
a coarser mesh could be used. A simulation using a globally refined
mesh would require a prohibitive computational time for an equivalent
accuracy of the melting front resolution. Similar algorithms based on
FreeFem++ were successfully used for solving different systems of
equations with locally sharp variation of the solution, such as

Gross–Pitaevskii equation (Danaila and Hecht, 2010; Vergez et al.,
2016) or Laplace equations with nonlinear source terms (Zhang and
Danaila, 2013).

The space discretization is based on Taylor–Hood finite elements,
approximating the velocity with P2 Lagrange finite elements (piecewise
quadratic), and the pressure with the P1 finite elements (piecewise
linear). The temperature and the enthalpy are discretized using P1 finite
elements. The weak formulation of (8)–(10), necessary for the finite-
element implementation is described in detail in Danaila et al. (2014).
There are two novelties in the present numerical approach, when
compared to Danaila et al. (2014): (i) we use an approach based on the
Carman–Kozeny model to bring the velocity to zero inside the solid
phase, as described in the previous section, instead of the viscosity
penalty method (imposing a large value of the viscosity in the solid); (ii)
we increase the time accuracy of the algorithm by replacing the first-
order Euler scheme with the second-order Gear (BDF2) scheme (see also
Belhamadia et al. (2012)),

d
dt t

3 4
2

,
n n n1 1++

(16)

computing the solution n 1+ at time t n t( 1)n 1 = ++ by using two
previous states ( ,n n 1). We use this scheme to advance in time both
velocity ( u= ) and temperature fields ( = ). The other terms in Eqs.
(8)–(10) are treated implicitly (i. e. taken at time tn 1+ ). The resulting
non-linear equations are solved using a Newton algorithm.

3.1. Mesh adaptivity

Mesh adaptivity by metric control is a standard function offered by
FreeFem++ (Hecht, 2012). The key idea for the mesh adaptivity (see
also Castro-Diaz et al. (2000); Hecht and Mohammadi (1997);
George and Borouchaki (1998)) is to modify the scalar product used in
an automatic mesh generator to evaluate distance and volume, in order
to construct equilateral elements according to a new adequate metric.
The scalar product is based on the evaluation of the Hessian of the
variables of the problem. Indeed, for a P1 discretization of a variable χ,
the interpolation error is bounded by:

c x y z y z| | sup sup | ( )|( , )h
T x y z T

0
, ,h

=
(17)

where Πhχ is the P1 interpolate of χ, x| ( )| is the Hessian of χ at point x
after being made positive definite. We can infer that, if we generate,
using a Delaunay procedure (e.g. George and Borouchaki (1998)), a
mesh with edges close to the unit length in the metric ,c

| |
( )= the

interpolation error will be equally distributed over the edges ai of the
mesh. More precisely, we have

c
a a1 1.i

T
i (18)

The previous approach could be generalized for a vector variable
[ , ]1 2= . After computing the metrics 1 and 2 for each variable,

we define a metric intersection ,1 2= such that the unit ball
of is included in the intersection of the two unit balls of metrics 2
and 1 (for details, see the procedure defined in Frey and
George (1999)).

For the cases considered in this study, we used five metrics inter-
section to adapt the mesh, based on uS S T T, , , ,n n n n n1 1 1+ + + . To reduce
the impact of the interpolation on the global accuracy for time-de-
pending problems, we consider the metrics computed from actual (at
tn 1+ ) and previous (at tn) values, for the same variable used for adap-
tivity (see also Belhamadia et al. (2004a)). The anisotropy of the mesh
is a parameter of the algorithm and it was set to values close to 1. This is
an inevitable limitation since we also impose the minimum edge-length
of triangles to avoid generating a too large number of nodes.

Some examples of the adapted mesh generated during the compu-
tation of the solidification phase are given in Section 4.3. The method is
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able to accurately capture the liquid-solid interface during the melting
process and the two solidification fronts appearing during the solidifi-
cation of the PCM. Mesh adaptivity is performed at each time step and
offers a refined discretization of the regularization region where sharp
gradients have to be accurately captured. The number of triangles for
the melting case is N 12, 000t = and N 17, 000t = for the solidification
phase. Non-adapted grids offering the same spatial resolution every-
where inside the computational domain would have resulted for the
two cases in N 9.94·10t

10= and N 10·10t
10= triangles, respectively.

Consequently, mesh adaptivity greatly helps in reducing the computa-
tional time.

4. Results

The basic configuration considered in this study is that used in the
experimental study of Okada (1984). It consists of a differentially he-
ated square cavity (see Fig. 1a), filled with an octadecane paraffin. The
physical (non-dimensional) parameters are: Ra 3.27·10 ,5= Pr 56.2=
and Ste 0.045= . We numerically investigate the following cases:

(i) First we proceed to the validation of our numerical method on
the basis of the melting of the PCM. The material is initially solid
( 0.010 = ) and melts progressively starting from the left boundary,
maintained at the hot temperature 1h = . The right boundary is also
isothermal with cold temperature 0.01c = . This case is a well es-
tablished benchmark used to validate numerical codes for phase-change
systems. Three simulations are carried out to demonstrate the accuracy
and the robustness of our method. The first validation case reproduces
the experimental study of Okada (1984), the second corresponds to the
experimental investigation of Gong et al. (2015) and the last considers
the numerical simulations presented in Bertrand et al. (1999). For the
last cases, the melting front, the Nusselt number and the liquid fraction
provided by our code are compared with experimental and numerical
results.

(ii) The melting of the PCM (Fig. 1b). Having validated our code, we
pay a closer attention to other physical characteristics of the melting,
such as the temporal evolution of the temperature distribution in the
cavity, the Nusselt number, etc. We discuss and compare our results
with those previously published: experimental (Okada, 1984) and nu-
merical (Okada, 1984; Wang et al., 2010a; Ma and Zhang, 2006;
Danaila et al., 2014). The scaling formulae suggested by Jany and
Bejan (1988) are used to validate the Nusselt number of our simulation.
This is described in Section 4.2.

(iii) After the complete melting of the PCM (i. e. the melting front is
very close to the right wall and the liquid fraction is 0.95), we trigger
the solidification process by cooling the left-wall below the fusion
temperature, at a temperature θco, whilst the right wall is still kept at

0.01c = . Note that, as discussed later, θco and θc are not necessarily
equal. The solid phase will propagate into the cavity from both left and
right sides (Fig. 1c). This case is computationally challenging, since two

melting/solidification fronts have to be accurately followed during the
simulation. The process is simulated up to the complete solidification of
the PCM and the non-trivial evolution of the liquid phase is depicted in
detail. This case is described in Section 4.3.1.

(iv) This case is similar to the previous one, but the solidification
starts after a partial melting of the PCM (i. e. the melting front is located
approximatively at half distance between the two vertical walls and the
liquid fraction is 0.5). The analysis of this case attempts to provide
answers about the effectiveness of different possible functioning cycles
of the PCM. This case is described in Section 4.3.2.

4.1. Numerical validation

We validate our numerical method against experimental and nu-
merical studies of the melting of the octadecane PCM available in the
literature. Three cases are investigated. The first consists of an experi-
mental study of the melting of the PCM in a differentially heated square
cavity of height H 1.5= cm by Okada (1984). The second reproduces
the melting of the PCM included in a transparent building brick of
height H 15.2= cm, investigated experimentally and numerically by
Gong et al. (2015). The last compares our results with various numer-
ical methods, presented by Bertrand et al. (1999), simulating the
melting of octadecane, considering a higher value of the Rayleigh
number.

For the simulation of the melting process (Fig. 1b), we use the fol-
lowing choice for the scaling introduced in Section 2.3, Eqs. (6) and
(11):

V
H

t t
H

Re 1.ref
l l

2= = = (19)

Moreover, a second dimensionless time τ is introduced in order to assess
our results with respect to the numerical data of Bertrand et al. (1999)
and the analytical correlation of Jany and Bejan (1988):

Ste Fo Ste
t

H
Ste t

Pr
· · · ,2= = = (20)

where Fo is the Fourier number.
We first examine the location of the interface obtained in our si-

mulations. The comparison with the experimental results of
Okada (1984) and Gong et al. (2015) is presented in Fig. 2. The ex-
perimental study of Okada (1984) in Fig. 2(a) consists of a differentially
heated square cavity of dimensions 1.5 cm × 1.5 cm, filled with an
octadecane paraffin. The non-dimensional parameters are:
Ra 3.27·10 ,5= Pr 56.2= and Ste 0.045= (Benchmark 1).

For two particular time instants ( 0.032= and 0.063= ), we could
compare our results to available experimental (Okada, 1984) and nu-
merical (Okada, 1984; Wang et al., 2010a; Danaila et al., 2014) data. In
the experimental set up of Okada (1984), the author has reported that
the top of the PCM was not perfectly insulated and consequently the
growth of the experimental upper melting front was delayed. In

Fig. 1. Sketch of the computational domain and boundary conditions. General configuration (panel a) with isothermal ( cst.= ) vertical (x 0= and x 1= ) walls and
adiabatic ( n/ 0= ) top and bottom walls. Configuration for the melting phase (panel b) with a hot left wall ( 0h= > ) and a cold right wall ( 0c= < ), followed
by a solidification phase (panel c), when the temperature of the left wall is cooled to 0co= < .

A. Rakotondrandisa et al. International Journal of Heat and Fluid Flow 76 (2019) 57–71

61



Fig. 2(a), for the two time instants 0.032= and 0.063,= the current
work agrees well with the experimental results of (Okada, 1984) at the
bottom part of the melting front. However, our results overestimate the
location of the front in the top part of the cavity, which could be related
to the experimental heat loss mentioned by the author.

Moreover, our results are qualitatively in a better agreement with
experimental data than previously published numerical results. This is a
direct consequence of the precise tracking of the melting front achieved
by the mesh adaptivity performed at each time step. This assessment
also allowed us to finely tune the value of the constants used in the
model (15). Even though it is generally assumed that a large value for
CCK must be set, the exact value of this constant could influence the
accuracy of the results (Kheirabadi and Groulx, 2015; Kumar and
Krishna, 2017). This choice of the value of this constant is a still open
problem. Very good agreement with the experimental result of
Okada (1984) is obtained for CCK varying in the range [106, 108].
Nevertheless, imposing a too large value C 10CK

10= results in artifi-
cially slowing the propagation of the melting front. We set for all
subsequent simulations C 10CK

6= .
Fig. 2(b) illustrates the interface location in the experiment and

simulations of Gong et al. (2015), who studied the melting of an oc-
tadecane PCM inside a transparent building brick of dimensions
15.2 cm×3 cm. Their numerical simulation has been performed using
a Lattice Boltzmann method. The non-dimensional parameters were:
Ra 2.48·10 ,8= Pr 50= and Ste 0.072= (Benchmark 2). The difficulty
here compared to the first validation case is the presence of a stronger
natural convection flow in the fluid due to the high value of the Ray-
leigh number. The location of the interface is compared for five parti-
cular time instants: 0.0002,= 0.00050, 0.00067, 0.00125 and
0.00252. We notice a very good agreement with the numerical and the
experimental data of Gong et al. (2015).

A last validation case is also investigated to test the robustness of the
method. The physical parameters are: Ra 10 ,8= Pr 50= and Ste 0.1=
(Benchmark 3). Bertrand et al. (1999) compiled results provided by five
different authors (Lacroix, Le Quéré, Gobin–Vieira, Delannoy and Bin-
net–Lacroix). Results provided by these authors will be hereafter re-
ferred to as (say) ‘Lacroix, from Bertrand et al. (1999)’. They have at-
tempted a first comparison by taking several numerical methods to
compute the basic configuration presented in this section. Two in-
vestigators among the five failed to predict the process and showed
unrealistic behaviors (see Figs. 3 and 4): Lacroix and Delannoy seem to
be insufficiently converged (Fig. 3), and Binet-Lacroix overestimates

the average Nusselt number by more than 30% (Fig. 4). Hence, this
collection of results allows us to compare our numerical method and
check whether or not realistic results are obtained for complex physical
configurations.

We further inspect the melting front, the temporal evolution of the
liquid fraction Lf and the Nusselt number Nu at the left wall (x 0= ), for
each of the five methods presented by Bertrand et al. (1999). For the
liquid fraction, the initial solid state corresponds to L 0,f = while L 1f =
indicates the complete melting of the PCM. The average Nusselt number
Nu at x 0= left boundary is defined as follows:

Nu
x

dy.
x0

1

0
=

= (21)

The phase-change interface for four time steps, 5·10 ,4=
2·10 ,3= 6·10 3= and 1·10 2= is represented in Fig. 3. Our results

are for each case in fairly good agreement with those of Gobin and
those of Le Quéré. Gobin uses a front-tracking method using a co-
ordinate transformation with a finite volume method with a 62×42
grids. Le Quéré solved a single domain model using a second order
scheme with a finite volume method with a 192× 192 grids (Gobin and
Le Quéré (2000)).

The time evolution of the Nusselt number and the liquid fraction are
presented in Fig. 4. A very good agreement is obtained with Gobin and
Le Quéré. A relative difference, less than 2% is noticed for the Nusselt
number, and a dispersion, smaller than 4%, for the liquid fraction.

The high value of the Rayleigh number Ra 108= results in a very
demanding numerical test. The high velocity, inducing a very narrow
thermal boundary layer can lead to unrealistic results and some nu-
merical methods have failed. The interest of the mesh adaptation is
clearly evidenced since we initially use only 40× 40 grid points.

4.2. Melting of the PCM

After the validation of the code, we now pay a closer attention to the
time evolution of different physical parameter of the system, during the
melting phase. We recall that the reference temperature is the fusion
temperature and thus 0f = . The regularization range is defined for

,1 2 with 0.011 2= = . For this case, the physical properties
of the material are identical in both liquid and solid phases, and, con-
sequently, we obtain from (12) that and K ( ) 1= . This choice of the
scaling was made to have the same set of parameters as in previous

Fig. 2. Location of the interface during the melting of the PCM. (a) Comparison with experimental data of Okada (1984) and numerical results of Danaila et al. (2014)
and Wang et al. (2010a) for two time instants ( 0.032= and 0.063). Benchmark 1: Ra 3.27·10 ,5= Pr 56.2= and Ste 0.045= (b) Comparison with both experiment and
simulation of Gong et al. (2015) for five time instants ( 0.0002,= 0.00050, 0.00067, 0.00125, 0.00252). Benchmark 2: Ra 2.48·10 ,8= Pr 50= and Ste 0.072= .
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numerical simulations of this case (Okada, 1984; Wang et al., 2010a;
Ma and Zhang, 2006; Danaila et al., 2014). The physical parameters
correspond to the basic configuration presented in Fig. 1: Ra 3.27·10 ,5=
Pr 56.2= and Ste 0.045= .

4.2.1. Time evolution
We start by analysing the time evolution of the melting process. At
0,= the material is solid and the initial temperature is set to

0.010= = everywhere inside the cavity. Then, the temperature of
the left wall is suddenly increased to 1,h = while the right wall is

maintained at the same cold temperature 0.01c = . The material starts
to melt, with a melting front (identified by the isoline 0f= = )
propagating from the left to the right side of the domain. The time
evolution of the phase-change system is depicted in Fig. 5 for re-
presentative time instants, also reported in previous studies.

From Fig. 5, we can easily identify three different regimes de-
scribing the time evolution of the melting process.

• From 0= to 0.004= (Fig. 5a), we note the vertical shape of the
melting front, well predicted by the classical conduction model of

Fig. 4. Time evolution of the Nusselt number (a) and the liquid fraction (b) compared with five simulations presented by Bertrand et al. (1999). Ra 2·10 ,8= Pr 50=
and Ste 0.1= .

Fig. 3. Melting of a PCM (Benchmark 3). Location of the solid-liquid interface at dimensionless time (panels a to d) 0.0005,= 0.002,= 0.006= and 0.01,=
compared with five simulations presented by Bertrand et al. (1999). Ra 2·10 ,8= Pr 50= and Ste 0.1= .
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Stefan (1891). This indicates that, at this stage, heat transfer is
dominated solely by conduction.
• Between 0.016= to 0.032= (Fig. 5b), the natural convection in
the liquid phase starts to alter the shape of the melting front. A
mixed conduction and convection regime rules the heat transfer.
Convection mainly affects the upper part of the fluid motion, while
conduction still dominates in the lower part. As the volumetric
thermal expansion coefficient β is positive, we expect a clockwise
circulation of the liquid inside the convection cell, as noted by
Jany and Bejan (1988). This also makes the liquid-solid interface to
move faster at the top of the cavity, explaining the deformed shape
of the melting front, which is a signature of the convection effects

(see also Kowalewski and Gobin (2004)).
• After 0.032= (Figs. 5c and d), natural convection dominates the
heat transfer process and impacts radically the shape and motion of
the solid-liquid interface. The melting front line exhibits four dis-
tinct regions characterized by different slopes with respect to the
vertical axis. The largest slope is observed at the top of the cavity
and is related to the particular shape of the convection cell. Note
that top and bottom parts of the interface are normal to the cavity
boundaries because of the imposed adiabatic boundary conditions.
• After 0.08= the melting front is nearly touching the right wall of
the cavity, firstly at the top (Fig. 5e) of the cavity. The melting
process continues and the fluid progressively fills the cavity, with a

Fig. 5. Complete melting of the PCM. Temperature isolines and streamlines in the liquid phase. The solid part is represented in blue and corresponds to the region of
temperature 0f = . Time instants (panels a to f): 0.004; 0.016; 0.032; 0.063; 0.08; 0.2= . Ra 3.27·10 ,5= Pr 56.2= and Ste 0.045= . (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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melting front deforming into a vertical line. The simulation of the
melting process is stopped at 0.2= (Fig. 5f), when it is numerically
difficult to separate the melting front from the right wall boundary.
At this time instant, the fluid fraction reaches the value of 0.95 and
the melting of the PCM is considered to be complete, even though a
small region of solid PCM remains at the lower right bottom of the
cavity. Note from Fig. 5f the existence in the fluid of two re-
circulating zones instead of a single one observed during previous
stages.

4.2.2. Scaling analysis
The melting of the octadecane was theoretically studied by Jany and

Bejan (1988). Combining scaling theory and numerical modelling, they
suggested closed-form correlations for the temporal evolution of the
average Nusselt number (Nu) defined at the hot boundary (x 0= ),
under the form:

Nu c Ra c Ra( ) 1
2

1
2

[1 ( ) ] .n n
1

1/4
2

3/4 3/2 1/= + +
(22)

The values of the constants were fitted from numerical data: c 0.27,1 =
c 0.0275,2 = and n 2= .

In Fig. 6 we compare the time evolution of the Nusselt number
obtained from our numerical data (see Fig. 1) to experimental results of
Okada (1984) and predictions obtained from the correlation (22). Our
results perfectly fit the theoretical prediction of Jany and Bejan (1988).
They are also in good agreement with experimental data, suggesting,
however, that very accurate measurements and numerical simulations
are needed to validate theoretical scaling analysis.

The time evolution of the Nusselt number can be correlated with the
different heat transfer regimes analysed in the previous section:

1. A pure conduction regime for τ ≳ 0 (corresponding to Fig. 5a),
characterized by the law Nu (2 ) 1/2. Since the temperature gra-
dient has initially huge values because of the sudden increase of the
temperature of the left wall, the Nusselt number rapidly decreases
during the first stage of the flow evolution. The evolution law
Nu 1/2 can be also obtained from the Neumann exact solution
supported by Grigull and Sandner (1984). The signature of this
conduction regime is the slow heat transfer characterized by a
monotonic decrease of the Nusselt number, down to a minimum
corresponding to Ra 0.021/2 = .

2. A mixed conduction-convection regime for 0.02≤ τ≤0.05 (illu-
strated in Fig. 5b). The influence of the Rayleigh number in (22)
starts to be important and a good approximation for this regime is:
Nu Ra1/2 3/2+ .

3. A convection dominated regime for Ra 1/2> (corresponding to
Figs. 5c–e). In the asymptotic limit of large τ, the simplified law
Nu∼ Ra1/4 is obtained. The plateau at the value of Ra1/4 corre-
sponds to the pure convective transfer and is observed in Fig. 6 for
0.05≤ τ≤0.1. Numerical results show a slight decrease of the Nu
in the final stage (τ≥0.1), when the melting front starts to touch
the right wall of the cavity (see Figs. 5e and f). The correlation
model of Jany and Bejan (1988) is not valid for this late evolution of
the melting process.

Another important basic quantity describing the melting process is
the liquid fraction Lf. The time evolution of the liquid fraction (Fig. 7a)
displays three regimes during the melting process. Lf initially grows as
τ1/2, which is a typical law for a conduction-dominated heat transfer.
Then, a linear evolution is observed, until the melting front reaches the
right wall. This linear regime corresponds to the quasi-steady state
observed in the evolution of the Nusselt number (Fig. 6).

Using the asymptotic limits of Eq. (22) for τ→0 (pure conduction)
and τ→∞ (pure convection), Jany and Bejan (1988) suggested the
following correlation law for the time evolution of the liquid fraction:

L c Ra( ) [( 2 ) ( ) ] ,f
5

1
1/4 5 1/5= + (23)

where c 0.271 = is the same constant as in (22). We compare in Fig. 7b
our numerical results with the predictions based on (23) within the
validity domain of the analysis, i. e. before the melting front reaches the
right wall of the cavity. A very good agreement is found with theore-
tical predictions and also with previously published numerical results
(Wang et al., 2010a).

4.2.3. Influence of the Rayleigh number
To assess on the influence of the Rayleigh number on the evolution

of the melting process, we performed two other simulations by multi-
plying the initial value of Ra 3.27·105= by a factor of 5 and 10, re-
spectively. The exact values are: Ra 1.62·106= and Ra 3.27·106= . First,
we increase the height H of the cavity by a factor of 53 and 103 and
consider the same δT. Thus the Stefan number Ste is kept constant.
Second, we increase the temperature difference parameter δT by
keeping H constant. It corresponds of an increased value of the Stefan
number by a factor of 5 and 10: Ste 0.223= and Ste 0.45= . Figs. 8 and 9
show the temporal evolution of the liquid fraction Lf, and the average
Nusselt number defined at the hot wall. The same heat transfer regimes
described previously are observed for each case: conduction, mixed
conduction-convection and convection.

Fig. 8(a) indicates that increasing the Rayleigh number by keeping
δT constant induces a slower melting rate. This is the expected beha-
viour since the size of the PCM is increased by a factor of 2, and the
velocity u is hence decreased to satisfy the condition Re 1= . We note
however a non-monotonic variation of the time necessary to melt a
fixed value of fluid. For instance, to achieve L 0.5f = (50% of the vo-
lume is melted), an increase of Ra by a factor of 10 leads to a growth of
the melting time by a factor of 1.7. Nonetheless, when Ra is 5 times
larger, the necessary time only increases by a factor of 2. This is most
likely due to the non-linearity of the problem and requires further in-
vestigation. Furthermore, the Nusselt number reported in Fig. 8(b)
shows that the higher the Rayleigh number is, the higher is the Nusselt
number. This observation is consistent, since the temperature gradient
is integrated along a greater heated wall.

Fig. 9(a) shows that by increasing the value of δT (and consequently
increasing the Rayleigh number and the Stefan number), the PCM melts
faster. We note that the height H of the cavity is kept constant, hence
the natural convection flow in the melted PCM is enhanced when the
Rayleigh number is increased. As a consequence, the convection-
dominated regime is reached earlier, as shown by the shift of the
minimum of the Nu to lower values of tφ (Fig. 9(b)). This evolution is
also observed for the liquid fraction. As expected, an increase of the

Fig. 6. Complete melting of the PCM. Time evolution of the average Nusselt
number defined at the hot (left) wall (cf. Eq. (21)) (solid line). Comparison with
the experimental results of Okada (1984) (dashed line) and the predictions
using the correlation (22) suggested by Jany and Bejan (1988) (dash-dot line).
Ra 3.27·10 ,5= Pr 56.2= and Ste 0.045= (Benchmark 1).
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Rayleigh and Stefan numbers is followed by an enhancement of the heat
transfer during the melting, and consequently an improved efficiency of
the PCM.

4.3. Solidification of the PCM

After the melting of the PCM, we simulate the solidification process.
We consider two cases:

– case CM: solidification after a Complete Melting of the material
(L 0.95,f = Fig. 5f) and

– case PM: solidification after a Partial Melting (L 0.5,f = Fig. 5d).
As emphasized previously, the natural convection occurring in the

melting PCM is driven by the temperature difference T T Th f= . The
dimensionless number that depicts the ratio between the forces creating
and those refraining motion, is the Rayleigh number, which appears in
the dimensionless form of the Navier–Stokes equations with Boussinesq
approximation (Section 2). The higher is its value, the more intense is
the heat transfer. Conversely, during the solidification, the phase-
change is handled by the discharged temperature Tco, where the sub-
script ‘co’ stands for ‘cooling’. In the geometry discussed in this paper,
this represents the temperature of the left wall. Thus, the relevant

temperature difference in the solid phase of the PCM is T T Tco f co=
and the dimensionless temperature in the solid phase should be defined
with respect to this δTco. It is then obvious, for Eqs. (7) and (11), that
the Rayleigh number should be defined using the same temperature
difference. However, because the Rayleigh number, as emphasized
earlier, amounts for the motion created by hot temperature difference,
we choose to keep the same definition for the Rayleigh number as for
the melting case, still relevant for the melted core of the flow, where the
persisting motion acts as a boundary condition for the solidification
process. Under these conditions, in regard with the solidification pro-
cess, we introduce a new parameter, r T T T/( ),co h f= the normalised
temperature is with respect to T Tf co and the relevant Rayleigh
number will then be Ra r Ra,co = × where Raco is the pseudo-Rayleigh
number for solidification with a melted boundary. In the following, we
will describe the process of solidification using three different values of
rδ. A new scaling is moreover introduced:

V
H

t t
H

Re
Pr

1
Pr

.ref
l l

2= = =
(24)

The solidification stage is indeed a slower process compared to the
melting, therefore the use of an adapted scaling is more relevant. This

Fig. 7. Complete melting of the PCM (Benchmark 1). (a) Time evolution of the liquid fraction for the complete melting of the PCM. (b) Comparison of our results
(solid line) with the numerical results of Wang et al. (2010a) (dashed line) and the predictions using the correlation (23) suggested by Jany and Bejan (1988) (dash-
dot line).

Fig. 8. Complete melting of the PCM. Influence of the value of the Rayleigh number (Ra) on the time evolution of the average Nusselt number defined at the hot (left)
wall (a) and liquid fraction (b). The reference case (Ra 3.27·105= ) is represented by red continuous lines. The value of the Ra was increased by a factor of 5 and 10,
respectively while the Stefan number ( Ste) is kept constant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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leads to a different time scaling for each cycle.
The simulation of the solidification process starts by imposing at the

left-wall a constant (cooling) temperature.
The solid phase will propagate into the cavity from both left and

right sides, which makes this case computationally challenging. The
mesh adaptivity capabilities of our numerical code made possible to
accurately track the two solidification fronts identified by the isoline

0= . In the discussion below, the solidification process starts at phy-
sical time t 185= min (corresponding to 0.2= ) for case CM and at
t 59= min ( 0.06= ) for case PM.

4.3.1. Solidification after a complete melting. case CM.
The simulation continues from the state corresponding to Fig. 5 at

t 185= min ( 0.063= ) and solidification follows after a complete
melting. Fig. 10 shows the evolution of the PCM during the solidifica-
tion process. At t 185= min (Fig. 10a), the liquid fraction is L 0.95f =
and the melting/solidification front is close to the right wall of the
cavity. Setting a low temperature 1co = at the left wall, while the
right wall is maintained at a constant temperature ( 0.01right f= )
triggers the formation of a second solidification front, propagating from
the left side of the domain. Figs. 10b and 10c illustrate the left part of
the cavity solidifying at a faster rate because of the very low tem-
perature imposed at the left wall, inducing a non symmetric evolution
of the solid-liquid interfaces. The solid part is represented in blue and
corresponds to the region of temperature θ≤0. The signature of the
conductive heat transfer is characterized by the vertical shape of the left
front. Inside the liquid, the initial convection cells facilitate the heat
transfer from the boundaries, resulting in a very rapid decrease of the
fluid temperature. Temperature gradients being smoothed out during
this first stage, the influence of the convection inside the liquid region is
considerably reduced. As a result, the velocity inside the liquid is re-
duced to very low values. From t 430= min (Fig. 10d), the shape of
both interfaces is almost symmetrical. This is a signature of a conduc-
tion dominated process. At t 510= min (Fig. 10e) the liquid region
starts to shrink at the bottom side of the cavity. This process is ac-
celerated and finally the liquid is trapped in a thin pocket and dis-
appears completely through the top of the cavity (Fig. 10e). The com-
plete solidification ends at t 530= min, i. e. the liquid fraction is
L 0f = . The adapted mesh, refined along the two solidification fronts, at
t 300= min is reported in Fig. 10f, illustrating the efficiency of the
adaptive mesh tool.

4.3.2. Solidification after a partial melting. case PM.
In this case, the solidification starts from the state corresponding to

Fig. 11a at t 59= min ( 0.032= ), when the liquid fraction is L 0.5f = .
The temperature of the left wall is suddenly lower at 1co = as in the
previous solidification simulation. The time evolution of the process is
illustrated in Figs. 11a–e, while the adapted mesh corresponding to
t 90= min is plotted in Fig. 11f. As in the previous case, a second
solidification front starts to propagate from the left side of the cavity.
The straight shape of the left solid front is always observed while the
right solid front is impacted by the convection cell present in the central
liquid region (Fig. 11b). The stronger convective effect is most likely
due to the huge temperature difference that occurs over a smaller space
distance (almost half of the volume is occupied by the solid state). This
leads to stronger temperature gradients in the liquid region, and con-
sequently to a stronger heat transfer. The two fronts merge to form a
pocket of fluid which is connected to the top of the cavity (Figs. 11c–e).
It is interesting to note that, as in the previous solidification case, the
left part is solidifying at a faster rate, hence the pocket of melted PCM
disappears completely from the right at the top side of the cavity
(Figs. 11c–e).

4.4. Analysis of the solidification cycle from two different initial conditions:
complete and partial melting. cases CM and PM.

The aim of this subsection is to investigate the temporal evolution of
some physical properties of the solidification process, from two dif-
ferent initial conditions: (i) completely melted volume (case CM) and ii)
partially melted volume (50% of the fluid is melted, case PM).

Fig. 12 represents the temporal evolution of the liquid fraction, the
average Nusselt number (calculated at the cooled wall defined similarly
to (21) and the accumulated heat input Q0, for the two investigated
cases. Q0 is defined as follows:

Q Nu dt ,
t

0 0
= (25)

Simulations for three values r 1,= r 5= and r 10= are carried
out.

Fig. 12(a) illustrates the temporal evolution of the liquid fraction Lf
for the CM case. Complete melting occurs for t 185= min, after which
solidification starts, with a continuous decrease of Lf till complete so-
lidification is achieved. For the lowest value of rδ, corresponding to
Ra 3.27·10 ,co

5= the solidification process ends at t 530= min. Then,
the higher value of rδ is, the faster the discharge process is, with final

Fig. 9. Complete melting of the PCM. Influence of the value of the Rayleigh number (Ra) on the time evolution of the average Nusselt number defined at the hot (left)
wall (a) and liquid fraction (b). The reference case (Ra 3.27·105= ) is represented by red continuous lines. The value of the Ra and Ste were increased by a factor of 5
and 10, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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times t 260= min and t 230= min for cases Ra 1.62·10co
6= and

Ra 3.27·10 ,co
6= i.e. a drop of the cold boundary temperature by a factor

of 5 and 10 respectively. The solidification speed, quantified by dLf/dtφ
is nearly constant during almost the whole process for each case. This
uniformity of the process indicates that the natural convection flow
vanishes during the solidification, and conduction remains the only
heat transfer mode.

Fig. 12(b) plots the temporal evolution of Lf for the PM case. As
previously discussed, 50% of the volume is melted, at time t 59= min,
then solidification starts. Furthermore, noticeable is that, despite that

solidification process is started, Lf continues to increase slightly at the
very beginning of the discharge stage, and then decreases mono-
tonically towards 0 at t 240= min. The heat stored in the melted PCM
continues to melt the remaining solid PCM until the convection be-
comes negligible. It is worth noticing that this behavior is not observed
in the complete melting case because of the imposed temperature at the
right wall.

Let us now pay attention to the transfers occurring at the left wall,
suddenly submitted to a lower temperature. This is done through the
temporal evolution of the Nusselt number, and the temporal-integrated

Fig. 10. Solidification of the PCM after a complete melting. Temperature isolines in the liquid phase. The solid part is represented in blue and corresponds to the
region of temperature 0co f = . Time instants (panels a to e): t 185= min, t 231= min, t 300= min, t 430= min and t 510= min. The adapted mesh
corresponding to t 300= min is plotted in panel (f). Ra 3.27·10co

5= . (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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values of the Nusselt number, or the accumulated heat input.
Panels (c) and (d) of the Fig. 12 illustrate the Nusselt number for the

cases CM and PM. The three investigated Rayleigh numbers are shown,
with clear differences between them. This difference corroborates with
that already reported for the melting case, over shorter times scales.
This indicates that the heat transfer during the solidification process is
fundamentally different from the melting one.

For the CM case, for Ra 3.27·10 ,co
5= the Nusselt number first de-

creases sharply, for tφ≤ 18 min, then it reaches a plateau at Nu 7=
during the complete melting. At t 185= min, solidification starts and

Nu suddenly decreases over very short times, reaching negative values
(Nu 15). It follows an increase of Nu with time, up to reaching an
asymptotic value close to 0 (zero temperature gradients, i.e. uniform
temperature at the left wall). The same mechanism is observed over a
shorter time interval when Raco is increased.

For the PM case, the Nusselt number also decreases sharply to a
negative value when the solidification starts. However, the convection
flow remaining in the melted region influences the heat transfer at the
very beginning of the solidification process. The hot fluid in the middle
of the melted PCM is advected by the natural convection flow to the

Fig. 11. Solidification of the PCM after a partial melting. Temperature isolines in the liquid phase. The solid part is represented in blue and corresponds to the region
of temperature 0co f = . Time instants (panels a to e): t 59= min, t 70= min, t 90= min, t 131= min and t 200= min. The adapted mesh corresponding to
t 90= min is plotted in panel (f). Ra 3.27·10co

5= . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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boundaries and induces a temperature gradient at the left wall, re-
sulting into an oscilating behavior of the Nusselt number before
reaching asymptotic value. This is in agreement with the previous
comment about the melting continuing in the right part of the cavity,
despite the solidification has started, and the slight increase of the li-
quid fraction at the very first time steps of the discharging process.

Both charge and discharge cycles are better illustrated in the time
evolution of the accumulated heat Q0 defined in (25), as it is shown in
panels (d) and (e) of Fig. 12. Heat is first stored during the melting
stage, corresponding to tφ≤185 min for CM (Fig. 12(d)) and τ≤59
min for PM (Fig. 12(e)), and is then restored during the solidification
stage.

The CM case indicates higher value of Q0 (Q 1400,0 = for
Ra 3.27·10co

5= ) compared to the PM case (Q 5000 = ), meaning that
PCM is more efficient in terms of heat storage. However, PM case ex-
hibits well balanced characteristic times between the solidification and

the melting stages for Ra 3.27·10co
5= . Besides, when the Ra number

increases, the stored heat is discharged faster.
Moreover, the temperature and the velocity profiles drop sharply

during the first step of the cooling process and become almost equal to
zero very early in the whole domain. This means that conduction
dominates the solidification process, and the convection becomes ra-
pidly negligible. As a consequence, the melting fronts are vertical and
have a symmetric position with respect to the center of the cavity.

5. Final discussion and conclusions

The n-octadecane PCM we simulated in this paper is generally used
for buildings purposes, due to its phase change temperature of 28oC.
Zhu et al. (2009) and Kalnæs and Jelle (2015) listed various applica-
tions, starting from free cooling, peak load shifting, passive building
systems and solar energy storage. For each case, the PCM is assumed to

Fig. 12. Temporal evolution of the liquid fraction (Lf), the Nusselt number Nu, and the accumulated heat input Q0 during the entire melting-solidification cycle. Case
CM (left) and case PM (right).
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melt during day-time and to solidify during the night-time.
We have developed and validated a numerical tool based on adap-

tive finite elements methods to simulate melting and solidification
processes of the PCM. Once our tool was validated against available
results, we used it to obtain new physical behaviours of PCM and
therefore to predict their practical use.

It was noticed that, when the same Rayleigh number is used to
compare the melting and solidification cycles, meaning that the charge
and the discharge modes occur at the same δT, the solidification is al-
ways slower than the melting. This behavior is linked to the heat
transfer mode leading each of the cycles. Convective heat transfer
dominates indeed the melting process, enhancing thus the heat transfer,
while conduction is the main heat transfer mode during the solidifica-
tion, resulting to a slower operating process. However, when the dis-
charge temperature is decreased by a factor of 5, i.e both Raco and
rδ× Ste are increased by a factor of 5, the solidification and the
melting occur over similar times.

A first issue that has been brought up by Ascione et al. (2014) is the
difficulty of the PCM systems to completely discharge during night-
time. Though, if the PCM does not solidify entirely, the effectiveness of
the system may be considerably reduced. In this case, to have a shorter
cooling period it is not advised to melt the PCM completely.

However, for solar energy storage applications, full melting of the
PCM is needed to utilize its latent heat storage capacity. Hence, a
partial melting is not optimal. For other applications, when shorter
discharge time is needed, the use of external cooling techniques is
needed to ensure a colder discharge temperature.
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