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a b s t r a c t

We present and distribute a new numerical system using classical finite elements with mesh adaptivity
for computing two-dimensional liquid–solid phase-change systems involving natural convection. The
programs are written as a toolbox for FreeFem++ (www3.freefem.org), a free finite-element software
available for all existing operating systems. The code implements a single domain approach. The same
set of equations is solved in both liquid and solid phases: the incompressible Navier–Stokes equations
with Boussinesq approximation for thermal effects. This model describes naturally the evolution of
the liquid flow which is dominated by convection effects. To make it valid also in the solid phase, a
Carman–Kozeny-type penalty term is added to the momentum equations. The penalty term brings
progressively (through an artificial mushy region) the velocity to zero into the solid. The energy
equation is also modified to be valid in both phases using an enthalpy (temperature-transform) model
introducing a regularized latent-heat term. Model equations are discretized using Galerkin triangular
finite elements. Piecewise quadratic (P2) finite-elements are used for the velocity and piecewise linear
(P1) for the pressure. For the temperature both P2 and P1 discretizations are possible. The coupled
system of equations is integrated in time using a second-order Gear scheme. Non-linearities are treated
implicitly and the resulting discrete equations are solved using a Newton algorithm. An efficient mesh
adaptivity algorithm using metrics control is used to adapt the mesh every time step. This allows
us to accurately capture multiple solid–liquid interfaces present in the domain, the boundary-layer
structure at the walls and the unsteady convection cells in the liquid. We present several validations
of the toolbox, by simulating benchmark cases of increasing difficulty: natural convection of air, natural
convection of water, melting of a phase-change material, a melting-solidification cycle, and, finally, a
water freezing case. Other similar cases could be easily simulated with this toolbox, since the code
structure is extremely versatile and the syntax very close to the mathematical formulation of the
model.
Programm summary
Program Title: PCM-Toolbox-2D
Program Files doi: http://dx.doi.org/10.17632/phby62rhgv.1
Licensing provisions: Apache License, 2.0
Programming language: FreeFem++(free software, www3.freefem.org)
Nature of problem: The software computes 2D configurations of liquid–solid phase-change problems
with convection in the liquid phase. Natural convection, melting and solidification processes are
illustrated in the paper. The software can be easily modified to take into account different related
physical models.
Solution method: We use a single domain approach, solving the incompressible Navier–Stokes equations
with Boussinesq approximation in both liquid and solid phases. A Carman–Kozeny-type penalty term
is added to the momentum equations to bring the velocity to zero into the solid phase. An enthalpy
model is used in the energy equation to take into account the phase change. Discontinuous variables
(latent heat, material properties) are regularized through an intermediate (mushy) region. Space
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discretization is based on Galerkin triangular finite elements. Piecewise quadratic (P2) finite-elements
are used for the velocity and piecewise linear (P1) for the pressure. For the temperature both P2
and P1 discretizations are possible. A second order Gear scheme is used for the time integration of
the coupled system of equations. Non-linear terms are treated implicitly and the resulting discrete
equations are solved using a Newton algorithm. A mesh adaptivity algorithm is implemented to reduce
the computational time and increase the local space accuracy when (multiple) interfaces are present.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Solid–liquid phase-change problems are encountered in nu-
merous practical applications, ranging from metal casting and
thermal energy storage (phase-change materials) to food freezing
and cryosurgery. Melting and solidification are also fundamen-
tal processes in geophysical problems, such as Earth’s mantle
formation, lava lakes or magma chambers. In many of these prob-
lems, temperature gradients induce buoyancy forces in the liquid
(melted) phase generating a significant convective flow. Conse-
quently, the appropriate mathematical description of the liquid
phase is the usual model for the natural convection flow: the in-
compressible Navier–Stokes system of equations with Boussinesq
approximation for thermal (buoyancy) effects. In this model, the
energy conservation equation is written as a convection–diffusion
equation for the temperature. In the solid phase, conduction is
the main phenomenon and the appropriate model is the classical
heat equation. The main modelling difficulty is to link these two
models by taking into account the separation of the two phases
by a sharp interface, across which thermodynamic properties
are discontinuous. We offer below a short description of the
two main approaches suggested in the literature to deal with
this problem. For a comprehensive review of models for phase-
change problems with convection, see [1]. Note that a different
category of models was recently suggested in the literature, based
on the Lattice Boltzmann Method [2,3]. Such methods based on
non-deterministic models are not discussed in this introduction.

A first modelling approach, usually referred to as the multi-
domain (or deforming-grid) method, is based on the classical
Stefan two-phase model. Solid and liquid domains are sepa-
rated and the corresponding conservation equations are solved
in each domain. Boundary conditions at the interface between
domains are obtained by imposing the Stefan condition (balance
of heat fluxes at the interface). The position of the solid–liquid
interface is tracked and moved explicitly using either front track-
ing or front fixing methods. The former method uses deforming
grids to reconstruct the interface, while the latter is based on
a time-depending coordinate transform, mapping the physical
domain into a fixed computational domain. For a detailed de-
scription of these methods, see e.g. [4–7]. The main drawback of
deforming-grid methods is their algorithmic complexity, which
makes difficult to accurately capture solid–liquid interfaces of
complicated shape or structure (e.g. with mushy regions between
solid and liquid phases). Configurations with multiple interact-
ing interfaces (see the solidification of a phase-change material
presented in this paper) are also difficult to simulate with these
methods (see also [8]).

The second modelling approach avoids to impose explicitly the
Stefan condition at the solid–liquid interface and therefore uses
a single-domain (or fixed-grid) model. The same system of equa-
tions is solved in both liquid and solid phases. The energy balance
at the interface is implicitly taken into account by the model.
Consequently, the position of the interface is obtained a posteriori
by post-processing the computed temperature field. Phase-field
methods [9] and enthalpy methods [10,11] are the most com-
monly used single-domain models. In phase-field methods, a

supplementary partial differential equation for the evolution of
the order parameter (a continuous variable taking the value 0 in
the solid and 1 in the liquid) has to be solved, coupled with the
conservation laws [12]. This new equation is model dependent
and its numerical solution could lead to diffuse solid–liquid in-
terfaces. For recent contributions in this area, see [13–15]. We
focus below on enthalpy methods, which are the most widely
used single-domain models due to their algorithmic simplicity.

The main idea behind enthalpy models is to formulate the en-
ergy conservation law in terms of enthalpy and temperature and
include latent heat effects in the definition of the enthalpy. The
obtained equation applies to both liquid and solid phases and im-
plicitly takes into account the separation of the phases. Another
advantage of enthalpy methods, when compared to previously
described models, is to remove the limitation of the phase-change
occurring at a fixed temperature. The presence of mushy regions
can be easily modelled with these methods. Two types of formu-
lations of enthalpy methods exist in the literature, depending on
the main variable used to solve the energy equation: enthalpy or
temperature-based methods. In enthalpy-based formulations the
main variable is the enthalpy [16–18]. Temperature is computed
from the temperature–enthalpy coupling model. An iterative loop
is necessary to solve the energy equation, formulated with both
enthalpy and temperature variables. For a review of different
iterative techniques to solve the energy equation, see [19]. A
second variety of enthalpy-based formulations consists in rewrit-
ing the energy equation with enthalpy terms only [20,21]. In
temperature-based formulations, the energy equation is formu-
lated in terms of temperature only. The latent heat is treated
either by deriving an apparent heat capacity coefficient to define
the total enthalpy [22–24] or by introducing a source term in
the energy equation [19,25]. Advantages and drawbacks of each
approach are discussed in detail in [26].

Single-domain methods are very appealing for numerical im-
plementations. The same system of equations is solved in the
entire computational domain, making possible algorithmic or
computer-architecture optimizations. If enthalpy models offer an
elegant solution to deal with the same energy conservation equa-
tion in both phases, a last modelling problem has to be solved.
It concerns the extension of the Navier–Stokes–Boussinesq equa-
tions from the liquid to the solid phase. Different techniques to
bring the velocity to zero in the solid region were suggested.
The most straightforward is the switch-off technique, which de-
couples solid and liquid computational points and overwrites
the value of the velocity by setting it to zero in the solid re-
gion. Different implementations of this technique with finite-
volume methods are presented in [27,28]. In variable viscosity
techniques [29–31], the fluid viscosity depends on the temper-
ature and is artificially increased to huge values in the solid
regions through a regularization or mushy zone. To avoid blow-
up or numerical inconsistencies, the large gradients of viscosity
must be correctly resolved in the mushy region. This is natu-
rally achieved in finite-element methods with dynamical mesh
adaptivity [32], while in finite-volume methods with fixed grids,
the time step has to be adapted to the space resolution [27].
Versions of the variable viscosity approach were theoretically
studied by Aldbaissy et al. [33]; Woodfield et al. [34]. A new
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formulation of the phase-change problem using as variables the
pseudo-stress, strain rate and velocity for the Navier–Stokes–
Brinkman equations was recently suggested by Alvarez et al.
[35].

A third technique used to ensure a zero velocity field in
the solid phase is the so-called enthalpy-porosity model [36]. A
penalization source term is introduced in the momentum equa-
tion to allow the switch from the full Navier–Stokes equations
in the liquid phase to a Darcy equation for porous media. The
mushy region is thus regarded as a very dense porous medium
that sharply brings the velocity to zero in the solid region. The
expression of the penalization source term generally follows the
Carman–Kozeny model for the permeability of a porous medium
[21,37,38], but other mathematically equivalent expressions were
suggested [15,39]. Different formulations and implementations of
the enthalpy-porosity model are presented in [8,40,41].

Concerning the space discretization of these models, finite
difference (FD) or finite volume (FV) methods are generally used
in the literature. When single-mesh models are used, the general
strategy to capture the solid–liquid interface is to dramatically in-
crease the mesh resolution in the whole domain. This results in a
considerable increase of the computational time, even for two di-
mensional cases. Finite element (FE) methods offer the possibility
to dynamically refine the mesh only in the regions of the domain
where sharp phenomena take place (e.g. solid–liquid interface,
recirculation zones). Different FE approaches were suggested,
from enthalpy-type methods (e.g. [42]) to front-tracking methods
(e.g. [43]). Recently, adaptive FE methods were suggested for clas-
sical two-phase Stefan problem and phase-change systems with
convection. In [44] a hierarchical error estimator was used for 2D
Stefan problems (without convection). A different mesh adaptiv-
ity method, based on the definition of edge length from a solution
dependent metric, was used in [38] to deal with the same Stefan
problems in 3D and also with 2D phase-change systems with
convection. The time-dependent mesh adaptivity strategy based
on metrics control suggested by Danaila et al. [32] proved very
effective in refining the mesh near walls and interfaces, when
simulating melting and solidification phase-change systems (see
also [45]). Zimmerman and Kowalski [46] implemented the vari-
able viscosity model suggested by Danaila et al. [32] in a different
finite-element framework using FEniCS and an AMR (Adaptive
Mesh Refinement) technique based on a dual-weighted residual
method. In a very recent contribution, Belhamadia et al. [47]
derived a time-dependent adaptive remeshing method for phase-
change problem with convection based on an error estimator
applicable to second or higher order variables.

However, to the best of our knowledge, no adaptive finite-
element programs exist in the CPC Program Library for phase-
change problems. The purpose of this paper is therefore to
distribute a finite-element toolbox to solve two-dimensional
solid–liquid phase-change problems.

The present toolbox is based on a single-domain enthalpy-
porosity model for solid–liquid phase change problems with
convection. For the energy conservation equation, a temperature-
based formulation takes into account the latent heat by introduc-
ing a discontinuous source term. For the mass and momentum
conservation equations, we solve in the entire domain the in-
compressible Navier–Stokes equations with Boussinesq approx-
imation for buoyancy effects. To bring the velocity to zero in
the solid phase, we introduce in the momentum equation a
penalty term following the Carman–Kozeny model. The coupled
system of momentum and energy equations is integrated in time
using a second-order Gear scheme. All the terms are treated
implicitly and the resulting discretized equations are solved using
a Newton method [32]. The advantage of this formulation is to
permit a straightforward implementation of different types of

non-linearities. For the space discretization we use Taylor–Hood
triangular finite elements, i.e. P2 for the velocity and temperature
and P1 for the pressure. Temperature is discretized using P2 or P1
finite elements. The choice of using Taylor–Hood finite elements
for the fluid flow and P2 for the temperature was also made
in [34,47]. It offers second order accuracy and (inf–sup) stabil-
ity of the space discretization of the fluid flow. Other possible
choices for the finite-element discretization could be tested for
the implementation of the algorithm presented in this paper. For
instance, the mini-element (see [48,49]), offering a global linear
convergence, could be an interesting alternative to replace the
Taylor–Hood element and thus optimize the computational time.
This possibility could be explored with the present toolbox, since
the mini-element exists in FreeFem++.

Discontinuous variables (latent heat, thermal diffusivity, etc.)
at the solid–liquid interface are regularized through an interme-
diate artificial mushy region. Single domain methods require a
refined mesh near the interface, where large enthalpy gradients
have to be correctly resolved. An optimized dynamical mesh
adaptivity algorithm allows us to adapt the mesh every time step
and thus accurately capture the evolution of the interface. Mesh
adaptivity feature of the toolbox offers the possibility to deal
with complicated phase-change cases, involving multiple solid–
liquid interfaces. There are two main novelties in the present
numerical approach, when compared to Danaila et al. [32]: (i) we
use the Carman–Kozeny model to bring the velocity to zero inside
the solid phase, instead of a viscosity penalty method (impos-
ing a large value of the viscosity in the solid); (ii) we increase
the time accuracy of the algorithm by replacing the first-order
Euler scheme with the second-order Gear (BDF2) scheme (see
also [38]).

The programs were built and organized as a toolbox for
FreeFem++ [50,51], which is a free software (under LGPL li-
cense). FreeFem++

1offers a large variety of triangular finite
elements (linear and quadratic Lagrangian elements, discontinu-
ous P1, Raviart–Thomas elements, etc.) to solve partial differential
equations. It is an integrated product with its own high level pro-
gramming language and a syntax close to mathematical formula-
tions, making the implementation of numerical algorithms very
easy. Among the features making FreeFem++ an easy-to-use and
highly adaptive software we recall the advanced automatic mesh
generator, mesh adaptation, problem description by its varia-
tional formulation, automatic interpolation of data, colour display
on line, postscript printouts, etc. The FreeFem++ programming
framework offers the advantage to hide all technical issues re-
lated to the implementation of the finite element method. It
becomes then easy to use the present toolbox to code new
numerical algorithms for similar problems with phase-change.

The paper is organized as follows. Section 2 introduces the
governing equations and the regularization technique used in
the enthalpy-porosity model. Section 3 presents the Newton al-
gorithm for the Navier–Stokes–Boussinesq system of equations.
The mesh adaptivity technique is also discussed in this section. A
description of the programs is given in Section 4. The accuracy of
the numerical method is tested in Section 5 using manufactured
solutions. Finally, Section 6 is devoted to extensive numerical
validations of the method. The robustness of the algorithm is
demonstrated by comparing our results with well defined clas-
sical benchmarks. The capabilities of the toolbox to deal with
complex geometries are also illustrated. The main features of the
software and possible extensions are summarized in Section 7.

1 FreeFem++ for different OS can be downloaded from http://www3.freefem.
org/.

http://www3.freefem.org/
http://www3.freefem.org/
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2. Enthalpy-porosity model

We consider a solid–liquid system placed in a two-dimensional
domain Ω . In the following, subscripts s and l will refer to the
solid and the liquid phase, respectively. We present in this section
the single-domain model, using the same system of equations in
both liquid and solid phases.

2.1. Energy equation

The phase change process is modelled using an enthalpy
method with a temperature-based formulation [11,30,31]. We
start with the classical energy equation:
∂(ρh)
∂tϕ

+ ∇ · (ρhU ) − ∇ · (k∇T ) = 0, (1)

where, tϕ is the physical time, h the enthalpy, ρ the density, U the
velocity vector, T the temperature and k the thermal conductivity.
The total enthalpy h is transformed as the sum of the sensible
heat and the latent heat:

h = hsen + hlat = c(T + s(T )), (2)

with c the local specific heat. The function s is introduced to
model the jump of the enthalpy during the solid–liquid transition.
For pure materials, s is theoretically a Heaviside step function
depending on the temperature: it takes the zero value in the
solid region and a large value in the liquid, equal to hsl/cl, with
hsl the latent heat of fusion. If the phase-change is assumed
to occur within a mushy zone defined by a small temperature
interval T ∈ [Tf − Tε, Tf + Tε] around the temperature of
fusion Tf , a model for s(T ) is necessary. Linear [28,30] or more
smooth functions [32] can be used to regularize s(T ) and thus
model the jump of material properties from solid to liquid. In
this paper we use a regularization of all step-functions (latent
heat source, specific heat, thermal diffusivity or conductivity)
by a continuous and differentiable hyperbolic-tangent function
suggested by Danaila et al. [32]. We assume moreover that the
undercooling phenomenon is negligible during the solidification
stage (see also [1,52]).

Equation (1) can be simplified under the following assump-
tions: (i) the density difference between solid and liquid phases
is negligible, i.e. ρl = ρs = ρ is constant; (ii) the mushy region is
narrow and the velocity inside this zone is zero. Consequently, the
final temperature transforming model is obtained by combining
(2) and (1) and neglecting the convection term ∇ · (csU )2:

∂ (cT )

∂tϕ
+ ∇ · (cTU) − ∇ ·

(
k
ρ

∇T
)

+
∂ (cs)
∂tϕ

= 0. (3)

2.2. Navier–Stokes equations with Boussinesq approximation

The natural convection in the liquid part of the system is
modelled using the incompressible Navier–Stokes equations, with
Boussinesq approximation for buoyancy effects. To make this
model valid in the entire domain, the momentum equation is
modified as following:
∂U
∂tϕ

+ (U · ∇)U +
1
ρ

∇p −
µl

ρ
∇

2U − fB(T )ey = A(T )U , (4)

where p denotes the pressure, µl the dynamic viscosity of the
liquid (assumed to be constant) and fB(T ) the Boussinesq force.
The Carman–Kozeny penalty term A(T )u is artificially introduced
in (4) to extend this equation into the solid phase, where the

2 In the liquid phase, ∇ · (csU ) = hsl∇ · U = 0; in the solid phase, s = 0; in
the mushy region, U = 0.

velocity, pressure, viscosity and Boussinesq force are meaning-
less. Consequently, A(T ) is modelled to vanish in the liquid, where
the Navier–Stokes–Boussinesq momentum equation is recovered.
A large value of A(T ) is imposed in the solid, reducing the mo-
mentum equation (4) to A(T )u = 0, equivalent to u = 0. Exact
expressions for fB and A will be given in the next section.

Finally, the conservation of mass in the liquid phase is ex-
pressed by the continuity equation:

∇ · U = 0. (5)

2.3. Final system of equations for the single-domain approach

The present numerical code solves a dimensionless form of the
previous equations. After choosing a reference length H (usually
the height of the cavity when a rectangular domain is considered)
and a reference state (ρ, Vref , Tref ), we can define the following
scaling for the space, velocity, temperature and time variables:

x =
X
H

, u =
U
Vref

, θ =
T − Tref

δT
, t =

Vref

H
tϕ . (6)

Tref is the reference temperature and in most cases Tref = Tf (the
temperature of fusion), unless otherwise specified. Consequently,
the non-dimensional temperature of fusion is set to θf = 0.
Temperature difference δT defines a temperature scale, that will
be set differently for melting and solidification cases.

The dimensionless system of equations to be solved in both
liquid and solid regions can be finally written as:

∇ · u = 0, (7)
∂u
∂t

+ (u · ∇)u + ∇p −
1
Re

∇
2u − fB(θ ) ey − A(θ )u = 0, (8)

∂ (Cθ)

∂t
+ ∇ · (Cθu) − ∇ ·

(
K

RePr
∇θ

)
+

∂ (CS)
∂t

= 0. (9)

The linearized Boussinesq buoyancy force (fB), the Reynolds (Re)
and Prandtl (Pr) numbers are defined as:

fB(θ ) =
Ra

PrRe2
θ, Re =

ρVrefH
µl

=
VrefH

νl
, Pr =

νl

αl
, (10)

with ν the kinematic viscosity and α = k/(ρc) the thermal
diffusivity. In the expression of fB, the Rayleigh number of the
flow is defined as:

Ra =
gβH3δT

νlαl
, (11)

with β the thermal expansion coefficient and g the gravitational
acceleration.

If previous non-dimensional numbers are pertinent only in the
liquid phase, the non-dimensional conductivity and specific heat
are defined in both phases

K (θ ) =
k
kl

=

{
1, θ ≥ θf ,

ks/kl, θ < θf .
, C(θ ) =

c
cl

=

{
1, θ ≥ θf ,

cs/cl, θ < θf .

(12)

The non-dimensional function S = s/sl in the energy equation (9)
takes a similar non-dimensional form:

S(θ ) =
s
sl

=

⎧⎨⎩
hsl/cl
δT

=
1
Ste

, θ ≥ θf ,

0, θ < θf ,

(13)

with Ste the Stefan number.
Discontinuous step-functions defined in (12) and (13) are re-

placed by continuous and differentiable hyperbolic-tangent func-
tions, generically defined for all θ by the formula [32]:

F (θ; as, θs, Rs) = fl +
fs − fl

2

{
1 + tanh

(
as

(
θs − θ

Rs

))}
, (14)
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where fl, fs are the imposed values in the liquid and solid phases,
as a smoothing parameter, θs the central value (around which
we regularize) and Rs the smoothing radius. For example, we
use for the non-dimensional source term in (9) the following
regularization over the artificial mushy region θ ∈ [−ε, ε]:

S(θ ) =
1
Ste

−
1

2 Ste

{
1 + tanh

(
θr − θ

Rs

)}
, (15)

where θr is the central value around which we regularize (typ-
ically θr = θf = 0) and Rr the smoothing radius (typically
Rs = ε).

Finally, the penalty term A(θ )u in momentum equation (8)
follows from the Carman–Kozeny model [30,38,53]:

A(θ ) = −
CCK(1 − Lf (θ ))2

Lf (θ )3 + b
, (16)

where Lf (θ ) is the local liquid fraction, which is 1 in the fluid
region and 0 in the solid. Lf is regularized inside the artificial
mushy-region using a hyperbolic-tangent similar to (15). The
Carman–Kozeny constant CCK is set to a large value (as discussed
below) and the constant b = 10−6 is introduced to avoid divisions
by zero.

3. Numerical method

To solve the system of equations (7)–(9) we use a finite-
element method that was implemented using the open-source
software FreeFem++ [50,51]. Among the numerous numerical
tools offered by FreeFem++, the use of the powerful mesh adap-
tivity function proved mandatory in this study to obtain accu-
rate results within reasonable computational time. The numerical
code was optimized to afford the mesh refinement every time
step: the mesh density was increased around the artificial mushy
region, offering an optimal resolution of the large gradients of
all regularized functions (S, K , Lf ), while the mesh was coars-
ened (larger triangles) in the solid part, where a coarser mesh
could be used. A simulation using a globally refined mesh would
require a prohibitive computational time for an equivalent accu-
racy of the melting front resolution. Similar algorithms based on
FreeFem++ were successfully used for solving different systems
of equations with locally sharp variation of the solution, such
as Gross–Pitaevskii equation [54,55] or Laplace equations with
nonlinear source terms [56].

The space discretization is based on Taylor–Hood finite el-
ements, approximating the velocity with P2 Lagrange finite el-
ements (piecewise quadratic), and the pressure with P1 finite
elements (piecewise linear). The temperature and the enthalpy
are discretized using either P1 or P2 finite elements. For the
time integration, we use a second-order Gear (BDF2) scheme (see
also [38]):

dφ
dt

≃
3φn+1

− 4φn
+ φn−1

2δt
, (17)

computing the solution φn+1 at time tn+1 = (n + 1)δt by using
two previous states (φn, φn−1). We use this scheme to advance
in time both velocity (φ = u) and temperature fields (φ = θ ).
The other terms in Eqs. (7)–(9) are treated implicitly (i.e. taken at
time tn+1). The resulting non-linear equations are solved using a
Newton algorithm.

3.1. Finite element algorithm

Finite-element methods for solving Navier–Stokes type sys-
tems of equations are generally based on a separate discretization
of the temporal derivative (using finite difference, splitting or
characteristics methods) and the generalization of the Stokes

problem for the resulting system [57–59]. To simplify the pre-
sentation, we consider in the following that C = 1 and K =

1. For phase-change materials like paraffins this is a physically
valid assumption. Nevertheless, we keep in the equations below
the variable K , since for the water freezing case it is necessary
to take into account the dependence K (θ ). The derivation of
supplementary terms associated to K (θ ) is straightforward.

We use the second-order finite-difference scheme (17) and
obtain the following implicit semi-discretization in time of the
single-domain model (7)–(9):

∇ · un+1
= 0, (18)

3
2
un+1

δt
+ (un+1

· ∇)un+1
+ ∇pn+1

−
1
Re

∇
2un+1

−A(θn+1)un+1
− fB(θn+1) ey =

2
un

δt
−

un−1

2δt
, (19)

3
2

θn+1
+ S(θn+1)
δt

+ ∇ ·
(
un+1θn+1)

− ∇ ·

(
K

RePr
∇θn+1

)
=

2
θn

+ S(θn)
δt

−
θn−1

+ S(θn−1)
2δt

. (20)

This system of non-linear equations is solved at time tn+1 =

(n + 1)δt , using two previous states: tn and tn−1. We denote by
fB(θ ) the Boussinesq force that can be non-linear in the general
case (e.g. natural convection or freezing of water).

The space discretization of variables over the domain Ω ⊂ R2

uses a finite-element method based on a weak formulation of the
system (18)–(20). We consider homogeneous Dirichlet boundary
conditions for the velocity, i.e. u = 0 on ∂Ω , and set the classical
Hilbert spaces for the velocity and pressure:

V = V × V , V = H1
0 (Ω),

Q = L20(Ω) =

{
q ∈ L2(Ω)

⏐⏐⏐⏐ ∫
Ω

q = 0
}

.
(21)

Following the generalization of the Stokes problem [57–59], the
variational formulation of the system (18)–(20) can be written as:
find (un+1, pn+1, θn+1) ∈ V × Q × V , such that:

b
(
un+1, q

)
− γ (pn+1, q) = 0, ∀ q ∈ Q (22)

3
2δt

(
un+1, v

)
+ c

(
un+1

; un+1, v
)
+

1
Re

a
(
un+1, v

)
−(A(θn+1) un+1, v) + b

(
v, pn+1)

−
(
fB(θn+1) ey, v

)
=

2
δt

(
un, v

)
−

1
2δt

(
un−1, v

)
, ∀ v ∈ V (23)

3
2δt

(
θn+1

+ S(θn+1), φ
)

+
(
un+1

· ∇θn+1, φ
)
+

(
K

RePr
∇θn+1, ∇φ

)
=

2
δt

(
θn

+ S(θn), φ
)
−

1
2δt

(
θn−1

+ S(θn−1), φ
)
, ∀ φ ∈ V , (24)

where (u, v) =
∫

Ω
u · v denotes the scalar product in L2(Ω) or(

L2(Ω)
)2; the bilinear forms a, b and trilinear form c are defined

as [58,59]:

a : V × V → R, a(u, v) =

∫
Ω

∇
tu : ∇v =

2∑
i,j=1

∫
Ω

∂juj · ∂jvi,

b : V × Q → R, b(u, q) = −

∫
Ω

∇ · u q = −

2∑
i=1

∫
Ω

∂iui · q,
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c : V × V × V → R, c(w; z, v) =

∫
Ω

[(w · ∇) z] · v

=

2∑
i,j=1

∫
Ω

wj(∂jzi)vi.

Note that we introduced in Eq. (22) a penalty term on the
pressure. Its role is analysed below at different levels of the
implementation of the numerical method. At the discrete level of
model equations, we infer from the incompressibility constraint
(18) that the pressure is defined up to an additive constant.
Requesting that pn+1

∈ Q , i.e. the pressure field is of zero average
in Ω , removes this uncertainty. For the discretized equations, the
zero average constraint is easy to apply in spectral methods by,
for instance, cancelling the first Fourier mode, corresponding to
the average value [59]. This task becomes more difficult when
local approximation numerical methods (as finite differences or
finite elements) are used. In these cases, a usual technique is to
explicitly prescribe the value of the pressure at a given discrete
point. This implies to explicitly modify the matrix of the final
linear system. Equation (22) has exactly this role. It is theo-
retically justified by the fact that the range space of ∇ · u is
contained in Q = L20(Ω), which can be identified isometrically
with L2(Ω)/R [58]. At a strictly algebraic level, the penalty term
in (22) is introduced to avoid a zero lower diagonal block in the
final global matrix. Even though the non-penalized problem is
well-posed for finite-elements satisfying the inf–sup condition
(as the Taylor–Hood element used here), the zero entries on this
(pressure) diagonal block would require pivoting strategies when
a direct solver is used for the solution of the linear algebraic sys-
tem. Using (22), this block is filled with the matrix (−γM), where
M corresponds to the mass matrix of the P1 discretization used
for the pressure. Efficient direct methods using LU-type solvers
become then available to solve the linear system (UMFPACK
solver in our case and [33], SuperLU in [34]).

A last comment on the penalty term on the pressure in (22)
concerns its stabilizing effects. Since the Taylor–Hood finite ele-
ments used in our simulations satisfy the inf–sup condition, this
technique is assimilated to a stable penalty, or, in other words, just
a computational trick to obtain a good solution (see Remark 4.6,
page 86 in [49]) (see Example 6.3.5, page 372 in [60]). The value
of the penalty parameter γ could be arbitrarily small, without
affecting the overall convergence rate. It is interesting to note
that this technique could be used to stabilize finite element for-
mulations that do not satisfy the inf–sup condition (see Remark
4.3, page 67 in [58]). In this case, it is assimilated to a brute-
force penalty (see also Example 6.3.5 in [60]) and the value of the
penalty parameter γ has to be carefully chosen to avoid altering
the convergence of the method: it depends on the grid size and
the theoretical convergence rate of the used finite elements [60],
and also, when applied to Stokes or Navier–Stokes equations, on
the viscosity [61].

As a final remark, we should mention that the large body of
literature on penalty methods for Stokes or Navier–Stokes equa-
tions originates from the slightly compressible fluid model intro-
duced by Temam [57]. In this model, Eq. (22) is used to eliminate
the pressure, by assuming that pn+1

= (−1/γ )∇·un+1, and finally
obtain a momentum equation (23) with a regularization term
(1/γ )

(
∇ · v, ∇ · un+1

)
replacing the pressure term. The equiva-

lence between the two formulations was studied by Bercovier
[62] (see also [58,59]). In our calculations, we use in Eq. (22) very
low values of the penalty parameter (γ = 10−7). This ensures
very low values of the average on Ω for the pressure and also for
the divergence of the velocity field, e.g.

∫
Ω
p of order of 10−11 and∫

Ω
∇·un+1 of order of 10−18 for the case of the natural convection

of air.

The system of non-linear equations (22)–(24) is solved using a
Newton method. To advance the solution from time tn to tn+1, we
start from an initial guess w0 = (un, pn, θn) (which is the solution
at tn), and construct the Newton sequence wk = (uk, pk, θk) by
solving for each inner iteration k:

b (uk+1, q) − γ (pk+1, q) = 0, (25)
3
2δt

(uk+1, v) + c (uk+1; uk, v) + c (uk; uk+1, v)

+
1
Re

a (uk+1, v) −

(
dA
dθ

(θk) θk+1 uk, v

)
− (A(θk) uk+1, v) + b (v, pk+1)

−

(
dfB
dθ

(θk) θk+1 ey, v
)

=
1
δt

(
2un

−
1
2
un−1, v

)
+ c (uk; uk, v) −

(
dA
dθ

(θk) θk uk, v

)
−

((
dfB
dθ

(θk) θk − fB(θk)
)

ey, v
)

,(26)

3
2δt

(
θk+1 +

dS
dθ

(θk) θk+1, φ

)
+ (uk · ∇θk+1, φ) + (uk+1 · ∇θk, φ)

+

(
K

RePr
∇θk+1, ∇φ

)
=

2
δt

(
θn

+ S(θn), φ
)

+ (uk · ∇θk, φ) +
3
2δt

(
dS
dθ

(θk) θk − S(θk), φ

)
−

1
2δt

(
θn−1

+ S(θn−1), φ
)
. (27)

Note that the last term of Eq. (26) cancels in the case of a linear
Boussinesq force fB (see Eq. (10)); this is not the case when
non-linear variations of the density of the liquid are considered
(convection or solidification of water). Note also that the previous
system of equations (25)–(27) depends only on un, un−1, θn and
θn−1 and is independent of pn, the pressure being in this approach
a Lagrange multiplier for the divergence free constraint.

The Newton loop (following k) has to be iterated until conver-
gence for each time step δt following the algorithm:

Navier–Stokes time loop following n
set w0 = (un, pn, θn)

Newton iterations following k
solve (25)–(27) to get wk+1

stop when ∥wk+1 − wk∥ < ξN
actualize (un+1, pn+1, θn+1) = wk+1.

(28)

The FreeFem++ syntax to implement the Newton algorithm is
very close to the mathematical formulation given above. After
defining a vectorial finite-element space fespace Wh(Th,[P2,
P2,P1,P1]);, associated to the mesh Th, we define the velocity,
pressure and temperature variables in a compact manner by Wh
[u1,u2,p,T];. Corresponding test functions are defined simi-
larly. It is then very easy to define a problem formulation in
FreeFem++ and include all the terms of the algorithm (25)–
(27). This makes the reading of the programs very intuitive by
comparing each term to its mathematical expression. New terms
could be added to the variational formulation expressed in the
problem structure, without affecting other parts of the program.
Consequently, the implementation of new models or numerical
methods for this problem is greatly facilitated by this modular
structure of programs.

3.2. Mesh adaptivity

We use the standard function (adaptmesh) which is a very
convenient tool offered by FreeFem++ to efficiently adapt 2D
meshes by metrics control [50]. The key idea implemented in
this function (see also [63–68]) is to modify the scalar product
used in the automatic mesh generator to evaluate distance and
volume. Equilateral elements are thus constructed, according to
the new metric. The scalar product is based on the evaluation
of the Hessian H of the variables of the problem. For example,
for a P1 discretization of a variable χ , the interpolation error is
bounded by:

E = |χ − Πhχ |0 ≤ c sup
T∈Th

sup
x,y,z∈T

|H(x)|(y − z, y − z), (29)
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Fig. 1. Folder tree structure of the PCM-Toolbox-2D to solve solid–liquid phase-change problems.

where Πhχ is the P1 interpolate of χ , |H(x)| is the Hessian of χ

at point x after being made positive definite. Using the Delaunay
algorithm (e.g. [66]) to generate a triangular mesh with edges
close to the unit length in the metric M =

|H|

(cE) will result in
an equally distributed interpolation error E over the edges ai of
the mesh. More precisely, we get

1
cE

aTi Mai ≤ 1. (30)

Note that the FreeFem++ function buildmesh efficiently imple-
ments the Delaunay algorithm for generating triangular meshes.
The mesh generator offered by FreeFem++ is generally sufficient
for 2D applications, even when domains with complicated shapes
are considered, but meshes may be imported in FreeFem++ from
other software, e.g. Gmsh.

The previous approach could be generalized for a vector vari-
able χ = [χ1, χ2]. After computing the metrics M1 and M2 for
each variable, we define a metric intersection M = M1 ∩ M2,
such that the unit ball of M is included in the intersection of
the two unit balls of metrics M2 and M1 (for details, see the
algorithm defined in [67]).

The possibility to use the standard FreeFem++ adaptmesh
function was one of the main advantages that decided in choosing
this software to implement our algorithm to solve phase-change
problems. No supplementary script layers or modifications of
the standard function were necessary and the adaptivity part of
the FreeFem++ scripts contains only a single instruction line.
Recently, Zimmerman and Kowalski [46] used the FEniCs finite
element software offering a dual-weighted residual method for
mesh adaptivity purposes. Using this method with an AMR (Adap-
tive Mesh Refinement) technique for phase change problems
displayed a major drawback: the mesh was refined during the ad-
vancement of the liquid–solid front, but never coarsened behind.
The metrics control used by the FreeFem++ adaptmesh function
offers the ability to simultaneously refine the mesh in regions
with strong gradients and coarsen the mesh in regions with
low gradients. This function proved very efficient and versatile
for phase-change problems by offering the possibility to take
into account several metrics computed from different variables
monitoring the time-evolution of the system. For natural con-
vection systems, the mesh was adapted using the values of the
two velocity components and the temperature. For phase-change
systems, to accurately track the solid–liquid interface we added
the enthalpy source term as a variable in the adaptivity criterion.
For water systems (convection or freezing), we also added an
extra function tracking the anomalous change of density around
4 ◦C. To monitor the time change of these variables used to com-
pute the metrics intersection, we considered for each variable the
metrics computed at actual (tn+1) and previous (tn) time instants.
This technique also reduces the impact of the interpolation on the
global accuracy for time-depending problems (see also [44]). The

anisotropy of the mesh is a parameter of the algorithm and it was
set to values close to 1. This is an inevitable limitation since we
also impose the minimum edge-length of triangles to avoid too
large meshes.

The capabilities of the mesh adaptivity algorithm are illus-
trated in Section 6. It is important to emphasize that the standard
mesh adaptivity and interpolation tools offered by FreeFem++

are very efficient. The CPU time needed to adapt the mesh, using
up to six variables for the metrics evaluation, do not exceed 4%
of the CPU time requested to advance the solution by a time step.
The exact values of CPU times for the melting cases presented in
this paper are reported in Table 3. Given this computational effi-
ciency of the adaptivity tool, we could afford to refine the mesh
every time step during the computation, even when complex
domain shapes or physics were considered.

4. Description of the programs

In this section, we first describe the architecture of the pro-
grams and the organization of provided files. Then we focus on
the list of input parameters and the structure of output files.

4.1. Program architecture

Figure 1 gives a schematic overview of the content of the
toolbox. All files are provided in a directory called PCM-Toolbox-
2D. Many detailed comments are included in the programs, with
direct link to the mathematical expressions used in the paper.
The syntax was intentionally kept at a low level of technicality
and supplemented with detailed comments when specific more
technical syntax was used.

This directory is organized as follows:

1. The directory Common-Macros contains five files:
• Macro_operator.idp includes macros and functions defin-
ing mathematical operators,
• Macro_problem.idp: macros defining the variational for-
mulation of the problem,
• Macro_restart.idp: macros used to start a new simulation
from a saved field,
• Macro_output.idp: macros used to save the solution with
different formats,
• Macro_system.idp: macros identifying the OS and defining
specific OS-commands.

2. The directory Test-Cases contains four subdirectories,
each of them defining one of the following applications:
• test of the convergence of the method using manufac-
tured solutions,
• natural convection of air or water in a differentially
heated square cavity,
• melting of a PCM stored in containers of different shapes,
• melting followed by solidification of a rectangular PCM,
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Fig. 2. Structure of each Test-case folder.

• freezing of pure water in a square cavity.
Each subdirectory contains three files: NEWTON_$case.edp
is the main FreeFem++ script file, param_phys.inc defines
the physical parameters and param_num.inc the
numerical parameters. For example, to run the station-
ary natural convection case of air in a square cavity, one
can use the following command in a terminal window:
FreeFem++ NEWTON_stat_natconv.edp.
The folder structure of each test case is illustrated in
Fig. 2. The obtained solutions are saved in the folder OUT-
PUT/Data. Depending on the output format selected by the
user, data files are generated in specific folders for being
visualized with: Tecplot, Paraview, Gnuplot or Medit. We
also provide in the folder Figures ready-made layouts for
these visualization softwares. The user can thus obtain the
figures from this paper using newly generated data. More
details about the output structure are given below.

4.2. Input parameters

Physical parameters and parameters related to the run are
separated into two files.
(1) The file param_phys.inc contains the physical descriptions of
the problem:

• typeT: is the finite-element type for the temperature, with
possible values P2 or P1,

• Torder: is the accuracy order of the time integration scheme,
with possible values 1 (Euler scheme) or 2 (Gear scheme),

• scalAdim: defines the characteristic scales of the problem,
see (6). Possible values 1, 2 or 3 correspond to the following
choice of the characteristic scales [32]:

(1) : V (1)
ref =

νl

H
H⇒ t (1)ref =

H2

νl
H⇒ Re = 1, (31)

(2) : V (2)
ref =

α

H
H⇒ t (2)ref = t (1)ref Pr H⇒ Re = 1/Pr, (32)

(3) : V (3)
ref =

νl

H

√
Ra
Pr

H⇒ t (3)ref = t (1)ref

√
Pr
Ra

H⇒ Re =

√
Ra
Pr

, (33)

• xl, xr , yl, yr : are the values defining the dimensions of the
cavity [xl, xr ] × [yl, yr ],

• Pr, Ra, Ste: are the Prandtl, Rayleigh and Stefan numbers,
see (11) and (10),

• Thot , Tcold: are dimensionless temperatures according to (6),
• bcu1, bcu2, bcT: are macros defining the velocity (u) and the

temperature (T) boundary conditions.
• epsi: is the half width ε of the mushy region. Default value

= 0.01,
• dt: is the dimensionless time step,
• tmax: is the dimensionless final time,
• Parameters for regularization functions:

The parameters of the hyperbolic-tangent function (14) used
to regularize discontinuous functions are set by default as
follows:

fs fl as θs Rs CCK b
Enthalpy 0 1/Ste 1 0.01 0.01 – –
Carman–Kozeny 0 1 1 0.01 0.01 106 10−7

Conductivity (water) 1 2.26/0.578 1 θf 0.015 – –

• rho(T) and Drho(T): (water cases only) define the density
and its derivative as functions of the temperature, following
the model [69]:

ρ(T ) = ρm(1 − ω|T − Tm|
q),

ρm [kg/m3] ω [◦C−q] q Tm [◦C]

999.972 9.2793 · 10−6 1.894816 4.0293

• fB(T), dfB(T): define the buoyancy force and its derivative.

(2) The file param_num.inc contains the parameters controlling
the run.
Restart parameters:

• Nsave: the solution is saved every Nsave time steps in the
Data folder (see Fig. 2). The temperature and the velocity
fields are saved in Tecplot and Medit folders, while the
liquid fraction, the Nusselt number, and the accumulated
heat input are saved in the Gnuplot folder.

• Nrestart: restart files (mesh and solution) are saved every
Nrestart time steps. Solutions at current and previous itera-
tions, the CPU time, the accumulated heat input Q0, and the
time step dt are saved in the folder RST.

• Ncondt: allows the user to stop the run and save the so-
lution properly. The file OUTPUT/zz.condt is read every
Ncondt time steps: if the user replaces the value ‘‘0’’ in this
file by ‘‘1’’ the run is stopped. This is a simple solution for a
clean stop of the job by the user. Default value = 20.

• Nremesh: the mesh is adapted every Nremesh iterations. If
this parameter is set to ‘‘1’’ the mesh is adapted every time
step.

• IFrestart: is a Boolean controlling the set up of the initial
field.
IFrestart = 0, the initial condition is built in the code
for each test case. For the PCM melting cases, the PCM is
initially motionless at isothermal temperature. To set-up
a smooth initial field, a few time steps (with very small
δt) are computed by increasing progressively the boundary
temperature at the hot wall (by continuation). Outputs are
saved in OUTPUT/Data-RST-0.
IFrestart > 0, (positive integer values) the solution field
previously computed at iteration IFrestart is loaded from the
folder OUTPUT/Data-RST-filenameRST/RST, with file-
nameRST a variable selecting the restart folder.
IFrestart < 0, (negative integer values), the same principle
for loading a solution is used, but from the folder INIT
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(see Fig. 2). The solution fields stored in this folder could
come from different previous calculations (e.g. a steady state
solution or, for the water, the natural convection field before
freezing).

Newton parameters:

• epsconv: is the value of the stopping criterion for steady
cases,

• gamma: is the penalty parameter in (18). Default value =

10−7,
• tolNewton: is the Newton tolerance ξN (see (28)).

Default value = 10−6,
• newtonMax: limits the maximum number of iterations in

the Newton algorithm (28). Default value = 50,

Mesh parameters:

• nbseg: is the number of segments for the discretization
along the x and y directions,

• errh: is the interpolation error level. Default value = 0.02,
• hmin, hmax: are the minimum and maximum edge size,

respectively,
• adaptratio: is the ratio for a prescribed smoothing of the

metric. For a value less than 1.1 no smoothing is done.
Default value = 1.5,

• nbvx: is the maximum number of vertices allowed in the
mesh generator. Default value = 50000.

Output parameters:

• dircase: is the name of the output folder,
• fcase: is the prefix-name for output files.
• Tecplot, Medit, Gnu: correspond to the name of the visu-

alization software to be used; the format of the outputs
written in OUTPUT/Data (see Fig. 2) is accordingly set. The
files from the Tecplot folder can be easily read also with
Paraview.

4.3. Outputs

When a computation starts, the OUTPUT directory is created
(see Fig. 2). It contains two folders storing the output data and
the echo of the run parameters. The folder Data contains four
subdirectories with different output format files of the computed
solution. File names are created using the prefix defined by the
parameter fcase, the current iteration and the current dimension-
less time t . Solution files can be visualized using either Tecplot or
any other CFD Visualization tools (Paraview, Visit, etc.). Moreover,
.gmsh (mesh) and .rst (fields) files are generated in the folder
RST to enable restarts of the computation. Note that the folder
FFglut contains FreeFem++ scripts that re-read and visualize
the RST-files to facilitate the selection of a restart field. An .echo
file with a summary of the main parameters, information on the
run and the names of the output files is saved in the folder
RUNPARAM. This directory additionally contains a copy of the .inc
parameter files, allowing an easy identification of each case and
preparing an eventual rerun of the same case.

5. Numerical tests of the accuracy of the numerical method

We start by presenting tests of the accuracy of our numerical
method. We used the technique of manufactured solutions (e.g.
[70]) which has the advantage of providing an exact solution to
a modified problem, related to the initial one. The general idea
is to modify the original system of equations by introducing an
extra source term, such that the new system admits an exact
solution given by a convenient analytic expression. Even though

in most cases exact solutions constructed in this way are not
physically realistic, this approach allows one to rigorously verify
computations.

We tested the space and time accuracy using manufactured
solutions for the system of equations (7)–(9) for a stationary case
(Burggraf flow) and a time-dependent one [71]. For both cases,
we computed the global error ε for different norms in space:

ε = ∥Φe − φh∥, (34)

with Φe the exact solution and φh the numerical solution. Com-
putations were performed for the convection of air (C = K = 1,
A(θ ) = S(θ ) = 0), with a Rayleigh number Ra = 104 and a Prandtl
number Pr = 0.71.

5.1. Space accuracy: Burggraf stationary flow with thermal effects

The Burggraf manufactured solution is a time-independent
recirculating flow inside a square cavity [0, 1]×[0, 1]. It is similar
to the well-known entrained cavity flow, with the difference that
the velocity singularity at the top corners of the cavity is avoided.
We added to the classical Burggraf flow [72,73] a manufactured
solution for the temperature, with constant temperature imposed
at the top and the bottom walls. Vertical walls are assumed to be
adiabatic. The exact solution of the new flow with thermal effects
is:

u1(x, y) = σg ′(x)h′(y), (35)
u2(x, y) = −σg ′′(x)h(y),

p(x, y) =
σ

Re

(
h(3)(y)g(x) + g ′′(x)h′(y)

)
+

σ 2

2
g ′(x)2

(
h(y)h′′(y) − h′(y)2

)
,

T (x, y) = Tc + (Th − Tc)y + a(x)b(y),

with σ > 0 a scaling parameter and functions

g(x) =
x5

5
−

x4

2
+

x3

3
, (36)

h(y) = y4 − y2,
a(x) = cos(πx),
b(y) = y(1 − y).

Note that the velocity at the top border of the cavity is:

u1(0, 1) = 2σ (x4 − 2x3 + x2), u2(x, 1) = 0, (37)

which ensures the continuity of the velocity at corners (u(0, 1) =

u(1, 1) = 0), since non-slip walls are imposed for the other
borders: u(x, 0) = u(0, y) = u(1, y) = 0.

The forcing terms that have to be added to the momentum
and energy (temperature) equation are derived by injecting the
exact solution (35) into the system (7)–(9):

fu1 = 0, (38)
fu2 = σ 2h(y)h′(y)

(
g ′′(x)2 − g ′(x)g (3)(x)

)
+

σ

Re

(
g (4)(x)h(y) + 2g ′′(x)h′′(y) + g(x)h(4)(y)

)
+

σ 2

2
g ′(x)2

(
h(y)h(3)(y) − h′(y)h′′(y)

)
−

Ra
PrRe2

T (x, y),

fT = u1(x, y)a′(x)b(y) + u2(x, y)
(
Th − Tc + a(x)b′(y)

)
−

K
RePr

(
a′′(x)b(y) + a(x)b′′(y)

)
.

We used the Taylor–Hood finite element (P2 for the velocity
and P1 for the pressure) and tested P1 or P2 finite elements
for the temperature. Figure 3 illustrates the streamlines and the
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Fig. 3. Burggraf stationary flow with thermal effects used to test the space accuracy of the numerical scheme. Streamlines (a) and temperature contours (b) of the
flow field.

Fig. 4. Space accuracy of the numerical scheme tested using the Burggraf manufactured solution. The global error ε (34) was computed using natural norms:
L2-norm for the pressure p and H1-norm for velocity components u1, u2 and temperature θ . Taylor–Hood P2/P1 finite elements are used for the velocity and pressure.
Discretization of the temperature using P1 (plots a and b) and P2 (plots c and d) finite elements.

temperature field. Figure 4 plots the discretization error ε as a
function of the grid size h = δx = δy. The grid was not adapted
for these computations. Errors are measured in natural norms:
H1-norm for the velocity components u1, u2 and temperature θ ,
and L2-norm for the pressure p. Figures 4a and b correspond to
the simulation using P1 finite elements for the temperature, while
in Figs. 4c and d P2 finite elements were used for the temperature.
Convergence rates computed by a least-squares fit of the slopes
of the curves are displayed for reference. The optimal order of

accuracy (O(h2)) corresponding to the Taylor–Hood discretization
of the flow field is obtained (Figs. 4a and c), independently of the
temperature discretization. Expected orders of accuracy for the
temperature are confirmed in Figs. 4b (first order) and 4d (second
order) for the two implementations. In the subsequent simula-
tions, we use the P2 discretization of the temperature, offering
an optimal coupling between momentum and energy equations
(note in Fig. 4 the lower values of the errors obtained with this
discretization). Similar discretizations using Taylor–Hood finite
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Fig. 5. Time accuracy of the numerical scheme tested using the time-dependent manufactured solution of Nourgaliev et al. [71]. Global error ε (34) computed at

tmax = π for the temperature θ (a) and total velocity u =

√
u2
1 + u2

2 (b) using L2 and infinity norms. Discretization using P2 finite elements for the temperature.

Table 1
Parameter for the time-dependent manufactured solution (39).
γ1 γ2 P̄ T̄ δP0 δT0 δU0 αp αu αt

1 1 0 1.0 0.1 1.0 1.0 0.05 0.4 0.1

elements for the fluid flow and P2 for the temperature were used
in recent contributions by Woodfield et al. [34]; Belhamadia et al.
[47].

5.2. Time accuracy: manufactured unsteady solution

To test the time accuracy of the Gear (BDF2) scheme, we used
the manufactured time-dependent solution suggested in [71]:

u1(x, y, t) = (δU0 + αu sin(t)) cos(x + γ1t) sin(y + γ2t),
(39)

u2(x, y, t) = − (δU0 + αu sin(t)) sin(x + γ1t) cos(y + γ2t),

T (x, y, t) = T̄ + (δT0 + αt sin(t)) cos(x + γ1t) sin(y + γ2t),

p(x, y, t) = P̄ +
(
δP0 + αp sin(t)

)
sin(x + γ1t) cos(y + γ2t),

The values of the constants are reported in Table 1. The corre-
sponding forcing source terms are:

fu1 = αu cos(t) cos(a) sin(b) − Uc γ1 sin(a) sin(b)

+Uc γ2 cos(a) cos(b) (40)
−Uc u1(x, y, t) sin(a) sin(b) + Uc u2(x, y, t) cos(a) cos(b)
+Pc cos(a) cos(b)

+
2
Re

u1(x, y, t),

fu2 = −αu cos(t) sin(a) cos(b) − Uc γ1 cos(a) cos(b)
+Uc γ2 sin(a) sin(b)
−Uc u1(x, y, t) cos(a) cos(b) + Uc u2(x, y, t) sin(a) sin(b)
−Pc sin(a) sin(b)

+
2
Re

u2(x, y, t) −
Ra

PrRe2
T (x, y, t),

fT = αt cos(t) cos(a) sin(b) − Tc γ1 sin(a) sin(b)
+Tc γ2 cos(a) cos(b)
−Tc u1(x, y, t) sin(a) sin(b) + Tc u2(x, y, t) cos(a) cos(b)

+
2K
RePr

Tc cos(a) sin(b),

where a = (x+γ1t), b = (y+γ2t) and Uc = (δU0+αu sin(t)), Tc =

(δT0 + αu sin(t)), Pc = (δP0 + αu sin(t)).

Guided by the results obtained in Section 5.1 for the space
accuracy, we fixed the grid size to h = δx = 0.01 to ensure
small spatial discretization errors and used P2 finite elements for
the temperature. For diminishing values of the time step δt , the
solution was evolved in time up to the time instant tmax = π

at which the error (34) was computed. The time convergence is
displayed in Fig. 5a for the temperature and in Fig. 5b for the total
velocity u =

√
u2
1 + u2

2. The expected second order convergence
in time is obtained for all variables of the problem.

6. Numerical simulations of natural convection and phase-
change problems

In this section we test the robustness of the distributed tool-
box. We consider well defined benchmarks used to validate nu-
merical codes for natural convection and phase-change problems.
The difficulty of the computed cases is increased progressively by
considering the following physical systems: (i) natural convec-
tion of air (Section 6.1), (ii) melting of a phase-change material
(Section 6.2), (iii) alternate melting and solidification of a phase-
change system (Section 6.3) and (iv) the convection and the
freezing of pure water (Section 6.4). This approach allows us to
test the programs by adding progressively non-linearities in the
Newton algorithm. For each test case, we compare our results
with experimental and previously published numerical data.

6.1. Natural convection of air

We start by testing the Newton algorithm (25)–(27) for the
case of natural convection, i.e. C = K = 1, A(θ ) = S(θ ) = 0.
We consider the classical problem of the thermally driven square
cavity [0, 1] × [0, 1], filled with air. The Boussinesq term fB(θ ) is
then linear and takes the form (10). Top and bottom walls are
adiabatic, while the temperature is fixed on the left (hot) wall
and the right (cold) wall. Natural convection flows are computed
for three values of the Rayleigh number: Ra = 104, 105, 106. The
Prandtl number is set to Pr = 0.71. It was shown in [74] that
the flow in this configuration becomes unsteady for Ra = 108.5.
Therefore, steady states could be computed for the chosen values
of the Rayleigh number.

We provide programs for both steady (time-independent) and
time-dependent cases. The steady case is performed using a con-
tinuation following the boundary value of the temperature: a
small value for θc (or θh) is set initially and is then smoothly
increased until reaching the wanted value. The time-dependent
case is computed until a steady state with a single convection cell
is reached. To make the simulation more complicated, we present
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Fig. 6. Natural convection of air in a differentially heated cavity for values of Ra ranging from 104 to 106 . (a) Vertical velocity profile v(x) along the horizontal
symmetry line (y = 0.5). (b) Longitudinal velocity profile u(y) along the vertical symmetry line (x = 0.5). Results obtained using the present Newton method
(symbols), with an initial mesh resolution nbseg = 80. Comparison with the spectral simulations by Le Quéré [74] (solid lines).

Table 2
Natural convection of air in a differentially heated cavity. Maximum value umax of the horizontal
velocity profile at mid-domain (x = 0.5) and location Y of this maximum. Comparison to reference
values by Le Quéré [74].
Run umax at x = 0.5 (error) Y (error)

Reference values Spectral 0.0648344 0.850
Newton (Steady) nbseg = 80 0.0648297 (0.007%) 0.850394 (0.05%)
Newton (Unsteady) nbseg = 80 0.0648296 (0.007%) 0.850532 (0.06%)

two configurations: (i) the classical differentially heated square
cavity and (ii) a differentially heated cavity with an inner heated
obstacle.

All computations for the natural convection cases are per-
formed using the stationary solver and mesh adaptivity. The
initial mesh was generated using nbseg = 80 segments on each
side, i.e. hmin = 1/80 = 0.0125.

6.1.1. Classical differentially heated square cavity
The temperature is imposed at the left (hot) wall as θh = 0.5

and at the right (cold) wall as θc = −0.5. Top and bottom
walls are adiabatic. The initial condition models a cavity filled
with motionless air (u = 0), with a linear distribution of the
temperature. Both steady and time-dependent codes converge
to the same flow state with a single convection cell. For this
final state, horizontal u(y) and vertical v(x) velocity profiles were
extracted at mid-domain (y = 0.5 and x = 0.5, respectively)
and plotted in Fig. 6. Our results are in very good agreement
with reference numerical results obtained by Le Quéré [74] with
a spectral code.

Table 2 offers a quantitative assessment of the accuracy of the
present Newton method. The values of umax and its location Y
are compared to reference values from [74]. The Newton method
gives results identical to reference values, with a difference less
than 0.01%.

6.1.2. Differentially heated cavity with an inner heated obstacle
We consider the same differentially heated cavity as pre-

viously and add a centred square obstacle. The boundaries of
the inner square are non-slip isothermal walls, maintained at a
dimensionless hot temperature θh = 0.8. The solution computed
for Ra = 106 and Pr = 0.71 is compared with the results obtained
by Moglan [75], who used a 6th order finite-difference method
with an immersed boundary method to model the obstacle. The
temperature distribution in the cavity is shown in Fig. 7a. The
vertical velocity profile v(x) along the horizontal symmetry line
(y = 0.5) is displayed in Fig. 7b and shows very good agreement
with the numerical results reported by Moglan [75].

6.2. Melting of a phase-change material (PCM)

We continue our validation tests by considering the full sys-
tem (25)–(27) for the case of the melting of a phase-change
material. Two new non-linearities are now present in the system:
the Carman–Kozeny penalty term A(θ ) and the enthalpy source
term S(θ ). The function S is regularized using (15). We also con-
sider that the material properties in the liquid and solid are the
same, i.e. C = K = 1. This is a frequent assumption [27,28]. Five
cases were computed (the exact values of the defining parameters
are summarized in Table 3):

• PCM-Case #1 simulates the experimental study of Okada
[76]. It consists of a differentially heated square cavity, filled
with octadecane paraffin.

• PCM-Case #2 is extracted from the collective publication
by Bertrand et al. [77], in which the results of different
numerical approaches were compared for the simulation of
the melting of a PCM.

• PCM-Case #3 simulates the melting of a cylindrical PCM
with heated inner tubes, as in [2].

• PCM-Case #4 simulates the melting of Gallium in a rectan-
gular cavity heated by the side-wall, as in [21].

• PCM-Case #5 reproduces the simulation of Nourgaliev et al.
[71] using highly distorted meshes to compute a natural
convection flow with solid crust formation.

To guide the user of the toolbox, we also provide in Table 3 the
values of the CPU time necessary to run each case (with default
parameters) on a personal computer and the typical number of
triangles of the generated adaptive mesh.

Supplemental Material for animations depicting the dynamics
of the cases presented in this section are provided at http://lmrs-
num.math.cnrs.fr/2019CPCP1.html.

6.2.1. PCM-Case #1: Melting of an octadecane PCM in a square
cavity

Okada [76] studied experimentally the melting of an octade-
cane PCM in a square cavity of height H = 1.5 cm. His results

http://lmrs-num.math.cnrs.fr/2019CPCP1.html
http://lmrs-num.math.cnrs.fr/2019CPCP1.html
http://lmrs-num.math.cnrs.fr/2019CPCP1.html
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Fig. 7. Natural convection of air in a differentially heated cavity with an inner heated square for Ra = 106 . Temperature field (a) and vertical velocity profile along
the horizontal symmetry line (b). Results obtained using the present Newton method (red solid line), with an initial mesh resolution nbseg = 80. Comparison with
the results obtained using a 6th order finite-difference method by Moglan [75].

Table 3
Parameters for the cases simulating the melting of a phase-change material.

Case #1 Case #2 Case #3 Case #4 Case #5

Ra 3.27 · 105 108 5 · 104 7 · 105 106

Pr 56.2 50 0.2 0.0216 0.1
Ste 0.045 0.1 0.02 0.046 4.854

δt 0.1 10−3 10−3 10−5 10−3

Vref
νl
H

νl
H

νl
H

νl
H

νl
H

√
Ra
Pr

CPU time 01:09:05 18:17:56 00:49:21 08:32:58 02:49:20
Number of triangles 2900 7000 2076 3600 2769
Number of iterations 798 5000 491 2001 3027
ratio CPU-time adapt/iteration 2.5% 2.5% 2% 2% 4%

were often used to validate numerical methods [27,28,32,76]. The
material is initially solid (θ0 = −0.01) and melts progressively
starting from the left boundary, maintained at a hot temperature
θh = 1. The right boundary is also isothermal, with cold temper-
ature θc = −0.01. Horizontal boundaries are adiabatic. The other
parameters of this case are reported in Table 3.

The computation starts from a refined mesh near the hot
boundary. Mesh adaptivity is applied at each time step using
metrics computed from three variables: the two fluid velocities
and the enthalpy source term S. To reduce the impact of the
interpolation on the global accuracy, we use two successive fields
(Sn) and (Sn+1) in the adaptivity procedure. This allows us to
refine the mesh in the fluid part of the domain and inside the
artificial mushy. Figure 8a gives an illustration of the adapted
mesh at dimensionless time t = 78.7. In Fig. 8b we compare the
position of the solid–liquid interface at t = 39.9 and t = 78.7
with the experimental data of Okada [76] and previously pub-
lished numerical results [28,32]. The obtained shape and position
of the liquid–solid interface is closer to experimental results than
numerical results reported in [28]. This is a direct consequence of
the mesh adaptivity capabilities of our method.

This comparison also allowed us to finely tune the value of
the constants used in the model (16). Even though it is generally
assumed that a large value for CCK must be set, the exact value of
this constant could influence the accuracy of the results [53,78].
This choice of the value of this constant is a still open problem.
Very good agreement with the experimental result of Okada [76]
is obtained for CCK varying in the range [106, 108

]. Imposing a
too large value (CCK = 1010) results in artificially slowing the
propagation of the melting front. Consequently, we set for all
subsequent simulations CCK = 106.

6.2.2. PCM-Case #2: Melting of an octadecane PCM with high
Rayleigh number

This case considers the same problem of the melting of a PCM,
but with a very high value of the Rayleigh number Ra = 108 (see
Table 3). This case is very challenging since the natural convection
becomes important in the fluid flow, and enhances considerably
the heat transfer.

Bertrand et al. [77] compiled results provided by five dif-
ferent authors (Lacroix, Le Quéré, Gobin-Vieira, Delannoy and
Binet-Lacroix). These results will be hereafter referred to as (say)
‘Lacroix, from [77]’. They have attempted a first comparison by
taking several numerical methods to compute the basic configu-
ration presented in this section. Two investigators among the five
failed to predict the process and showed unrealistic behaviours
in Fig. 9a and b: Lacroix and Delannoy seem to be insufficiently
converged as shown by Fig. 9a, and Binet-Lacroix overestimates
the average Nusselt number by more than 30% (Fig. 9b). Hence,
this collection of results allows us to validate our numerical
method and check if realistic results are obtained for complex
physical configurations. For comparison purpose, we extract from
simulations the position of the melting front and the Nusselt
number Nu at the left wall (x = 0) for each of the five methods
presented by Bertrand et al. [77]. The Nusselt number Nu is
defined as follows:

Nu =

∫ 1

0

(
∂θ

∂x

)
x=0

dy. (41)

The position of the melting front for three time instants, t = 1,
3 and 5 is reported in Fig. 9a. Our results are for each case in
fairly good agreement with those of Gobin and Le Quéré. Details
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Fig. 8. PCM-Case #1. Melting of the PCM. (a) Adapted mesh at time instant t = 78.7. (b) Position of the solid–liquid interface. Comparison with experimental data
of Okada [76] and numerical results of Danaila et al. [32] and Wang et al. [28] for two time instants, t = 39.9 and t = 78.7.

Fig. 9. PCM-Case #2. Melting of the PCM with high Rayleigh number (Ra = 108). Comparison with five sets of results presented in [77]. (a) Location of the solid–liquid
interface at dimensionless time instants t = 1, 3 and 5. (b) Temporal evolution of the Nusselt number.

of their numerical method are presented in [79]. Gobin used a
front-tracking method based on a coordinate transformation with
a finite volume method in a 62 × 42 grid and Le Quéré solved a
single domain method using a second-order scheme with a finite
volume method and a 192 × 192 grid. The time evolution of
the Nusselt number is presented in Fig. 9b. Very good agreement
is obtained with the results of Gobin and Le Quéré. A relative
difference, less than 2%, is observed for the Nusselt number.

The high Rayleigh number Ra = 108 is a very demanding
numerical test. The high velocity, inducing a very narrow thermal
boundary layer, can lead to unrealistic results if under-resolved.
This explains why some numerical methods failed in [77]. The
interest of the mesh adaptation is clearly demonstrated for this
case, since we initially used a coarse 40 × 40 grid.

6.2.3. PCM-Case #3: Melting of cylindrical PCM with inner heated
tubes

Previous cases #1 and #2 considered phase change problems
evolving in a simple geometry, a square cavity. A more complex
geometry, suggested by Luo et al. [2], is simulated in this section.
It consists of a cylindrical PCM of radius R = 1 with tube
inclusions of different arrangements. The interest in studying this
case is not solely the challenge of the complex configuration, but
also the possibility to compare our results with those of Luo et al.
[2], obtained using a completely different model based on the
Lattice Boltzmann Method. This configuration is also interesting
from a practical point of view. Agyenim et al. [80] pointed out
that more than 70% of the PCM containers used for heat storage
are using shell-tube systems.

We simulate three configurations with one, four and nine
heated tubes. The size of the tubes is adjusted to have the same
total tube area for all configurations. The radius Ri of the inner
tube is Ri = R/4 for the case with one tube, Ri = R/8 for the four
heated tubes case and Ri = R/12 for the case with nine tubes. A
Dirichlet boundary condition (θ = θh) is applied to the boundary
of inner tubes. A Neumann boundary condition (∂θ/∂n = 0) is
used for the outer boundary. For the velocity, all boundaries are
considered as non-slip walls (u = 0). Only half of the domain is
simulated since all configurations are symmetric with respect to
the vertical axis (see Fig. 10). The mesh is refined initially around
the inner tubes, and is dynamically adapted at each time step
around the melting front and the thermal boundary layer area.
The same metrics presented in Section 6.2.1 are used for the mesh
adaptivity.

Figure 10 shows the temperature field and the position of
the solid–liquid interface (black line) for the three configura-
tions for time instants corresponding to the same liquid fraction
Lf = 80%. The distribution of the inner tubes in the liquid
phase influences directly the fluid motion and the shape of the
melting front. The more the number of inner tubes, the stronger
the natural convection is in the melted PCM. The shape of the
solid–liquid interface displays complex patterns, depending on
the space arrangement of the inner tubes. The mesh is nicely
adapted following the evolution of the melting interface, even
after its separation in several distinct fronts touching the outer
boundary (see Figs. 10b, c).

To estimate the efficiency of each configuration, we plot in
Fig. 11 the time evolution of the liquid fraction Lf . By including
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Fig. 10. PCM-Case #3. Temperature fields for the melting of a cylindrical PCM with inner heated tubes. Time instants corresponding to the same liquid fraction
Lf = 80%. Configurations with (a) one tube (t = 2.5), (b) four tubes (t = 0.99) and (c) nine tubes (t = 0.4). Melting fronts are localized with black lines (only half
of the domain is simulated).

Fig. 11. PCM-Case #3. Time evolution of the liquid fraction for configurations
with one, four, and nine heated tubes. Comparison with numerical results of Luo
et al. [2].

more heated tubes the heat transfer is enhanced, inducing a faster
melting time. The nine-tube configurations melts 5 times faster
than the reference configuration with one tube. Note also from
Fig. 11 a good agreement between our results and those reported
by Luo et al. [2] for the evolution of the liquid fraction.

6.2.4. PCM-Case #4: Melting of Gallium in a rectangular cavity
The melting of the Gallium in a rectangular cavity was a

controversial case since [81] raised the question whether the
convection in the fluid is mono-cellular or multi-cellular. Experi-
mental results exhibited indeed a mono-cellular structure, while
many researchers claimed that this observation was incorrect.
Prior to Dantzig [81], both experimental and numerical studies
reported a single convection cell in the fluid phase. Later, simula-
tions provided solutions with multi-cellular flow. Hannoun et al.
[21] concluded that the mono-cellular observation was caused by
a problem of convergence of the numerical solution, due to coarse
grids or inconsistencies in the mathematical model.

Therefore, this test case simulating the melting of the Gallium
is a relevant exercise to test the accuracy of our method. The pa-
rameters of this case are reported in Table 3. To capture the very
small convection cells during the first step of the melting, Han-
noun et al. [21] used a 800 × 1, 120 fixed grid in a rectangular
domain of dimensions 6.35 cm × 8.89 cm. With our adaptive
method, a maximum number of 4820 triangles are necessary to
reproduce the numerical result of Hannoun et al. [21]. The grid
size is thus reduced with our method by a factor of 100.

The time evolution of the flow is presented in Fig. 12. Tem-
perature field, streamlines and position of the melting front are
plotted for several time instants: t = 0.0015, 0.006, 0.01, and
0.019. These values were chosen to visualize the merging of
convection cells in the fluid flow and correspond to physical
times 20 s, 85 s, 155 s, 280 s in [21]. The number of rolls was
considered as a validation criterion by several authors [21,82,83].
Three cells are observed at t = 0.006 (Fig. 12). The number of
cells decreases later through a process of roll merging, as it was
also reported by Hannoun et al. [21]. Our numerical results are
in good agreement with the observations of Hannoun et al. [21],
Cerimele et al. [82] and Giangi and Stella [83].

6.2.5. PCM-Case #5: Solid crust formation in a highly distorted mesh
Nourgaliev et al. [71] used a discontinuous Galerkin finite ele-

ment method to simulate the solid crust formation inside a highly
distorted domain (Fig. 13). The fluid is initially motionless with
an initial dimensionless temperature θ0 = 2. The temperature
of fusion is set to θf = 1.4, according to Nourgaliev et al. [71]
parameters (see Table 3 for the values of all parameters). The
left side boundary is maintained at a cold temperature θc =

1.39 in the initial stage. The right wall is isothermal, with hot
temperature θh = 2. A nearly steady-state natural circulation is
induced in the early time evolution of the flow. Then, the cold
temperature at the left wall is decreased to θc = 1, below the
temperature of solidification. At this point, the formation of a
solid crust layer starts at the left boundary. Figure 13 shows the
temperature field and the streamlines for the time instant t = 30.
Our results are in very good agreement with those of Nourgaliev
et al. [71].

6.3. Melting-solidification cycle of a PCM

We address in this section the challenging problem of sim-
ulating a complete melting-solidification cycle of a PCM. The
simulation starts from the final state obtained in Section 6.2.1.
At t = 78.7, the PCM is partially melted, with the liquid fraction
Lf = 0.5 (see Fig. 14a). The temperature of the left boundary is
then dropped to a cold temperature θc = −0.01 < θf , identical to
that of the right wall. The solidification starts and the solid phase
propagates into the cavity from both left and right sides. Panels
(a) to (e) in Fig. 14 depict the time evolution of the solidification
process. The solid phase is represented in blue and corresponds
to the region of temperature θ ≤ θf = 0, while the solid–liquid
interfaces (i.e. contour lines of θ = 0) are represented by bold
solid lines. The solidification is completely achieved at t = 4600.
Note that the mesh adaptivity of our toolbox is able to accurately
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Fig. 12. PCM-Case #4. Melting of Gallium: temperature field, streamlines, and melting front for dimensionless time instants (panels a to d): 0.0015, 0.006, 0.01, and
0.019. For a better view of the convection cells, a ratio 2:1 was used for the axis dimensions.

Fig. 13. PCM-Case #5. Solid crust formation in a distorted mesh. Temperature field and streamlines at dimensionless time t = 30: our simulation (a) and [71] (b).

track the two solidification fronts. The adapted mesh shown in
Fig. 14f illustrates that a finer mesh is well generated along the
interface (θ = 0), while a coarser mesh is obtained in the regions
of low gradients.

A comprehensive physical description of this case is given
in our recent paper [45]. The case of the solidification process
starting after a complete melting of the PCM is also presented
in this paper. We can conclude from this section that the New-
ton method is able to deal with either melting or solidification
process. The simulations are in good agreement with existing
experimental and numerical results for the melting and show
consistent behaviour for the solidification.

6.4. Natural convection of water and water freezing

We consider in this section the natural convection and the
solidification of water. With these cases, we test the ability of
our numerical system to deal with additional non-linear terms.

Since pure water exhibits non-linear density variation for T <

10.2 ◦C, with a maximum at Tm = 4.0293 ◦C, the Boussinesq force
becomes non-linear. We used the following density–temperature
relationship suggested by Gebhart and Mollendorf [69]:

ρ(T ) = ρm
(
1 − w |T − Tm|

q) , (42)

with ρm = 999.972 [kg/m3], w = 9.2793 · 10−6
[(◦C)−q

], and
q = 1.894816.

Hence, the buoyancy term fB = g(ρref − ρ)/ρref in (7) is not
any more linear and becomes after scaling:

fB(θ ) =
Ra

Pr Re2
1

βδT
ρ(θf ) − ρ(θ )

ρ(θf )
, (43)

where β = (1/ρm) (dρ/dT ) is the thermal expansion coefficient
taking the value β = 6.91 · 10−5 [(K)−1] [84].

We simulate a differentially heated square cavity filled with
liquid pure distilled water. This problem was investigated exper-
imentally and numerically by Giangi et al. [41]; Kowalewski and
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Fig. 14. Solidification of the PCM after a partial melting. Temperature contour-lines in the fluid phase. The solid part is represented in blue and corresponds to the
region of temperature θ ≤ θf = 0. Time instants (panels a to e): t = 78.92, t = 1072, t = 2702, t = 3902 and t = 4501. The adapted mesh corresponding to panel
(b) is shown in panel (f).

Rebow [40]; Michalek and Kowalewski [85]. The non-dimensional
parameters describing the problem are (see [85] for physical
details): Ra = 2.518084 · 106, Pr = 6.99 and Ste = 0.125.

6.4.1. Natural convection of water
The initial temperature is linearly distributed in the square

cavity, with a hot temperature Th = 10 ◦C at the left wall and a
cold temperature Tc = Tf = 0 ◦C at the right wall. The tempera-
ture field and the streamlines of the steady state are presented
in Fig. 15a. The isoline θ = θm, corresponding to the line of
maximum density is represented by a dashed line. Due to the
anomalous thermal variation of water density, two recirculating
zones are formed in the flow: a lower (abnormal) recirculation
in the vicinity of the cold wall where θ < θm and an up-
per (normal) one where the density decreases with temperature
(θ > θm).

A more precise comparison with previously published results
is shown in Fig. 15b. The obtained temperature profile θ (x)
along the horizontal symmetry line of the cavity (y = 0.5)
is in good agreement with the numerical results of Michalek
and Kowalewski [85]. Their results were obtained with finite-
volume and finite-difference codes (FLUENT and FRECONV3V).
Differences are visible in the vicinity of the maximum density
line, region where our mesh is well refined to capture the separa-
tion line between the two recirculation zones. It should be noted
that the FLUENT simulations in [85] are performed with a fixed
uniform grid with 380 × 380 nodes, while our adapted grid has
only 1807 vertices (3430 triangles).

6.4.2. Water freezing
We finally consider the difficult case of water freezing in a

square cavity. The initial state for this computation is the convec-
tion steady pattern in the cavity presented in Fig. 15. The freezing
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Fig. 15. Natural convection of water in a differentially heated cavity. Non-dimensional temperature θ at steady state. (a) Two-dimensional temperature field and
streamlines showing the two recirculating zones. (b) Temperature profile along the horizontal symmetry line. Comparison with the numerical results of Michalek
and Kowalewski [85].

Fig. 16. Freezing of pure water. Configuration at (physical time) tϕ = 2340 [s]: (a) experimental image from [40]; the thick red line represents the solid–liquid
interface computed with the present method (b) computed streamlines showing the two recirculating zones in the fluid phase (c) finite-element mesh refined along
the solid–liquid interface (T = 0 ◦C) and also along the line of maximum water density (T = 4 ◦C) (d) temperature iso-lines.

starts by dropping smoothly the temperature of the cold right
wall from Tc = 0 ◦C to Tc = −10 ◦C.

Figure 16a superimposes the experimental image from [40]
with our numerical results for the same physical time tϕ = 2340
[s]. The flow pattern in the liquid phase, shown in Fig. 16b also
corresponds very well qualitatively to the experimental image.
The simulation was performed with small time steps (δt =

10−2
≈ 15 [s]) and reasonable-size grids (less than 3000 nodes)

due to the efficiency of the adaptivity algorithm.
The two recirculating zones being separated by the line T = Tm

we used the mesh adaptivity capability of the method to refine

the grid along this line. The metrics used for adaptivity were
computed from the two components of the velocity and a P1
function φ(T ) ‘‘tracking’’ the value Tm, defined by the general
regularization expression:

φ(T ) =
1
2

{
1 + tanh

(
Tm − T

Rφ

)}
, (44)

with Rφ = 0.02. To reduce the impact of the interpolation
on the global accuracy (see also [44]), we used both φ(T n) and
φ(T n+1) in the adaptivity procedure. The final mesh is displayed
in Fig. 16c, clearly showing that the mesh is refined along the
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lines T = Tm and T = 0 ◦C. This allows to accurately capture the
structure and the extent of the two recirculating zones, features
that are difficult to obtain with fixed meshes (discrepancies in
numerical results are described in [40,41,85]). As a consequence,
the temperature contours lines in Fig. 16d are smooth and clearly
define the two interfaces in the system: the liquid–solid interface
(θ = 0) and the density inversion interface (θ = 0.4) separating
the two recirculating liquid regions.

7. Summary and conclusions

We provide with this paper an adaptive finite-element toolbox
for solving two-dimensional phase-change problems with con-
vection. The programs were written using FreeFem++, a free
software offering a programming syntax close to the mathemat-
ical formulation. A single domain numerical approach was first
derived. The details of the finite-element formulation were then
presented. The key ingredients of the implemented method are:
(i) a second order accuracy in space and time; (ii) the use of an
adaptive finite element method with a well chosen regularization
of the functions representing the variation of thermodynamic
properties at the solid–liquid interface, and (iii) a fully implicit
discretization with a Newton algorithm for solving the non-linear
system of equations.

Four test cases were presented, by adding progressively non-
linearities in the system of equations:

(i) natural convection of air in a differentially heated cavity,
(ii) melting of a PCM,
(iii) melting-solidification cycle of a PCM,
(iv) natural convection and freezing of water.
The computations for case (ii) were rendered more challeng-

ing by considering complex geometries (highly distorted mesh,
cylindrical PCM with inner heated tubes) and computationally
demanding cases (high Rayleigh numbers). The efficiency of the
adaptivity method by metric control was investigated by track-
ing simultaneously several interfaces (two melting fronts during
the solidification cycle and density inversion interface for water
flows).

For each test case, we provided a separate folder containing
all the necessary files (parameters, restart files) necessary to
run them directly. We described in the text body of the paper
the expected results and their validation. Very good agreement
with experimental data or numerical results was obtained for all
considered test cases, proving the capability of our method to
tackle a large range of problems. Ready-made scripts and layouts
are provided with the toolbox to allow the user to generate the
figures presented in this paper with newly generated data after
running the programs. Validation data sets from experiments
or previous publications are included in these layouts. Movies
depicting the dynamics of some cases simulated in this paper are
provided as Supplemental Material at http://lmrs-num.math.cnrs.
fr/2019CPCP1.html.

Since FreeFem++ is a free software, the method could be
easily implemented and tested by anyone interested in simulating
phase-change problems. All technical issues related to the im-
plementation of the finite element method are hidden, allowing
to focus on numerical algorithms and their performance. This
offers the possibility to address other computational challenges
related to different physical or mathematical models in this
field.

The extension of the method for 2D and 3D cases, using
domain decomposition methods adapted to parallel computing,
will be reported in a forthcoming contribution.
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