
Parallel finite-element codes for the simulation of
two-dimensional and three-dimensional solid-liquid

phase-change systems with natural convection
Computer Physics Communications, 2020.

Vol. 257, p. 107492(1-26), DOI: 10.1016/j.cpc.2020.107492

Georges Sadakaa, Aina Rakotondrandisaa, Pierre-Henri Tournierb, Francky Luddensa,
Corentin Lothodéa, Ionut Danailaa,∗

aLaboratoire de Mathématiques Raphaël Salem, Université de Rouen Normandie, CNRS UMR 6085,
Avenue de l’Université, BP 12, F-76801 Saint-Étienne-du-Rouvray, France

bSorbonne Université, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France.

Abstract

We present and distribute a FreeFem++ Toolbox for the parallel computing of two-
or three-dimensional liquid-solid phase-change systems involving natural convection.
FreeFem++ (www.freefem.org) is a free finite-element software available for all existing
operating systems. We use the recent library ffddm that makes available in FreeFem++
state-of-the-art scalable Schwarz domain decomposition methods (DDM). The single
domain approach used in our previous contribution [A. Rakotondrandisa, G. Sadaka, I.
Danaila, A finite-element Toolbox for the simulation of solid-liquid phase-change systems
with natural convection, Computer Physics Communications, Vol. 253, p. 107188,
2020] is adapted for the use of the DDM method. As a result, the computational time
is considerably reduced for 2D configurations and furthermore 3D problems become
affordable. The numerical method is based on an enthalpy-porosity model. The same set
of equations is solved in both liquid and solid phases: the incompressible Navier-Stokes
equations with Boussinesq approximation for thermal effects. A Carman-Kozeny-type
penalty term is added to the momentum equations to bring progressively the velocity
to zero into the solid. Model equations are discretized using Galerkin triangular or
tetrahedral finite elements. The coupled system of equations is integrated in time using a
second-order Gear implicit scheme. The resulting discrete equations are solved using a
Newton algorithm. The DDM approach is based on an overlapping Schwarz method. The
mesh is first split in subdomains using Scotch or Metis libraries. The final linear system
is then solved in parallel using a GMRES Krylov method, with a Restricted Additive
Schwarz (RAS) preconditioner. The mesh is adapted during the computation using
metrics control. The 3D-mesh adaptivity uses the mmg (www.mmgtools.org) open source
library. Parallel 2D and 3D computations of benchmark cases of increasing difficulty are
presented: natural convection of air, natural convection of water, melting or solidification
of a phase-change material, and, finally, a water freezing case. For each case, careful
validations are provided and the performance of the code is assessed. The robustness
of the Toolbox in 3D is also demonstrated by adapting the number of processors to the
number of tetrahedra, which can considerably vary after the mesh adaptation.

1

Keywords: phase change, PCM, parallel computing, finite element, 3D melting, 3D
solidification, mesh adaptivity, Navier-Stokes-Boussinesq, FreeFem.

Programm summary
Program Title: PCM Toolbox DDM 2D and PCM Toolbox DDM 3D
Catalogue identifier:
Program summary URL:
Program obtainable from:
Licensing provisions: Apache License, 2.0 (Apache-2.0)
No. of lines in distributed program, including test data, etc.: 6820 (2D), 6382 (3D)
No. of bytes in distributed program, including test data, etc.: 3.6 Mo (2D and 3D)
Distribution format: .tar.gz
Programming language: FreeFem++(www.freefem.org), mmg (www.mmgtools.org)
Computer: PC, Mac, Super-computer.
Operating system: Mac OS, Linux.
Nature of problem: The software is scoped to parallel computations of 2D or 3D configu-
rations of liquid-solid phase-change problems with convection in the liquid phase. Natural
convection, melting and solidification processes are illustrated in the paper. The software
can be easily modified to take into account different related physical models.
Solution method: We use a single domain approach, solving the incompressible Navier-
Stokes equations with Boussinesq approximation in both liquid and solid phases. A
Carman–Kozeny-type penalty term is added to the momentum equations to bring the
velocity to zero into the solid phase. An enthalpy model is used in the energy equation
to take into account the phase change. Discontinuous variables (latent heat, material
properties) are regularized through an intermediate (mushy) region. Space discretiza-
tion is based on Galerkin triangular/tetrahedral finite elements. A second order Gear
implicit scheme is used for the time integration of the coupled system of equations. The
resulting discrete equations are solved using a Newton algorithm. Piecewise quadratic
(P2) finite-elements are used for the velocity and piecewise linear (P1) for the pressure.
For the temperature both P2 or P1 discretization are possible. The mesh is first split
in subdomains using Scotch or Metis libraries, which are interfaced with FreeFem++.
Then, a Schwarz domain decomposition method is used through the FreeFem++library
ffddm. The final linear system is solved in parallel using a GMRES Krylov method, with
a Restricted Additive Schwarz (RAS) preconditioner. Mesh adaptivity using metrics
control makes possible the optimization of the distribution of mesh elements. For 3D
case, the mmg open source library is used to adapt the mesh.

Running time: For 2D cases: from seconds for the natural convection case to minutes
or hours for PCM melting or solidification. Using only 6 MPI processes (cores or threads)
on a personal computer, the parallel computation can bring a speed-up of 1.3 to 3.97,
depending on the difficulty of the problem (see Table 1). For 3D cases, the running time
depends on the size of the problem and the number of processes: from 55 minutes for the

∗Corresponding author. Tel.: (+33) 2 32 95 52 50
Email addresses: georges.sadaka@univ-rouen.fr (Georges Sadaka),

aina.rakotondrandisa@etu.univ-rouen.fr (Aina Rakotondrandisa), tournier@ljll.math.upmc.fr
(Pierre-Henri Tournier), francky.luddens@univ-rouen.fr (Francky Luddens),
corentin.lothode@univ-rouen.fr (Corentin Lothodé), ionut.danaila@univ-rouen.fr (Ionut Danaila)
Preprint submitted to Computer Physics Communications September 15, 2020

unsteady natural convection of air with Ra=1e4 using 6 MPI processes to 1 day and 16
hours for the water freezing case using 224 MPI processes).

1. Introduction

Accurate and efficient numerical simulations of solid-liquid phase-change problems are
needed in many practical applications. Metal casting, Earth’s mantle formation and food
freezing are well explored topics in this area. Recently, a great deal of attention was paid
to the simulation of latent thermal energy storage (LTES) systems based on phase-change
materials (PCM). Such devices are used for thermal energy storage (e. g. for solar power
generation) or passive temperature control (e. g. for modern portable electronics) devices.
For a review of various applications of PCMs, see recent reviews by Agyenim et al. (2010)
and Kalnæs and Jelle (2015).

In all these problems, melting and solidification are fundamental processes that are
difficult to simulate if accurate physical models are used. A sketch of the melting problem
is shown in Fig. 1a. Buoyancy forces in the liquid (melted) phase generate a significant
convective flow and thus deform the liquid-solid interface. Solidification is a similar
process, but with a slower evolution and the possibility to generate several solid-liquid
interfaces propagating simultaneously. Resolving all the scales in the liquid region using
the Navier-Stokes-Boussinesq equations and accurately capturing the solid-liquid interfaces
are the main challenges for a numerical system addressing these problems. In our recent
contribution (Rakotondrandisa et al., 2020) we presented an in-depth review of physical
and numerical models dealing with solid-liquid phase-change problems with convection.
The approach retained in Rakotondrandisa et al. (2020) was based on the widely used
enthalpy-porosity single-domain model, also called the fixed-domain model (Brent et al.,
1988). In the present contribution, we extend this model to parallel computations using
domain-decomposition (DD) methods, as illustrated in Fig. 1b.

The main advantage of the enthalpy-porosity single-domain model is that the solid-
liquid interface is not explicitly tracked. The position of the interface is computed a
posteriori by post-processing the obtained temperature field T (in Fig. 1b, the interface
is represented by the iso-contour T = 0). This makes the model appropriate for the use
of domain decomposition models and parallel computing. Front tracking or front fixing
deforming-grid methods (e. g. Stella and Giangi (2004); Tenchev et al. (2005)) would
obviously introduce an algorithmic complexity penalizing parallel computing performances.
Note that a different category of models was recently suggested in the literature, based
on the Lattice Boltzmann Method (Luo et al., 2015; Gong et al., 2015). Such methods
based on non-deterministic models are also well adapted for parallel computations.
For a comprehensive review of models for phase-change problems with convection, see
Kowalewski and Gobin (2004).

Another advantage of the enthalpy-porosity single-domain model is that the same
Navier-Stokes-Boussinesq (NSB) system of equations is solved in both liquid and solid
phases. Keeping in mind that the NSB equations are pertinent only in the liquid phase,
their extension into the solid phase has to preserve the single-domain formulation. This
is generally obtained by introducing in the momentum equations a penalization source
term that brings the velocity to zero in the solid and do not affect the liquid. One of the
most used expression of the penalization source term follows the Carman-Kozeny model
for the permeability of a porous medium (Hannoun et al., 2003, 2005; Belhamadia et al.,

3

Figure 1: Sketch of the liquid-solid phase change problem considered in this paper. (a) Illustration of
the melting, with convection in the liquid phase (streamlines of the velocity field) and a bent interface
separating the two phases. (b) Illustration of the domain-decomposition used in present numerical
simulations. Coloured patches represent subdomains created by automatic graph partitioning libraries.
Note the adapted mesh, especially around the liquid-solid interface.

2012), but other mathematically equivalent expressions were suggested (Angot et al., 1999;
Favier et al., 2019). The energy equation is also modified to be valid in both phases using
an enthalpy (temperature-transform) model introducing a regularized latent-heat term.
Different formulations and implementations of the enthalpy-porosity model are presented
in Kowalewski and Rebow (1999); Giangi et al. (2000); Stella and Giangi (2004).

The enthalpy-porosity single-domain model was implemented in Rakotondrandisa
et al. (2020) using an adaptive finite-element method. The corresponding Toolbox
for FreeFem++(a free software under LGPL license)1 was distributed with that paper.
Extensive validation tests proved the ability of the numerical system to deal with melting
and/or solidification problems of increasing difficulty. Problems with complex shapes of the
computational domain or with multiple solid-liquid interfaces were successfully computed.
The mesh adaptivity capabilities of the method ensured reasonable computational costs,
since the mesh was refined only in the zones of large gradients of variables (artificial
mushy region, boundary layers) and coarsened in the solid zones with low gradients.
However, some cases, such as the water freezing or the melting-solidification cycle of a
PCM, demanded hours or days on a personal computer to simulate physically pertinent
time evolution.

Consequently, the main purpose of the present contribution is to extend the single-
domain model of Rakotondrandisa et al. (2020) to parallel computing using domain-
decomposition methods. For two-dimensional (2D) configurations, the new Toolbox
can be used to reduce the computational time on personal computers with multi-core

1FreeFem++for different OS can be downloaded from http://www.freefem.org/.
4

processors. Using high-performance computing (HPC) facilities, the Toolbox is well
adapted to simulate 3D configuration of phase-change problems. It is important to note
that very few 3D simulations with accurate capturing (mesh adaptivity) of the solid-liquid
interface were reported in this research area. Adaptive FE methods were suggested for
classical two-phase Stefan problem in 2D and 3D (Belhamadia et al., 2004a,b). For phase-
change systems with convection, adaptivity strategies were suggested and tested only for
2D problems (Belhamadia et al., 2012; Danaila et al., 2014; Belhamadia et al., 2019). An
attempt to adapt the mesh in 3D simulations for melting phenomena was undertaken by
Zimmerman and Kowalski (2018) using an AMR (Adaptive Mesh Refinement) technique
based on a dual-weighted residual method. The method displayed a major drawback,
since the mesh was refined during the advancement of the liquid-solid front, but never
coarsened behind. As a consequence, only a very preliminary coarse grid simulation of the
3D melting was possible using the AMR method. We show in this contribution that our
new method using domain decomposition and mesh adaptivity is perfectly suited to the
accurately simulate 3D melting or solidification, in simple or complex-shape geometries.

The new parallel Toolbox is based on a single-domain enthalpy-porosity model for
solid-liquid phase change problems with convection. For the energy conservation equation,
a temperature-based formulation takes into account the latent heat by introducing a
discontinuous source term. For the mass and momentum conservation equations, we
solve in the entire domain the incompressible Navier-Stokes equations with Boussinesq
approximation for buoyancy effects. To bring the velocity to zero in the solid phase, we
introduce in the momentum equation a penalty term following the Carman-Kozeny model.
The coupled system of momentum and energy equations is integrated in time using a
second-order implicit Gear scheme. The resulting discretized equations are solved using a
Newton method (Danaila et al., 2014). For the space discretization we use Taylor-Hood
triangular finite elements, i. e. P2 for the velocity and temperature and P1 for the pressure.
Temperature is discretized using P2 or P1 finite elements. Discontinuous variables (latent
heat, thermal diffusivity, etc) at the solid-liquid interface are regularized through an
intermediate artificial mushy region.

To enable parallel computing, we use the ffddm framework (Tournier et al., 2019),
which is a set of FreeFem++ scripts implementing Schwarz domain-decomposition methods
for the efficient solution of linear systems.The mesh is first split into subdomains using
an automatic graph partitioning library, such as Scotch (Pellegrini and Roman, 1996)
or Metis (Karypis and Kumar, 1998). Each subdomain is assigned to a MPI process.
The linear systems are assembled and solved in parallel using a GMRES Krylov method
with a Restricted Additive Schwarz (RAS) preconditioner (Dolean et al., 2015). Mesh
adaptivity using metrics control makes possible the optimization of the distribution of
mesh elements. For 3D cases, the mesh adaptivity is more involved: the metric is first
computed using mshmet, which is a module inside FreeFem++, and then used within the
mmg2 remeshing tool (Dapogny et al., 2014) to generate the adapted new mesh.

The paper is organized as follows. Section 2 introduces the enthalpy-porosity single
domain model based on the Navier-Stokes-Boussinesq equations. Section 3 presents the
adaptive finite-element numerical method using a Newton algorithm for the non-linear
discretized equations. We also discuss in this section the Schwarz domain decomposition

2http://www.mmgtools.org/.

5

method used for parallel computations and the algorithm for mesh adaptivity (with
emphasis on the 3D adaptivity technique). A description of the programs contained in the
provided 2D and 3D toolboxes is given in Section 4. The next two sections are devoted to
extensive numerical validations of the method for 2D benchmarks (§5) and corresponding
3D configurations (§6). The robustness of the algorithm is demonstrated by comparing
our results with reference data available in the literature. The capabilities of the Toolbox
to deal with complex geometries are also illustrated. The main features of the software
and possible extensions are summarized in Section 7.

2. Navier-Stokes-Boussinesq equations and enthalpy-porosity model

We consider a solid-liquid system placed in a three-dimensional domain Ω. The
dimensionless system of equations to be solved in both liquid and solid regions is based on
the incompressible Navier-Stokes equations, with Boussinesq approximation for buoyancy
effects, and a temperature transforming model for the energy equation (Voller et al., 1987;
Cao et al., 1989):

∇ · u = 0, (1)
∂u

∂t
+ (u · ∇)u +∇p− 1

Re
∇2u− fB(θ) ez −Amushy(θ)u = 0, (2)

∂ (Cθ)
∂t

+∇ · (Cθu)−∇ ·
(

K

RePr
∇θ
)

+ ∂ (CS)
∂t

= 0. (3)

Non-dimensional space, velocity, temperature and time variables in (1)-(3) were obtained
from physical ones after applying the following scaling:

x→ x

H
, u→ u

Vref
, θ = T − Tref

δT
, t→ Vref

H
t, (4)

where H is the reference length (usually the height of the cavity when a rectangular
domain is considered) and Vref a reference velocity that will be defined differently for
melting and solidification problems. Tref is the reference temperature and in most cases
Tref = Tf (the temperature of fusion), unless otherwise specified. Consequently, the
non-dimensional temperature of fusion is set to θf = 0. Temperature difference δT defines
a temperature scale, that will be set differently for melting and solidification cases.

The linearized Boussinesq buoyancy force (fB), the Reynolds (Re) and Prandtl (Pr)
numbers are defined as (subscripts s and l refer to the solid and the liquid phases,
respectively):

fB(θ) = Ra

PrRe2 θ, Re = ρVrefH

µl
= VrefH

νl
, Pr = νl

αl
, (5)

with ν the kinematic viscosity and α = k/(ρc) the thermal diffusivity. In the expression
of fB , the Rayleigh number of the flow is defined as:

Ra = gβH3δT

νlαl
, (6)

with β the thermal expansion coefficient and g the gravitational acceleration.
6

If previous non-dimensional numbers are pertinent only in the liquid phase, the
non-dimensional conductivity K and specific heat C are defined in both phases:

K(θ) = k

kl
=
{

1, θ ≥ θf ,
ks/kl, θ < θf . , C(θ) = c

cl
=
{

1, θ ≥ θf ,
cs/cl, θ < θf . (7)

The non-dimensional function S = s/sl in the energy equation (3) takes a similar non-
dimensional form:

S(θ) = s

sl
=

hsl/cl
δT

= 1
Ste

, θ ≥ θf ,

0, θ < θf ,
(8)

with hsl the latent heat of fusion and Ste the Stefan number.
Discontinuous step-functions defined in (7) and (8) are replaced by continuous and

differentiable hyperbolic-tangent functions, generically defined for all θ by the formula
(Danaila et al., 2014):

F (θ; as, θs,Rs) = fl + fs − fl
2

{
1 + tanh

(
as

(
θs − θ
Rs

))}
, (9)

where fl, fs are the imposed values in the liquid and solid phases, as a smoothing
parameter, θs the central value (around which we regularize) and Rs the smoothing
radius. For example, we use for the non-dimensional source term in (3) the following
regularization over the artificial mushy region θ ∈ [−ε, ε]:

S(θ) = 1
Ste
− 1

2Ste

{
1 + tanh

(
θr − θ
Rs

)}
, (10)

where θr is the central value around which we regularize (typically θr = θf = 0) and Rs
the smoothing radius (typically Rs = ε).

Finally, the penalty term Amushy(θ)u in momentum equation (2) follows from the
Carman-Kozeny model (Voller et al., 1987; Belhamadia et al., 2012; Kheirabadi and
Groulx, 2015):

Amushy(θ) = −CCK(1− Lf (θ))2

Lf (θ)3 + b
, (11)

where Lf (θ) is the local liquid fraction, which is 1 in the fluid region and 0 in the solid.
Lf is regularized inside the artificial mushy-region using a hyperbolic-tangent similar to
(10). The Carman-Kozeny constant CCK is set to a large value (106) and the constant
b = 10−6 is introduced to avoid divisions by zero.

3. Numerical method

3.1. Finite-element formulation
Finite-element methods for solving Navier-Stokes type systems of equations like (1)-(3)

are generally based on a separate discretization of the temporal derivative (using finite
differences, splitting or characteristics methods) and the generalization of the Stokes
problem for the resulting system (Temam, 1983; Girault and Raviart, 1986; Quarteroni

7

and Valli, 1994). To simplify the presentation, we consider in the following that C = 1. For
the phase-change problems considered in this paper, this is a physically valid assumption.

For the time integration, we use a second-order Gear (BDF2) finite-difference scheme
(see also Belhamadia et al. (2012)):

dφ

dt
' 3φn+1 − 4φn + φn−1

2δt , (12)

computing the solution φn+1 at time tn+1 = (n + 1)δt by using two previous states
(φn,φn−1). We use this scheme to advance in time both velocity (φ = u) and temperature
fields (φ = θ). The other terms in equations (1)-(3) are treated implicitly. We obtain the
following implicit semi-discretization in time of the single-domain model (1)-(3):

∇ · un+1 = 0, (13)
3
2

un+1

δt
+ (un+1 · ∇)un+1 +∇pn+1 − 1

Re
∇2un+1

−Amushy(θn+1)un+1 − fB(θn+1) ez =

2un

δt
− un−1

2δt , (14)

3
2
θn+1 + S(θn+1)

δt
+∇ ·

(
un+1θn+1)−∇ · (K(θn+1)

RePr
∇θn+1

)
=

2θ
n + S(θn)

δt
− θn−1 + S(θn−1)

2δt . (15)

To solve the system of equations (13)-(15) we use a classical Galerkin finite-element
method. We consider homogeneous Dirichlet boundary conditions for the velocity, i. e.
u = 0 on ∂Ω, and set the classical Hilbert spaces for the velocity and pressure:

V = V × V × V , V = H1
0 (Ω), Q =

{
q ∈ L2(Ω)

∣∣∣∣ ∫
Ω
q = 0

}
(16)

Following the generalization of the Stokes problem (Temam, 1983; Girault and Raviart,
1986; Quarteroni and Valli, 1994), the weak formulation of the system (13)-(15) can be
written as: find (un+1, pn+1, θn+1) ∈ V ×Q× V , such that:

b
(
un+1, q

)
− γ(pn+1, q) = 0, ∀ q ∈ Q (17)

3
2δt

(
un+1, v

)
+ c

(
un+1; un+1, v

)
+ 1
Re

a
(
un+1, v

)
−(Amushy(θn+1) un+1, v) + b

(
v, pn+1)− (fB(θn+1) ez, v

)
= 2
δt

(un, v)− 1
2δt

(
un−1, v

)
, ∀v ∈ V (18)

3
2δt

(
θn+1 + S(θn+1),φ

)
+
(
un+1 · ∇θn+1,φ

)
+
(
K(θn+1)
RePr

∇θn+1,∇φ
)

= 2
δt

(θn + S(θn),φ)− 1
2δt

(
θn−1 + S(θn−1),φ

)
, ∀φ ∈ V , (19)

where (u, v) =
∫

Ω u ·v denotes the scalar product in L2(Ω) or
(
L2(Ω)

)2; the bilinear forms
a, b and trilinear form c are defined as (Girault and Raviart, 1986; Quarteroni and Valli,

8

1994):

a : V × V → R, a(u, v) =
∫

Ω
∇tu : ∇v =

3∑
i,j=1

∫
Ω
∂jui · ∂jvi,

b : V ×Q→ R, b(u, q) = −
∫

Ω
∇ · u q = −

3∑
i=1

∫
Ω
∂iui · q,

c : V × V × V → R, c(w; z, v) =
∫

Ω
[(w · ∇) z] · v =

3∑
i,j=1

∫
Ω
wj(∂jzi)vi.

Note that we introduced in Eq. (17) a penalty term on the pressure. An extensive
discussion of the role of this parameter in reinforcing the incompressibility constraint
and in the stabilization of the method is provided in Rakotondrandisa et al. (2020). We
recall the main lines of this discussion. Following the incompressibility constraint (13),
the pressure is defined up to an additive constant and imposing that pn+1 ∈ Q removes
this uncertainty. Equation (17) numerically ensures that the pressure field is of zero
average in Ω. The penalty term in (17) acts at an algebraic level, by modifying the
matrix of the final system (a zero lower diagonal block is avoided). Since in the present
toolbox we use only iterative solvers (GMRES), this modification is not essential. It is in
exchange important when LU-type direct solvers without pivoting are used, essentially
for 2D calculations (UMFPACK solver in Rakotondrandisa et al. (2020); Aldbaissy et al.
(2018), SuperLU in Woodfield et al. (2019)). Finally, the penalty constant γ has no role
in stabilizing the method. Since the Taylor-Hood finite elements used in our simulations
satisfy the inf-sup condition, this technique is assimilated to a stable penalty, or, in other
words, just a computational trick to obtain a good solution (Brezzi and Fortin, 1991; Boffi
et al., 2013). Note that, compared to classical penalty methods, we use in our calculations
very low values of the penalty parameter (γ = 10−7). This ensures very low values of the
average on Ω for the pressure and also for the divergence of the velocity field.

The system of non-linear equations (17)-(19) is solved using a Newton method. To
advance the solution from time tn to tn+1, we start from an initial guess w0 = (un, pn, θn)
(which is the solution at tn), and construct the Newton sequence wk = (uk, pk, θk) by
solving for each inner iteration k:

b (uk+1, q)− γ(pk+1, q) = 0, (20)
3

2δt (uk+1, v) + c (uk+1; uk, v) + c (uk; uk+1, v)

+ 1
Re

a (uk+1, v)−
(
dAmushy

dθ
(θk) θk+1 uk, v

)
− (Amushy(θk) uk+1, v) + b (v, pk+1)

−
(
dfB

dθ
(θk) θk+1 ez, v

)
= 1

δt

(
2un − 1

2un−1, v
)

+c (uk; uk, v)−
(
dAmushy

dθ
(θk) θk uk, v

)
−

((
dfB

dθ
(θk) θk − fB(θk)

)
ez, v

)
, (21)

3
2δt

(
θk+1 + dS

dθ
(θk) θk+1,φ

)
+ (uk · ∇θk+1,φ) + (uk+1 · ∇θk,φ) +

(
K(θk)
RePr

∇θk+1,∇φ
)

+
(
dK

dθ
(θk) θk+1

RePr
∇θk,∇φ

)
= 2
δt

(θn + S(θn),φ) + 3
2δt

(
dS

dθ
(θk) θk − S(θk), φ

)
(uk · ∇θk,φ)− 1

2δt
(
θn−1 + S(θn−1), φ

)
+

(
dK

dθ
(θk) θk

RePr
∇θk,∇φ

)
. (22)

9

Note that the last term of Eq. (21) cancels in the case of a linear Boussinesq force fB (see
Eq. (5)); this is not the case when non-linear variations of the density of the liquid are
considered (convection or solidification of water). Note also that the previous system of
equations (20)-(22) depends only on un, un−1, θn and θn−1 and is independent of pn, the
pressure being in this approach a Lagrange multiplier for the divergence free constraint.

The Newton loop (following k) has to be iterated until convergence for each time step
δt following the algorithm:

Navier-Stokes time loop following n
set w0 = (un, pn, θn)

Newton iterations following k
solve (20) to get wk+1

stop when ‖wk+1 −wk‖ < ξN
actualize (un+1, pn+1, θn+1) = wk+1.

(23)

For the space discretization of the system (20)-(22) we use standard Taylor-Hood
finite elements (Taylor and Hood, 1973), approximating the velocity with P2 (piecewise
quadratic) finite elements (Vh space), and the pressure with the P1 (piecewise linear)
finite elements (Qh space):

Vh =
{

v ∈ C0(Ω̄)2 ∣∣ ∀K ∈ Th, v|K ∈ P2
}

, (24)
Qh =

{
v ∈ C0(Ω̄)

∣∣ ∀K ∈ Th, v|K ∈ P1
}

, (25)

where K is an element of the triangulation Th, with characteristic mesh size h. Tempera-
ture and enthalpy variables are discretized using either P1 or P2 finite elements.

This algorithm was implemented using the open-source software FreeFem++(Hecht
et al., 2007; Hecht, 2012). The FreeFem++programming framework offers the advantage to
hide all technical issues related to the finite element method. The high level programming
language with syntax close to mathematical formulations, makes the implementation of
the present numerical algorithm very easy. Similar algorithms based on FreeFem++were
successfully used for solving different systems of equations with locally sharp variation of
the solution, such as Gross-Pitaevskii equation (Danaila and Hecht, 2010; Vergez et al.,
2016) or Laplace equations with nonlinear source terms (Zhang and Danaila, 2013).

The FreeFem++syntax to implement the Newton algorithm is very close to the
mathematical formulation given above. We present below the main elements of syntax
for the 3D formulation. We start by creating a new type Wh that will be used to define
variables gathering in a vector all the unknowns of the problem: the three components of
the velocity, the pressure and the temperature. Wh thus corresponds to V ×V ×V ×Q×V
(see Eq. (16)). Each component of a vector of type Wh is independently assigned with a
finite-element discretization (P2, P1 or other available in FreeFem++). In our case, we
use Taylor-Hood finite elements for the fluid part and P2 for the temperature and thus
we define the vector finite-element space as fespace Wh(Th,[P2,P2,P2,P1,P2]). The
unknowns of the problem are then defined by declaring: Wh [u1,u2,u3,p,T];. Note that
Wh is associated to the mesh Th. If the mesh Th changes (following mesh adaptation),
the definition of Wh is automatically associated to the new mesh. Corresponding test
functions are defined similarly: Wh [v1,v2,v3,q,TT];. The next step in building the
FreeFem++program is to define the weak (variational) formulation. The built-in function

10

varf facilitates the implementation of the algorithm (20)-(22) with a syntax close to the
mathematical formulation. The use of the macro environment (which is a pre-processor
command for a simple syntax replacement in the script) makes the reading of the programs
very intuitive, when comparing each term to its mathematical expression. For example, the
following macros define the necessary operators for the variational formulation (20)-(22):

macro grad(u) [dx(u),dy(u),dz(u)]//
macro Grad(u) [grad(u#1) ,grad(u#2) ,grad(u#3)]//
macro div(u)(dx(u#1)+dy(u#2)+dz(u#3))//
macro ugrad(u,v)([u#1,u#2,u#3] ’* grad(v))//
macro UgradV (u,v) [ugrad(u,v#1) ,ugrad(u,v#2) ,ugrad(u,v#3)]//
macro a(Mu ,u,v)(Mu*(Grad(u):Grad(v)))//
macro b(u,q)(-div(u)*q)//
macro c(w,Z,v)(UgradV (w,Z) ’*[v#1,v#2,v#3]) //

Note that in some macros we used the concatenation operator #. This means that when
we use in a script, for example, Grad(uw), the preprocessor will automatically replace this
part with [grad(uw1),grad(uw2),grad(uw3)] in the final script (that will be executed).
Vector operators (transposition ’ and contraction :) are naturally implemented in
FreeFem++. The varf syntax is used to build the matrix and the rhs-vector of the final
linear system. Consequently, it follows closely the mathematical formulation (20)-(22).
To simplify the presentation, we start by giving below the varf formulation for the simple
case of the stationary convection of air (the terms coming from the discretization of the
time derivative are not present):

macro VarfStatNATCONV (varfName , meshName , VhName)
varf varfName ([uw1 ,uw2 ,uw3 ,pw ,Tw],[v1 ,v2 ,v3 ,q,TT])
= int3d (meshName , qforder =ord)(b(uw ,q) - gamma*pw*q
+ c(uw ,u,v) + c(u,uw ,v) + IRe*a(uw ,v) + b(v,pw)
- dfB(T)*Tw*v3+ ugrad(u,Tw)*TT + ugrad(uw ,T)*TT
+ grad(Tw) ’*grad(TT)*IPr)
+ bcu1 + bcu2 + bcu3 + bcT;
// EOM

macro VarfrhsStatNATCONV (varfName , meshName , VhName)
varf varfName ([uw1 ,uw2 ,uw3 ,pw ,Tw],[v1 ,v2 ,v3 ,q,TT])
= int3d (meshName , qforder =ord)(c(u,u,v) + ugrad(u,T)*TT
- dfB(T)*T*v3 + fB(T)*v3)
+ bcu1 + bcu2 + bcu3 + bcT;
// EOM

The syntax +bcu1+ ... is used to include the macros that implement boundary
conditions. The correspondence with variables in Eqs. (20)-(22) is the following:
[uw1,uw2,uw3,pw,Tw] corresponds to unknowns wk+1 = (u1k+1,u2k+1,u3k+1, pk+1, θk+1),
[v1,v2,v3,q,TT] to test functions and [u1,u2,u3,p,T] to previous Newton step wk =
(u1k,u2k,u3k, pk, θk). For the time evolution formulations, we use [u1p,u2p,u3p,pp,Tp]
and [u1pp,u2pp,u3pp,ppp,Tpp] for variables at time tn and tn−1, respectively. Con-
sequently, the full formulation for the Newton algorithm (20)-(22) for the case of the

11

melting of a PCM becomes:

macro VarfPCM (varfName , meshName , VhName)
varf varfName ([uw1 ,uw2 ,uw3 ,pw ,Tw],[v1 ,v2 ,v3 ,q,TT])
= int3d (meshName , qforder =ord)(b(uw ,q) - gamma*pw*q
+ c1*[uw1 ,uw2 ,uw3 ,Tw]’*[v1 ,v2 ,v3 ,TT]
+ c(uw ,u,v) + c(u,uw ,v) + IRe*a(uw ,v) + b(v,pw)
- dfB(T)*Tw*v3 - Amushy (T)*[uw1 ,uw2 ,uw3]’*[v1 ,v2 ,v3]
- dAmushy (T)*Tw*[u1 ,u2 ,u3]’*[v1 ,v2 ,v3]
+ ugrad(u,Tw)*TT + ugrad(uw ,T)*TT + grad(Tw) ’*grad(TT)*IPr
+ c1*dS(T)*Tw*TT)
+ bcu1 + bcu2 + bcu3 + bcT;
// EOM

macro VarfrhsPCM (varfName , meshName , VhName)
varf varfName ([uw1 ,uw2 ,uw3 ,pw ,Tw],[v1 ,v2 ,v3 ,q,TT])
= int3d (meshName , qforder =ord)(c(u,u,v) + ugrad(u,T)*TT
- [u1 ,u2 ,u3]’*[v1 ,v2 ,v3]* dAmushy (T)*T- dfB(T)*T*v3
+ fB(T)*v3 - c2*[u1p ,u2p ,u3p ,Tp]’*[v1 ,v2 ,v3 ,TT]
- c3*[u1pp ,u2pp ,u3pp ,Tpp]’*[v1 ,v2 ,v3 ,TT]
+ c1*(dS(T)*T*TT - S(T)*TT)
- c2*S(Tp)*TT - c3*S(Tpp)*TT)
+ bcu1 + bcu2 + bcu3 + bcT;
// EOM

New variables and coefficients can be easily identified. For example, c1, c2, c3 are
the coefficients (depending on δt) corresponding to the Gear scheme, Amushy is the
Carman-Kozeny penalty term, S the enthalpy source term, etc.

New terms can be added to the variational formulation expressed in the varf structure,
without affecting other parts of the program. The implementation of new models or
numerical methods for this problem is greatly facilitated by this modular structure of
programs.

3.2. Domain decomposition method
The main time consuming part in the algorithm (23) lies in the solution of the sequence

of linear systems of the form Ax = b. To reduce the computational time, we implement
an overlapping Schwarz domain decomposition method to solve these linear systems in
parallel. This task becomes an easy job by using the parallel framework ffddm, which was
recently made available in FreeFem++. ffddm is a set of high-level FreeFem++ macros
that the user can call in the script to perform different steps needed for the parallel
solution of a linear system using a domain decomposition preconditioner. We recall
these steps below and give the corresponding ffddm macro calls that are used in the
implementation of our toolbox. The detailed description of these macros can be found in
the online ffddm documentation (Tournier et al., 2019).

The first step in using ffddm is the partition of the global mesh T := Th into NS
non-overlapping meshes {Ti}1≤i≤NS

(see Fig. 1b). Standard graph partitioners available
in FreeFem++, such as Scotch (Pellegrini and Roman, 1996) or Metis (Karypis and

12

Kumar, 1998), can be used for this task. If δ is a positive integer, the overlapping
decomposition {T δi }1≤i≤NS

is defined recursively as follows: T δi is obtained by including
all mesh elements of T δ−1

i and adding recursively one layer of elements. For δ = 0,
T δi = Ti and a non-overlapping decomposition is obtained. In practice we use δ = 1
which corresponds to an overlap of width 2. The mesh partitioning step is performed in
macro ffddmbuildDmeshAug. Metis is the default partitioner. Scotch can be selected
by simply declaring ffddmpartitioner = 2. Each MPI process i then holds the local
mesh T δi corresponding to subdomain i.

The second important step is to build an appropriate preconditioner for the linear
system. Several types of preconditioners are available in ffddm. For the mathematical
background of domain decomposition methods and associated preconditioners, we refer
to Dolean et al. (2015). In the present toolbox, we use the Restricted Additive Schwarz
(RAS) preconditioner that proved very efficient. We describe below the main ideas of
the corresponding algorithm. Let Wh = Vh ×Qh × Vh be the global finite element space
for velocity, pressure and temperature variables. The mesh decomposition induces a
natural decomposition of the global space Wh on T into NS local finite element spaces
{W δ

i }1≤i≤NS
, each of them defined on the corresponding local mesh T δi . Consider

the restrictions {Ri}1≤i≤NS
from Wh to {W δ

i }1≤i≤NS
, and a local partition of unity

{Di}1≤i≤NS
such that

NS∑
i=1

RTi DiRi = In×n. (26)

At the algebraic level, if n is the global number of unknowns and {ni}1≤i≤NS
are the

numbers of unknowns for each local finite element space, then Ri is a Boolean matrix of
size ni × n, and Di is a diagonal matrix of size ni × ni, for all 1 ≤ i ≤ NS . Note that
RTi , the transpose of Ri, is a n× ni matrix that gives the extension by 0 from W δ

i to Wh.
The construction of the local finite element spaces {W δ

i }1≤i≤NS
and partition of unity

matrices {Di}1≤i≤NS
are implemented in the macro ffddmbuildDfespaceAug.

Using these matrices, we define the RAS preconditioner as:

M−1
RAS =

NS∑
i=1

RTi DiA
−1
i Ri, (27)

with local subdomain matrices {Ai}1≤i≤NS
= {RiARTi }1≤i≤NS

. The preconditioner
(27) is naturally parallel since its assembly requires the concurrent factorization of each
{Ai}1≤i≤NS

. In practice, this operation is performed locally on different processes in
a distributed computing context, as one subdomain is assigned to each MPI process.
Likewise, applying (27) to a distributed vector only requires peer-to-peer communications
between neighboring subdomains, and a local forward elimination and backward substi-
tution (see Chapter 8 of Dolean et al. (2015), for a more detailed description). Local
matrices {Ai}1≤i≤NS

are also used to perform the parallel matrix-vector product A ∗ v
that are main operations in a parallel GMRES algorithm with preconditioner M−1

RAS.
The parallel assembly and factorization of local matrices {Ai}1≤i≤NS

are performed in
the macro ffddmsetup, that also defines the parallel matrix-vector product and precon-
ditioner operators. Additionally, the macro ffddmbuildrhs computes the distributed
right-hand side {bi}1≤i≤NS

= {Rib}1≤i≤NS
. Macros ffddmsetup and ffddmbuildrhs

use the corresponding variational varf formulations of the problem defining the bilinear
13

and linear parts, respectively. Finally, the linear system Ax = b is solved in parallel with
a GMRES algorithm, called in the function fGMRES. We apply in our algorithms a left
preconditioning by M−1

RAS. The error tolerance εG in GMRES is variable and adapted
to the convergence of the Newton algorithm by monitoring εN = ‖wk+1 −wk‖. We set
εG = 10−10 if εN < 10−4, εG = 10−9 if 10−4 < εN < 10−2 and εG = 10−2 if εN > 10−2.
The output of the fGMRES function is the distributed solution {xi}1≤i≤NS

= {Rix}1≤i≤NS
.

The macro fromVhi is then used to recover the global solution x from the distributed solu-
tion. The global solution is finally used for visualization and also in the mesh adaptation
procedure.

A detailed description of the ffddm calls used for the different steps of the domain
decomposition method can be found in the User’s manual of ffddm (Tournier et al., 2019).
In the entire simulation process, the parallel algorithm described above to assemble and
solve the linear system is performed at each time step and at each Newton iteration.
However, the first two steps concerning the construction of the overlapping mesh and
the finite element space decomposition are performed only once at the beginning of each
time step. These steps are reiterated only if a mesh change occurs, after calling the mesh
adaptivity procedure (see next section).

3.3. Mesh adaptivity
For 2D simulations, we use the standard mesh adaptivity function (adaptmesh)

offered by FreeFem++(Hecht, 2012). The key idea implemented in this function (see also
Borouchaki et al. (1996); Castro-Diaz et al. (2000); Hecht and Mohammadi (1997); George
and Borouchaki (1998); Frey and George (1999); Mohammadi and Pironneau (2000)) is
to use the Delaunay algorithm to generate a new triangular mesh with edges close to the
unit length in the metric M = |H|

E , where |H(x)| is the Hessian of the variable χ at point
x (after being made positive definite) and E the interpolation error for χ. This implies
to modify the scalar product used in the automatic mesh generator to evaluate distance
and volume by defining a scalar product based on the evaluation of the Hessian H of
the variables of the problem. Equilateral elements are thus constructed, with an equally
distributed interpolation error E over the edges of the mesh. The previous approach could
be generalized for a vector variable χ = [χ1,χ2]. After computing the metrics M1 and
M2 for each variable, the retained metric is the intersection M = M1 ∩M2, defined
such that the unit ball ofM is included in the intersection of the two unit balls of metrics
M2 and M1 (for details, see the procedure defined in Frey and George (1999)).

The use of the mesh adaptivity algorithm for 2D phase-change systems is described in
detail in Rakotondrandisa et al. (2020). In 2D problems considered below, we took into
account several metrics computed from different variables monitoring the evolution of the
phase-change system. For the natural convection system, the mesh was adapted using the
values of the two velocity components and the temperature. For phase-change systems, to
accurately track the solid-liquid interface we added the variation of the enthalpy source
term in the adaptivity criterion. For water systems (convection or freezing), we also
added an extra function tracking the anomalous change of density around 4oC. To reduce
the impact of the interpolation on the global accuracy for time-depending problems, we
considered, for each variable used for adaptivity, the metrics computed at actual (tn+1)
and previous (tn) time instants (see also Belhamadia et al. (2004a)). The capabilities of
the mesh adaptivity algorithm in 2D are illustrated in §5.

14

For 3D simulations, the metric was first computed using mshmet, which is a FreeFem++
module, following the code:

load " mshmet "
real[int] hmetric (6* ThBackup .nv);
hmetric = mshmet (ThBackup ,[u1Backup ,u2Backup , u3Backup],

normalization =1, aniso =1, nbregul =1, hmax=hmax ,hmin=hmin ,err
=errh);

Several parameters of the mesh can be thus controlled (hmin, hmax, anisotropy, etc).
Then, the metric was regularized in order to avoid flat tetrahedra and saved in m11[] :

load "aniso"
boundaniso (6, hmetric ,40);
fespace Wh6Backup (ThBackup ,[P1 ,P1 ,P1 ,P1 ,P1 ,P1]);
Wh6Backup [m11 ,m21 ,m22 ,m31 ,m32 ,m33];
m11 []= hmetric ;

The external software mmg (Dapogny et al., 2014) was finally loaded to read the saved
metric and the old mesh to finally generate the adapted new mesh:

load "mmg"
ThBackup = mmg3d(ThBackup , metric =m11 [], verbose =0, hmin=hmin ,

hmax=hmax ,hgrad=adaptratio ,mem =10000) ;

4. Description of the programs

In this section, we first describe the architecture of the programs and the organization
of the provided files. Then we focus on the list of input parameters and the structure of
output files.

Figure 2: Folder tree structure of the PCM Toolbox DDM 2D and PCM Toolbox DDM 3D to solve
solid-liquid phase-change problems.

15

4.1. Program architecture
Figure 2 gives a schematic overview of the content of the Toolbox. To facilitate the

reading and the assimilation of the programs, we separated the 2D and 3D Toolboxes
in directories PCM Toolbox DDM 2D and PCM Toolbox DDM 3D. Many detailed comments
were included in programs, with direct reference to the mathematical expressions used in
this paper. The used FreeFem syntax was intentionally kept at a low level of technicality
and supplemented with detailed comments when specific more technical syntax was used.

This directory is organized as follows:

1. The directory Common Macros contains five files:
• Macro operator.idp includes macros and functions defining mathematical opera-
tors,
• Macro problem.idp: macros defining the variational formulation of the problem,
• Macro restart.idp: macros used to start a new simulation from a saved field,
• Macro output.idp: macros used to save the solution with different formats.

2. The directory Test Cases contains four subdirectories, each of them defining one
of the following applications:
• natural convection of air or water in a differentially heated square/cubic cavity,
• melting of a PCM stored in containers of different shapes,
• melting followed by solidification of a rectangular/cubic PCM,
• freezing of pure water in a square/cubic cavity.
Each subdirectory contains three files: NEWTON $case.edp is the main FreeFem++script
file, param phys.inc defines the physical parameters and param num.inc the numer-
ical parameters. The 3D Toolbox is supplemented with the script Read 3D data.edp,
which reads data from the RST folder and generates the files for visualization with
Medit, Paraview or Tecplot. For example, to run the natural convection case of air
in a square cavity, the user can use the following command in a terminal window:
mpirun -np 6 FreeFem++-mpi NEWTON stat natconv ddm.edp -wg -v 0 -ns.
The folder structure of each test case is illustrated in Figure 3. The obtained
solutions are saved in the folder OUTPUT/Data. Depending on the output format
selected by the user, data files are generated in specific folders for being visualized
with Tecplot, Paraview, Gnuplot or Medit. We also provide in the folder Figures
ready-made layouts for each visualization software. The user can thus obtain the
figures from this paper using newly generated data. More details about the output
structure are given below.

4.2. Input parameters
Physical parameters and parameters related to the run are separated into two files.

(1) The file param phys.inc contains the physical descriptions of the problem:

• typeT: is the finite-element type for the temperature, with possible values P2 or
P1,

• Torder: is the order of accuracy of the time integration scheme, with possible
values 1 (Euler scheme) or 2 (Gear scheme),

16

Figure 3: Structure of each Test-case folder. Solid lines in the diagram correspond to folders which come
with the Toolbox, the dashed lines to folders generated after running the script NEWTON case.edp, the
hashed lines to folders generated after running the script NEWTON case.edp in the 2D case. Finally, the
dotted lines indicate folders generated after running the script Read 3D data.edp, which reads data from
the RST folder and generates the Medit, Paraview and Tecplot files for visualization.

• scalAdim: defines the characteristic scales of the problem, see (4). Possible values
1, 2 or 3 correspond to the following choice of the characteristic scales (Danaila
et al., 2014):

(1) : V
(1)
ref = νl

H
=⇒ t

(1)
ref = H2

νl
=⇒ Re = 1, (28)

(2) : V
(2)
ref = α

H
=⇒ t

(2)
ref = t

(1)
refPr =⇒ Re = 1/Pr, (29)

(3) : V
(3)
ref = νl

H

√
Ra
Pr

=⇒ t
(3)
ref = t

(1)
ref

√
Pr
Ra

=⇒ Re =
√
Ra
Pr

, (30)

• xl, xr, yl, yr: are the values defining the dimensions of the cavity [xl,xr]× [yl, yr],

• Pr, Ra, Ste: are the Prandtl, Rayleigh and Stefan numbers, see (6) and (5),

• Thot, Tcold: are dimensionless temperatures according to (4),

• bcu1, bcu2, bcT: are macros defining the velocity (u) and the temperature (T)
boundary conditions,

• epsi: is the half width ε of the mushy region. Default value = 0.01,

• dt: is the dimensionless time step,

• tmax: is the dimensionless final time,

• Parameters for regularization functions:
The parameters of the hyperbolic-tangent function (9) used to regularize discontin-
uous functions are set by default as follows:

17

fs fl as θs Rs CCK b
Enthalpy 0 1/Ste 1 0.01 0.01 - -

Carman - Kozeny 0 1 1 0.01 0.01 106 10−7

Conductivity (water) 1 2.26/0.578 1 θf 0.015 - -

• rho(T) and Drho(T): (water cases only) define the density and its derivative as
functions of the temperature, following the model (Gebhart and Mollendorf, 1977):

ρ(T) = ρm(1− ω|T − Tm|q),
ρm [kg/m3] ω [oC−q] q Tm [oC]

999.972 9.2793 · 10−6 1.894816 4.0293

• fB(T), dfB(T): define the buoyancy force and its derivative.

(2) The file param num.inc contains the parameters controlling the run.
Restart parameters:

• Nsave: the solution is saved every Nsave time steps in the Data folder (see Figure
3). The temperature and velocity fields are saved in Tecplot and Medit folders,
while the liquid fraction, the Nusselt number, and the accumulated heat input are
saved in the Gnuplot folder.

• Nrestart: restart files (mesh and solution) are saved every Nrestart time steps.
Solutions at current and previous iterations, the CPU time, the accumulated heat
input Q0, and the time step dt are saved in the folder RST.

• Ncondt: allows the user to stop the run and save the solution properly. The file
OUTPUT/zz.condt is read every Ncondt time steps: if the user replaces the value
”0” in this file by ”1” the run is stopped. This is a simple solution for a clean stop
of the job by the user. Default value = 20.

• Nremesh: the mesh is adapted every Nremesh iterations. If this parameter is set
to ”1” the mesh is adapted every time step.

• IFrestart: is a Boolean controlling the set up of the initial field.
IFrestart = 0, the initial condition is built in the code for each test case. For the
PCM melting cases, the PCM is initially motionless at isothermal temperature. To
set-up a smooth initial field, a few time steps (with very small δt) are computed by
increasing progressively the boundary temperature at the hot wall and the Rayleigh
number (by continuation). Outputs are saved in OUTPUT/Data-RST-0.
IFrestart > 0, (positive integer values) the solution field previously computed at
iteration IFrestart is loaded from the folder OUTPUT/Data-RST-filenameRST/RST,
with filenameRST a variable selecting the restart folder. Note that for 3D cases,
the user has to copy manually the solution used as restart field to the folder INIT.
IFrestart < 0, (negative integer values), the same principle for loading a solution

18

is used, but from the folder INIT (see Figure 3). The solution fields stored in this
folder could come from different previous calculations (e. g. a steady state solution
or, for the water, the natural convection field before freezing).

Newton parameters:

• epsconv: is the value of the stopping criterion for steady cases,

• gamma: is the penalty parameter in (13). Default value = 10−7,

• tolNewton: is the Newton tolerance ξN (see (23)). Default value = 10−6,

• newtonMax: limits the maximum number of iterations in the Newton algorithm
(23). Default value = 50.

Mesh parameters:

• nbseg: is the number of segments for the discretization along the x and y directions,

• errh: is the interpolation error level. Default value = 0.02,

• hmin, hmax: are the minimum and the maximum edge size, respectively,

• adaptratio: is the ratio for a prescribed smoothing of the metric. For a value less
than 1.1 no smoothing is done. Default value = 1.5,

• nbvx: is the maximum number of vertices allowed in the mesh generator. Default value
= 50000.

Output parameters:

• dircase: is the name of the output folder,

• fcase: is the prefix-name for output files.

• Paraview, Tecplot, Medit, Gnu: correspond to the name of the visualization
software to be used; the format of the outputs written in OUTPUT/Data (see Figure
3) is set accordingly.

4.3. Outputs
When a computation starts, the OUTPUT directory is created (see Figure 3). It contains

two folders storing the output data and the echo of the run parameters. The folder Data
contains four subdirectories with different output format files of the computed solution.
File names are created using the prefix defined by the parameter fcase, the current
iteration and the current dimensionless time t. Solution files can be visualized using
either Tecplot or any other CFD Visualization tools (Paraview, Visit, etc.). Moreover,
.gmsh (mesh) and .rst (fields) files are generated in the folder RST to enable restarts of
the computation. Note that the folder FFglut contains FreeFem++scripts that read and
visualize the RST-files to facilitate the selection of a restart field. An .echo file with a
summary of the main parameters, information on the run and the names of the output
files is saved in the folder RUNPARAM. This directory additionally contains a copy of the
.inc parameter files, allowing an easy identification of each case and preparing an eventual
rerun of the same case.

19

5. 2D parallel simulations

In this section we consider well defined 2D benchmarks used to validate numerical
codes for natural convection and phase-change problems. All these cases were described in
detail in Rakotondrandisa et al. (2020) and computed using sequential codes. We present
below the results obtained for the same cases, but using parallel computations with the
new Toolbox: (i) the natural convection of air (§5.1), (ii) the melting or solidification
of a phase-change material (PCM) (§5.2) and (iii) the convection and the freezing of
pure water (§5.3). This approach allows us to test the programs by adding progressively
non-linearities in the Newton algorithm. In the following, we validate each case with
respect to the physical reference data available in the literature. To have a quick overview
of the benefits of using parallel computing, we compare in Table 1 computational (CPU)
times necessary to run sequential and parallel computations of each case (with default
parameters) on a personal computer. We also display the maximum number of triangles
of adapted mesh and the ratio between the CPU time required to adapt the mesh to
the CPU time for a complete time step. Mesh adaptation is performed every time step.
To make the simulations accessible and testable by using a personal computer with a
multi-thread processor, we use in this section only 6 MPI processes.

Case
CPU time

1 MPI
proc.

CPU time
6 MPI
procs.

speed-
up

max
number
of trian-

gles

number
of time
steps

ratio CPU
adapt /

CPU time
step

Unsteady NC of air,Ra = 106 00:01:39 00:00:50 1.98 2,902 53 18%
PCM-Case #1 00:06:39 00:04:35 1.45 2,590 81 5%
PCM-Case #2 01:31:11 00:40:44 2.23 5,928 501 8%
PCM-Case #3: 1 tube 00:25:09 00:19:18 1.3 5,052 401 6%
PCM-Case #3: 4 tubes 00:28:57 00:16:13 1.78 13,507 151 6%
PCM-Case #3: 9 tubes 00:33:28 00:17:44 1.88 24,866 100 5%
PCM-Case #4 06:31:31 01:38:35 3.97 5,371 2,001 15%
PCM-Case #5 00:07:52 00:03:17 2.39 2,898 117 12%
Cycle of a PCM 00:13:58 00:08:49 1.58 3,160 383 17%
NC of water 00:00:36 00:00:21 1.71 2,686 20 14%
Unsteady NC of water 00:01:49 00:00:54 2.02 3,368 33 10%
Water freezing 00:22:49 00:13:38 1.67 3,743 296 10%

Table 1: Comparison of CPU times for 2D simulations performed with one or 6 MPI processes. Speed-up
of the parallel computation, maximum number of triangles of the adapted mesh, total number of time
steps and ratio between the CPU time for adapting the mesh and the CPU time for a complete time step.
All computations were performed on a Macbook pro 2.2GHz Intel Core i7, 16GB of DDR4 2400 MHz
RAM.

20

5.1. Natural convection of air
We start by testing the Newton algorithm (20)-(22) for the case of natural convection,

i. e. C = K = 1, Amushy(θ) = S(θ) = 0. We consider the classical problem of the
thermally driven square cavity [0, 1]× [0, 1], filled with air. The Boussinesq term fB(θ)
is then linear and takes the form (5). Top and bottom walls are adiabatic, while the
temperature is fixed on the left (hot) wall and the right (cold) wall. Natural convection
flows are computed for three values of the Rayleigh number: Ra = 104, 105, 106. The
Prandtl number is set to Pr = 0.71. For these values of the Ra number, the flow is known
to be steady (Le Quéré, 1991) and therefore, we also solve the time-independent version
of equations (20)-(22).

We provide programs for both steady (time-independent) and time-dependent cases.
The steady case is performed using a continuation following the Rayleigh number: a
smaller value for Ra is set initially and is then smoothly increased until reaching the
wanted value. The time-dependent case is computed until a steady state with a single
convection cell is reached.

The temperature is imposed at the right (cold) wall as θc = −0.5 and at the left (hot)
wall as θh = 0.5. Top and bottom walls are adiabatic. The initial condition models a
cavity filled with motionless air (u = 0), with a linear distribution of the temperature.
Both steady and time-dependent codes converge to the same flow state, with a single
convection cell. For this final state, horizontal u(y) and vertical v(x) velocity profiles
were extracted at mid-domain (y = 0.5 and x = 0.5, respectively) and plotted in Figure 4.
Our results are in very good agreement with reference numerical results obtained by Le
Quéré (1991) with a spectral code.

Figure 4: Natural convection of air in a differentially heated cavity for values of Ra ranging from 104 to
106. (a) Vertical velocity profile v(x) along the horizontal symmetry line (y = 0.5). (b) Longitudinal
velocity profile u(y) along the vertical symmetry line (x = 0.5). Results obtained using the present
Toolbox, with a mesh resolution nbseg = 80. Comparison with the spectral simulations by Le Quéré
(1991) (solid lines).

Table 2 offers a quantitative assessment of the accuracy of the present Newton method.
The values of umax and the location Y of this maximum are compared to reference values
from Le Quéré (1991). The Newton method gives results identical to reference values,
with a difference less than 0.1%.

21

Run umax at x=0.5 (error) Y (error)
Reference values spectral 0.0648344 0.850
Newton (Steady) nbseg = 80 0.0648126 (0.03 %) 0.850394 (0.05 %)
Newton (Unsteady) nbseg = 80 0.0647805 (0.08 %) 0.850394 (0.05 %)

Table 2: Natural convection of air in a differentially heated cavity. Maximum value umax of the horizontal
velocity profile at mid-domain (x = 0.5) and location Y of this maximum. Comparison to reference values
reported by Le Quéré (1991).

5.2. Melting or solidification of a phase-change material (PCM)
We continue our validation tests by considering the full system (20)-(22) for the case

of the melting or solidification of a phase-change material. Two new non-linearities are
now present in the system: the Carman-Kozeny penalty term Amushy(θ) and the enthalpy
source term S(θ). The function S is regularized using (10). We also consider that the
material properties in the liquid and solid are the same, i. e. C = K = 1. This is a
frequent assumption (Wang et al., 2010; Ma and Zhang, 2006). Five cases were computed
(the exact values of the defining parameters are summarized in Table 3):

• PCM-Case #1 simulates the experimental study of Okada (1984). It consists of a
differentially heated square cavity, filled with octadecane paraffin.

• PCM-Case #2 is extracted from the collective publication by Bertrand et al. (1999),
compiling the results of different numerical approaches used for the simulation of
the melting of a PCM at high Rayleigh numbers.

• PCM-Case #3 simulates the melting of a cylindrical PCM with heated inner tubes,
as in Luo et al. (2015).

• PCM-Case #4 simulates the melting of Gallium in a rectangular cavity heated by
the side-wall, as in Hannoun et al. (2003).

• PCM-Case #5 simulates the solid crust formation in a highly distorted PCM domain,
as in Nourgaliev et al. (2016).

We summarize in Table 3 the values of physical parameters and the scales used to
simulate these cases. The values of the CPU time necessary to run each case (with default
parameters) are given in Table 1.

case #1 case #2 case #3 case #4 case #5
Ra 3.27 · 105 108 5 · 104 7 · 105 106

Pr 56.2 50 0.2 0.0216 0.1
Ste 0.045 0.1 0.02 0.046 4.854
δt 1 10−2 10−2 10−5 1
Vref

νl

H
νl

H
νl

H
νl

H
νl

H

√
Ra
Pr

Table 3: Parameters for the cases simulating the melting of a phase-change material.

22

5.2.1. PCM-Case #1: Melting of an octadecane PCM in a square cavity
Okada (1984) studied experimentally the melting of an octadecane PCM in a square

cavity of height H = 1.5 cm. His results were often used to validate numerical methods
(Okada, 1984; Wang et al., 2010; Ma and Zhang, 2006; Danaila et al., 2014). The material
is initially solid (θ0 = −0.01) and melts progressively starting from the left boundary,
maintained at a hot temperature θh = 1. The right boundary is also isothermal, with
cold temperature θc = −0.01. Horizontal boundaries are adiabatic. The other parameters
of this case are reported in Table 3. The computation starts from a refined mesh near
the hot boundary. Mesh adaptivity is applied every time step. Figure 5 shows in the left
panel the adapted mesh at t = 80.1 and the 6 subdomains of the domain decomposition
used for the parallel computation. The velocity vectors in the liquid phase, represented
in the middle panel, show the strong convection cell affecting the shape of the liquid-solid
interface. To offer a quantitative validation of this computation, we compare in Fig. 5
(right panel) the position of the solid-liquid interface at two time instants. Since δt = 1
in the simulation, we consider t = 40.1 and t = 79.1 and compare with experimental data
of Okada (1984) taken at slightly different time instants, t = 39.9 and t = 78.7. The
obtained shape and position of the liquid-solid interface are very close to experimental
results. We show in the same figure that the parallel computation (6 MPI processes) gives
the same results as the sequential simulation (1 MPI process).

Figure 5: PCM-Case #1. Melted PCM at time instant t = 80.1. Adapted finite-element mesh and
subdomains used for the domain decomposition and parallel computing with 6 MPI processes (left panel).
Velocity vectors in the liquid phase (central panel). Position of the solid-liquid interface and comparison
with experimental data of Okada (1984) for two time instants (right panel).

5.2.2. PCM-Case #2: Melting of an octadecane PCM with high Rayleigh number
This case considers the same problem of the melting of a PCM, but with a very high

value of the Rayleigh number, Ra = 108 (see Table 3). This case is very challenging since
the natural convection becomes important in the fluid flow, and enhances considerably the
heat transfer. Bertrand et al. (1999) compiled results provided by five different authors
(Lacroix, Le Quéré, Gobin-Vieira, Delannoy and Binet-Lacroix) who used different
numerical methods to compute the basic configuration presented in this section. This
benchmark is a very demanding numerical test. The high velocity, inducing a very narrow

23

thermal boundary layer, can lead to unrealistic results if under-resolved. This explains
why two investigators among the five failed to correctly predict the process.

We show in Fig. 6 an illustration of the flow configuration at dimensionless time
t = 5. The adapted mesh and the domain decomposition for the parallel computation
with 6 MPI processes is presented in the left panel. The convection flow is depicted in the
middle panel. Note the very narrow boundary layers, which impose a very refined mesh
in these regions. This flow particularity explains why this case is rather costly in terms of
computational time (see Table 1), when compared to the previous one. The right panel
of Fig. 6 offers a quantitative validation of this computation. The position of melting
front at t = 5 is in good agreement with that reported by Gobin and Le Quéré. Details
of their numerical method are presented in Gobin and Le Quéré (2000). Gobin used a
front-tracking method based on a coordinate transformation with a finite volume method
and a 62× 42 grid, while Le Quéré solved a single domain model using a second-order
finite volume method with a 192× 192 grid. The interest of the mesh adaptation is clearly
demonstrated for this case, since we initially used a coarse 40× 40 grid.

Figure 6: PCM-Case #2. Melting of the PCM with high Rayleigh number (Ra = 108). Simulated
configuration at time instant t = 5. Adapted finite-element mesh and subdomains used for the domain
decomposition and parallel computing with 6 MPI processes (left panel). Velocity vectors in the liquid
phase (central panel). Position of the solid-liquid interface and comparison with five sets of results
presented in Bertrand et al. (1999).

5.2.3. PCM-Case #3: Melting of cylindrical PCM with inner heated tubes
A more complex geometry, suggested by Luo et al. (2015), is simulated in this section.

It consists of a cylindrical PCM of radius R = 1 with heated tube inclusions of different
arrangements. This configuration is also interesting from a practical point of view.
Agyenim et al. (2010) pointed out that more than 70% of the PCM containers used for
heat storage are using shell-tube systems. We simulate three configurations, with one,
four and nine heated tubes (see Fig. 7). The size of the tubes is adjusted to have the
same total tube area for all configurations. The radius Ri of the inner tube is Ri = R/4
for the case with one tube, Ri = R/8 for the four heated tubes case and Ri = R/12
for the case with nine tubes. The inner tubes are heated at constant θ = θh (Dirichlet
boundary condition). A Neumann boundary condition (∂θ/∂n = 0) is used for the outer
boundary. For the velocity, all boundaries are considered as non-slip walls (u = 0).

24

For the three configurations, Fig. 7 shows the adapted mesh and the domain de-
composition with 6 subdomains (left column), the velocity vectors (central column) and
the temperature field (right column). The time instants are chosen to have the same
liquid fraction in the system, Lf = 80%. Only half of the domain is simulated, since
all configurations are symmetric with respect to the vertical axis. The mesh is refined
initially around the inner tubes, and is dynamically adapted at each time step around
the melting front and in the thermal boundary layer area.

To estimate the heat-storage efficiency of each configuration, we plot in Figure 8
the time evolution of the liquid fraction Lf . Including more heated tubes results in an
enhanced heat transfer and a faster melting process. The nine-tube configuration melts 5
times faster than the reference configuration with one tube. Note also from Figure 8 the
good agreement between our results and those reported by Luo et al. (2015), obtained
using a completely different model based on the Lattice Boltzmann Method. We checked
again that the results obtained with 6 MPI processes are identical to those computed
with the sequential code.

5.2.4. PCM-Case #4: Melting of Gallium in a rectangular cavity
The melting of the Gallium in a rectangular cavity is a challenging case that generated

an animated debate in the literature, since Dantzig (1989). Le Quéré and Gobin (1999)
showed that the flow has to display a multi-cellular structure, resulting from the hydro-
dynamic instabilities during the conduction regime before the onset of convection. This
multi-cellular flow configuration was also found numerically by Hannoun et al. (2003).
These authors pointed out that coarse grids or inconsistencies in the mathematical model
could generate unphysical flows, with a mono-cellular convection cell. Therefore, this
case is a relevant exercise to test the accuracy of our method. The parameters of this
case are reported in Table 3. To capture the very small convection cells during the first
step of the melting, Hannoun et al. (2003) used a 800 × 1, 120 fixed grid. With our
adaptive method, a maximum of 4820 triangles are necessary to reproduce the numerical
result of Hannoun et al. (2003). The grid size is thus reduced with our method by a
factor of 100. We illustrate in Fig. 9 the configuration of the phase-change system at
dimensionless time t = 0.02. Note in the left panel the refined mesh at the liquid-solid
interface and also at the borders of each convection cell. The multi-cellular structure of
the flow is illustrated by the velocity field presented in the middle panel. The structure
of the temperature field in the right panel shows that the rolls of the convection cells are
well resolved. The number of cells decreases later through a process of roll merging, as it
was also reported by Hannoun et al. (2003). Our numerical results are in good agreement
with the observations of Hannoun et al. (2003), Cerimele et al. (2002) and Giangi and
Stella (2000).

25

Figure 7: PCM-Case #3. Melting of a cylindrical PCM with heated inner tubes. Flow configuration
for one tube at t = 2.491 (first raw), four tubes at t = 0.981 (middle row) and nine tubes at t = 0.411
(last row). Time instants correspond to the same liquid fraction in the system, Lf = 80%. Adapted
mesh and domain decomposition with 6 subdomains (left column), velocity vectors with background
color representing the velocity intensity (central column) and temperature field (right column).

26

Figure 8: PCM-Case #3. Melting of a cylindrical PCM with heated inner tubes. Time evolution of the
liquid fraction for configurations with one, four, and nine heated tubes. Comparison with numerical
results of Luo et al. (2015).

Figure 9: PCM-Case #4. Melting of Gallium. Simulated configuration at t = 0.02. Adapted finite-element
mesh and subdomains used for the domain decomposition and parallel computing with 6 MPI processes
(left panel). Velocity vectors in the liquid phase (central panel). Temperature field (right panel).

27

5.2.5. PCM-Case #5: Solid crust formation in a highly distorted domain
This final PCM case considers the solidification of a PCM in a domain with a more

complicated shape (Fig. 10). This case was simulated by Nourgaliev et al. (2016), using
a discontinuous Galerkin finite element method. The fluid is initially motionless, with an
initial dimensionless temperature θ0 = 2. The temperature of fusion is set to θf = 1.4,
according to Nourgaliev et al. (2016) (see Table 3 for the values of all parameters). The
left side boundary is maintained at a cold temperature θc = 1.39 in the initial stage. The
right wall is isothermal, with hot temperature θh = 2. A nearly steady-state natural
circulation is induced in the early time evolution of the flow. Then, the cold temperature
at the left wall is decreased to θc = 1, below the temperature of solidification. At
this point, the formation of a solid crust layer starts at the left boundary. Figure 10
depicts the configuration of the solid-liquid system at dimensionless time t = 30. Mesh
adaptivity used metrics computed from the two components of the velocity and from the
phase-change variables (enthalpy and temperature). Consequently, it is shown in the left
panel that the mesh is well adapted near the solid-liquid front and following the distorted
shape of the convection cell in the liquid phase. In the middle panel, we notice the high
velocity values defining the convection cell, waving in the liquid phase. The final panel of
Fig. 10 shows the temperature field, with the solid phase well identified in blue. This
structure of the flow is in a very good agreement with that reported by Nourgaliev et al.
(2016).

Figure 10: PCM-Case #5. Solid crust formation in a distorted domain. Simulated configuration at
t = 29.33. Adapted finite-element mesh and subdomains used for the domain decomposition and parallel
computing with 6 MPI processes (left panel). Velocity vectors in the liquid phase (central panel).
Temperature field (right panel).

5.3. Natural convection of water and water freezing
In this section we consider phase-change systems using water. Since pure water

exhibits non-linear density variation for T < 10.2 ◦C, with a maximum at Tm = 4.0293 ◦C,
the Boussinesq force becomes non-linear. Convection and freezing of water are therefore
interesting cases to test the flexibility of our Toolbox to deal with additional non-linear
terms. We used the following density-temperature formula suggested by Gebhart and
Mollendorf (1977):

ρ(T) = ρm (1− w |T − Tm|q) , (31)
28

with ρm = 999.972 [kg/m3], w = 9.2793 · 10−6 [(◦C)−q], and q = 1.894816.
Hence, the buoyancy term fB = g(ρref − ρ)/ρref in (1) is not any more linear and

becomes after scaling:
fB(θ) = Ra

PrRe2
1

βδT

ρ(θf)− ρ(θ)
ρ(θf) , (32)

where β = (1/ρm) (dρ/dT) is the thermal expansion coefficient taking the value β =
6.91 · 10−5 [(K)−1] (Scanlon and Stickland, 2004).

We simulate a differentially heated square cavity filled with liquid pure distilled water.
This problem was investigated experimentally and numerically by Giangi et al. (2000);
Kowalewski and Rebow (1999); Michalek and Kowalewski (2003). The non-dimensional
parameters describing the problem are (see Michalek and Kowalewski (2003) for physical
details): Ra = 2.518084 · 106, Pr = 6.99 and Ste = 0.125.

5.3.1. Natural convection of water
The initial temperature is linearly distributed in the square cavity, with a hot temper-

ature Th = 10 ◦C at the left wall and a cold temperature Tc = Tf = 0 ◦C at the right wall.
The temperature field and the streamlines of the steady state are presented in Figure 11a.
The isoline θ = θm, corresponding to the line of maximum density is represented by a
dashed line. Due to the anomalous thermal variation of water density, two recirculating
zones are formed in the flow: a lower (abnormal) recirculation in the vicinity of the
cold wall where θ < θm and an upper (normal) one where the density decreases with
temperature (θ > θm).

Figure 11: Natural convection of water in a differentially heated cavity. Non-dimensional temperature θ
at steady state. (a) Two-dimensional temperature field and streamlines showing the two recirculating
zones. (b) Temperature profile along the horizontal central line. Comparison with the numerical results
of Michalek and Kowalewski (2003).

A more precise comparison with previously published results is shown in Figure
11b. The obtained temperature profile θ(x) along the horizontal central line of the
cavity (y = 0.5) is in good agreement with the numerical results of Michalek and
Kowalewski (2003). Their results were obtained with finite-volume and finite-difference
codes (FLUENT and FRECONV3V).

29

5.3.2. Water freezing
We finally consider the difficult case of water freezing in a square cavity. The initial

state for this computation is the convection steady pattern in the cavity presented in
Figure 11. The freezing starts by dropping smoothly the temperature of the cold right
wall from Tc = 0 ◦C to Tc = −10 ◦C. The new boundary condition on the right cold wall
is imposed by setting a very thin layer of δx = 0.01, with constant temperature T = Tc
and zero velocity.

Figure 12: Freezing of pure water. Simulated configuration at t = 1.61. Adapted finite-element mesh
and subdomains used for the domain decomposition and parallel computing with 6 MPI processes (left
panel). Velocity vectors in the liquid phase (central panel). Comparison with the experimental image
from Kowalewski and Rebow (1999); the thick red line represents the solid-liquid interface computed
with the present method (right panel).

Figure 12 shows the flow configuration at dimensionless time t = 1.61. The left panel
depicts the domain composition and the adapted mesh following two lines of interest: the
solid-liquid interface T = 0 and the line T = Tm separating the two recirculating zones
(see the middle panel of the same figure). The metrics used for adaptivity were computed
from the two components of the velocity, the temperature and a P1 tanh-function φ(T)
”tracking” the value Tm. To reduce the impact of the interpolation on the global accuracy
we used both φ(Tn) and φ(Tn+1) in the adaptivity procedure (see also Belhamadia
et al. (2004a)). This adaptivity strategy allowed us to accurately capture the structure
and the extent of the two recirculating zones, features that are difficult to obtain with
fixed meshes (discrepancies in numerical results are described in Giangi et al. (2000);
Kowalewski and Rebow (1999); Michalek and Kowalewski (2003)). In the right panel
of Fig. 12 we superimpose the experimental image from Kowalewski and Rebow (1999)
with our numerical results for the same physical time tϕ = 2340[s]. The position of
the solid-liquid interface and the flow pattern in the liquid phase correspond very well
qualitatively to the experimental image. The simulation was performed with a small time
step (δt = 10−2 ≈ 15[s]). Note from Table 1 that the computational time for this case
is more than reasonable (23 minutes using 1 thread and only 13 minutes with 6 MPI
processes).

30

6. 3D parallel numerical results

All the 2D benchmarks presented in the previous section could be simulated in 3D
using the second provided Toolbox PCM Toolbox DDM 3D. To avoid an excessively long
paper, we shortly present in this section only the following selection of 3D cases: (i) the
steady natural convection of air in a cubic cavity with Ra = 106 (§6.1), (ii) the melting of
a phase-change material (§6.2), within a cubic (§6.2.1) or cylindrical domain (§6.2.2), and
(iv) the convection and the freezing of pure water in a cube (§6.3). Running parameters
for these cases are summarized in Table 4 and Table 5, for computations using P1 and P2
finite elements, respectively. Again, to make these simulations accessible with fast-running
jobs in a batch-queuing system, we gave priority to jobs with a reasonable number of
MPI processes (less than 400). We used 4GB memory for each CPU-Core node for all
simulations, excepting for the case PCM-Case #3 with 9 heated tubes, when 9GB of
memory were necessary. In the subsequent sections, we present the results obtained with
P2 finite elements for the temperature, since these simulations are more challenging. The
results using P1 elements for the temperature are provided in the Supplemental Material
http://lmrs-num.math.cnrs.fr/2020CPCP2.html containing images and animations of the
cases presented in this section.

Case CPU time max of dof MPI
procs.

number
of time
steps

max mmg
CPU
time

ratio CPU
adapt /

CPU time
step

Unsteady NC of air,Ra = 104 00:55:21 249 625 6 23 9 sec. 6%
Unsteady NC of air,Ra = 106 01:14:49 725 097 56 50 20 sec. 19%
PCM-Case #1 07:42:32 3,299 661 224 80 53 sec. 16%
PCM-Case #3: 1 tube 16:02:31 3,809 760 224 401 65 sec. 17%
PCM-Case #3: 4 tubes 13:29:23 8,813 510 280 151 150 sec. 20%
PCM-Case #3: 9 tubes 10:37:44 14,860 117 364 71 262 sec. 24%
Cycle of a PCM 13:06:26 2,150 052 224 382 36 sec. 32%
NC of water 00:59:26 3,701 916 112 20 62 sec. 20%
Unsteady NC of water 06:39:40 5,492 302 112 37 76 sec. 14%
Water freezing 1-10:11:55 4,448 031 224 296 53 sec. 21%

Table 4: Running parameters for 3D simulations: total CPU time, maximum number of degrees of
freedom (dof) after mesh adaptivity, number of MPI processes, total number of time steps, maximum
CPU time necessary for mmg library to adapt the 3D mesh and ratio between the CPU time for adapting
the mesh and the CPU time for a complete time step. All computations were performed using P1 finite
elements for the temperature. All computations were performed using a parallel computer (CRIANN
Computing Center and MATRICS platform) based on Intel Broadwell E5-2680 v4 @ 2.40GHz (14 cores
per socket) architecture with two sockets per node and 128 GB of DDR4 2400 MHz RAM. An Intel
Omnipath 100Gb/s low latency network was used for communications.

31

http://lmrs-num.math.cnrs.fr/2020CPCP2.html

Case CPU time max of dof MPI
procs.

number
of time
steps

max mmg
CPU
time

ratio CPU
adapt /

CPU time
step

Unsteady NC of air,Ra = 104 01:12:38 313 769 6 23 9 sec. 5%
Unsteady NC of air,Ra = 106 01:22:33 913 057 56 50 20 sec. 18%
PCM-Case #1 08:05:24 4,871 640 224 80 66 sec. 13%
PCM-Case #3: 1 tube 21:49:27 3,919 350 224 401 49 sec. 12%
PCM-Case #3: 4 tubes 15:49:16 9,224 708 280 151 128 sec. 17%
PCM-Case #3: 9 tubes 13:23:43 14,981 519 364 71 210 sec. 17%
Cycle of a PCM 11:28:47 2,709 371 224 382 32 sec. 27%
NC of water 01:10:08 4,700 233 112 20 63 sec. 17%
Unsteady NC of water 07:14:19 6,049 784 112 35 82 sec. 12%
Water freezing 1-16:14:44 5,107 229 224 296 58 sec. 17%

Table 5: Same caption as for Table 4, but with all computations performed using P2 finite elements for
the temperature.

6.1. Natural convection of air in a cubic cavity
We go back to the benchmark of natural convection of air described in §5.1 and add

the third dimension in space. We thus simulate the thermally driven cubic cavity [0, 1]3,
filled with air. The temperature is now fixed on the left (cold) wall surface and the right
(hot) wall surface. All the other lateral surfaces are adiabatic (∂T/∂n = 0). No-slip
walls are applied for the velocity on all boundary surfaces. We show in Fig. 13 the final
(steady) flow configuration for Ra = 106 obtained using the time-dependent solver with P2
finite-elements for the temperature. The mesh is mainly adapted following the boundary
layers of the ascending and descending flows (Fig. 13a), which are clearly visible when
representing the 3D velocity vectors (Fig. 13b). A quantitative assessment of the quality
of the simulation is offered in Fig. 13c and Fig. 13d, comparing our results with those
reported by Wakashima and Saitoh (2004). These authors solved the vorticity-stream
function formulation of the Navier-Stokes equations using a fourth–order finite difference
scheme and a uniform mesh of 1203 grid nodes.

6.2. Melting of 3D phase-change materials
We simulate in this section 3D configurations of PCMs, in cubic or cylindrical geome-

tries.

6.2.1. Melting of a cubic octadecane PCM
We extend the 2D simulations presented in §5.2.1 to a 3D cubic domain Ω = [0, 1]3. We

impose cold dimensionless temperature θc = −0.01 at x = 1 (right wall), hot temperature
θh = 1 at x = 0 (left wall), and a homogeneous Neumann boundary condition at the
remaining walls. A Dirichlet boundary condition u = 0 is prescribed for all surfaces
defining ∂Ω. The temperature distribution and the corresponding adapted mesh at
t = 80.1 is shown in Fig. 14a. The blue region denotes the solid phase. A zoom of
the mesh in the mid-plane, at t = 80.1, refined along the iso-surface θ = 0, is shown in
Fig. 14b. As the heating progresses, the natural convection intensifies enough to have a

32

Figure 13: Natural convection of air in a cubic differentially heated cavity (Ra = 106) computed with P2
finite elements for the temperature. (a) Adapted mesh with a maximum number of degrees of freedom
of 913 057. (b) 3D velocity vector field in the final (steady) state. Temperature contour-lines in the
central section of the cube (y = 0.5): results of Wakashima and Saitoh (2004) (c) and present results (d).
Parallel computation with 56 MPI processes.

pronounced influence on the shape of the interface. The temperature difference between
the hot wall and the solid PCM induces a clockwise recirculation of the flow in the melted
PCM (Fig. 14c). The shape of the liquid-solid interface at t = 80.1 is also displayed in
Fig. 14c, showing a non-uniform melting front receding from the top to the bottom of
the domain. The position of the solid-liquid interface at the mid-plane for 2D and 3D
configurations is plotted in Fig. 14d. Differences between 2D and 3D results are not

33

visible in this mid-plane. Three-dimensional effects are more important near the lateral
walls, as explained in Nikrityuk (2012).

x

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

3D simulation

2D simulation

Y

X

Z

T

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

(a)

(c)

(b)

Figure 14: Melting of a cubic PCM (Okada, 1984) computed with P2 finite elements for the temperature.
Configuration at t = 80.1, computed using 224 MPI processes with P2 finite elements for the temperature.
(a) Adapted finite-element mesh with a maximum number of degrees of freedom ndof = 4, 871 640. (b)
Illustration of the adapted mesh in the centre of the domain. (c) 3D velocity vectors and isosurface
θ = 0 representing the liquid-solid interface. (d) Position of the interface in the central plane (y = 0.5):
comparison between 2D and 3D simulations (both using P2 finite elements for the temperature).

34

6.2.2. Melting of a cylindrical PCM with inner heated tubes
We simulate the melting of a cylindrical PCM with inner heated tubes, as in §5.2.3.

The 3D domain is now a horizontal cylinder of radius R = 1 and length L = 0.25. In
addition to the 2D configuration, we impose the following boundary conditions. For the
temperature, a Dirichlet boundary condition (θ = θh = 1) is applied at the inner tubes
and a Neumann boundary condition (∂θ∂n = 0) at the outer sections of the cylinder. For
the velocity, a homogeneous Dirichlet boundary condition (u = 0) is prescribed on the
lateral surfaces of external and inner cylinders and a symmetry boundary condition is
imposed on the ending sections of the cylinder. The PCM is initially solid and when
the melting process starts, a liquid layer grows around the heated tubes and expands
toward the lateral boundary. A slice in the adapted mesh, the velocity vector field, and
temperature iso-surfaces are illustrated in Fig. 15 for configurations with one, four, and
nine heated tubes. The mesh is adapted along the melting front and in the boundary

Figure 15: Melting of cylindrical PCM computed with P2 finite elements for the temperature. Adapted
finite-element mesh (left panels), 3D velocity vector field (middle) and temperature iso-surfaces (right).
Configurations with one inner heated tube (time instant t = 1.591, simulation with 224 MPI processes
and a maximum number of degrees of freedom ndof = 3, 919 350), four tubes (t = 0.621, 280 processes
and max ndof = 9, 224 708) and nine tubes (t = 0.331, 364 processes and max ndof = 14, 981 519).

35

layers around the heated tubes. Adaptivity is efficient even when the solid-liquid interface
touches the outer wall (see left panels). Counter rotating flows are observed at the left
and right parts of the cylindrical domain (middle panels). Iso-surfaces of temperature
shown in the right panels also confirm that the evolution of the liquid flows keeps the
symmetry of the configuration.

6.3. Natural convection of water and water freezing
We simulate in this final section the challenging case of the natural convection of

water and the ice formation inside a differentially heated cubic cavity.The dimensionless
parameters are the same that those used in §5.3.2. For the natural convection of water,
the vertical walls at x = 0 and x = 1 are isothermal and have different temperatures
θh = 1 and θc = 0, respectively. The remaining walls are adiabatic. A homogeneous
Dirichlet boundary condition u = 0 is applied on all walls. The fluid is initially at rest
and the temperature is linearly distributed from the cold to the hot wall (see Fig. 16).

Y

X

Z

T

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

(a)

z

u
3

0 0.2 0.4 0.6 0.8 1

160

120

80

40

0

40

80

120

160

Numerical result of MK

3D simulation

2D simulation

(d)

x

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(b)

(c)

Figure 16: Natural convection of water in a differentially heated cubic cavity computed with P2 finite
elements for the temperature. (a) Temperature distribution and 3D adapted finite element mesh at the
steady state. (b) Illustration of the adapted mesh in the center of the domain. (c) Velocity vector field
and temperature iso-surface θ = 0.4. (d) Profile of the vertical velocity along the z−direction at the
mid-plane (y = 0.5) and x = 0.93. Comparison with the numerical benchmark suggested by Kowalewski
and Rebow (1999) (symbols). Simulations using 112 MPI processes with P2 for the temperature and a
maximum number of degrees of freedom ndof=4, 700 233

36

Given the anomalous thermal variation of water density, we also adapted the 3D mesh
along θ = 0.4 to capture correctly the flow structure. The temperature distribution and
the corresponding adapted mesh for the steady (time-independent) state computation are
shown in Fig. 16a. The blue region identifies the cold water trapped by the abnormal fluid
recirculation and the red region the hot fluid driven by the upper clockwise circulation.
A cut in the mesh following the mid-plane (Fig. 16b) shows the internal structure of the
mesh. Smaller tetrahedra are clearly observed in the vicinity of the walls and between the
two counter-rotating circulation patterns. Figure 16c shows that the three-dimensional
evolution of the flow (spiral movement of the fluid along the walls) affects the topology of
the iso-surface θ = 0.4.

Giangi et al. (2000) analyzed three-dimensional effects in both convection and freezing
of water and they noted that only the flow in the symmetry plane is similar to the
two-dimensional flow. They pointed out that no-slip velocity and adiabatic thermal
boundary conditions at the side walls enhance three-dimensional effects near the walls. To
validate this observation, we plot in Fig. 16d the profile of the vertical velocity along the
z direction, at x = 0.93 and passing through the velocity saddle point, where normal and
abnormal convection streams collide in the vicinity of the cold wall. We compare both
2D and 3D simulations with 3D results of Michalek and Kowalewski (2003) (symbols),
obtained with a finite-difference code. 3D (red solid line) profile agrees well with the
benchmark solution with a maximum difference of 3%.

For the water freezing case, the simulation starts from the steady solution shown in
Fig. 16. The cold temperature at the right wall is suddenly dropped from θc = 0 to
θc = −1 (corresponding to physical temperature Tc = −10 oC). Ice starts to form at
the cold wall and expands toward the left wall. The temperature distribution and the
adapted mesh at the final time tϕ = 2340[s] (t = 1.61) are displayed in Figs. 17a and 17b.

When compared to the natural convection case (Fig. 16), the mesh is also adapted
along a second moving front represented by the solid-liquid interface (iso-surface θ = 0
shown in Fig. 17c). For the identification of flow structures during the ice formation, Fig.
17c shows the 3D velocity vectors, the iso-surface θ = 0.4 along the anomalous density
variation, and the phase-change front at time instant t = 1.61. The effect of the secondary
flow (see Nikrityuk (2012)) is visible from the curved shape of the iso-surface θ = θm in
the transverse y direction. We note, however, that the shape of the solidification front is
almost 2D. The buoyancy-induced fluid motion in the abnormal recirculation region is
too weak to influence the solid front. Finally, the superimposition of the experimental
image of Kowalewski and Rebow (1999) and the current simulation give good agreement
for the location of the solid-liquid interface. Differences come mainly from the fact that
the undercooling phenomenon during the solidification stage is not taken into account in
our physical model.

37

x

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

Y

X

Z

T: 0.9 0.6 0.3 0 0.3 0.6 0.9

(a)

(c)

x

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

Figure 17: Freezing of pure water in a 3D cubical cavity computed with P2 finite elements for the
temperature. (a) Temperature distribution and adapted mesh at time instant t = 1.61. (b) Cut through
the adapted mesh at mid-plane. (c) 3D velocity vectors in the liquid phase and temperature iso-surfaces
θ = 0.4 and θ = 0. (d) Superimposition of the interface obtained in the present simulation (red line) on
the experimental image of Kowalewski and Rebow (1999). Simulations using 224 MPI processes with P2
for the temperature and a max of degrees of freedom 5, 107 229.

38

6.4. Scalability test for 3D parallel computations
We present the results for both strong and weak scalability tests. We simulate the 3D

unsteady natural convection of air with Ra = 106 presented in §6.1. Mesh adaptation is
used only for the strong scalability test.

The CPU is Intel Broadwell E5-2680 v4 @ 2.40GHz (14 cores per socket). Each node
has two sockets and 128 GB of DDR4 2400 MHz RAM. They communicate through
Intel Omnipath 100Gb/s low latency network. First, we report the simulation time,
the efficiency and speed-up for the weak (Fig. 18) and strong scalability tests (Fig.
19). Assuming a perfect speed-up for 8 cores, we obtained for 256 cores a speed-up of
approximately 122.56 (weak) and 70.6 (strong), resulting in an efficiency of 47.9%(weak)
and 27.6%(strong).

0 50 100 150 200 250
Number of CPU

0

500

1000

1500

2000

2500

3000

Si
m

ul
at

io
n

tim
e

(s
)

0 50 100 150 200 250
Number of CPU

0

20

40

60

80

100

Ef
fic

ie
nc

y
(%

)

0 50 100 150 200 250
Number of CPU

0

20

40

60

80

100

120

Sp
ee

du
p

Figure 18: Weak scalability test for 3D simulations: simulation time (left), efficiency (center) and speed-up
(right) for a number of processes ranging from 8 to 256.

0 50 100 150 200 250
Number of CPU

0

2000

4000

6000

8000

10000

12000

14000

16000

Si
m

ul
at

io
n

tim
e

(s
)

0 50 100 150 200 250
Number of CPU

0

20

40

60

80

100

Ef
fic

ie
nc

y
(%

)

0 50 100 150 200 250
Number of CPU

0

10

20

30

40

50

60

70

Sp
ee

du
p

Figure 19: Strong scalability test for 3D simulations: simulation time (left), efficiency (center) and
speed-up (right) for a number of processes ranging from 8 to 256.

In Figs. 20 (weak) and 21 (strong), we report the computational time for the main steps
of the computational algorithm, namely the mesh adaptation, the matrix construction and
the resolution of the linear system. For 8 cores, the mesh adaptation takes 221.9s (strong),
the construction of the matrix 83.5s (strong) and 0.96s (weak) and the resolution of the
linear system 4866.9s (strong) and 552.1s (weak). For 256 cores, the mesh adaptation
takes 223.0s (strong), the construction of the matrix 76.4s (strong) and 6.91s (weak) and
the resolution of the linear system 422.2s (strong) and 893.5s (weak). It results from this
analysis that the only step that benefits from the parallelization is the resolution of the

39

linear system. The speed-up of the resolution of the linear system is 78.9 (strong) and
158.2 (weak), resulting in an efficiency of 36.0% (strong) and 61,8% (weak).

0 10 20 30 40
Time step (s)

0

10

20

30

40

50

60

Co
m

pu
ta

tio
n

tim
e

(s
)

Mesh adaptation
Matrix construction
Solving linear system

0 10 20 30 40
Time step (s)

0

20

40

60

80

Co
m

pu
ta

tio
n

tim
e

(s
)

Mesh adaptation
Matrix construction
Solving linear system

0 10 20 30 40
Time step (s)

0

20

40

60

80

100

Co
m

pu
ta

tio
n

tim
e

(s
)

Mesh adaptation
Matrix construction
Solving linear system

Figure 20: Weak scalability test: stacked timings of the main steps of the computation using 8 (left), 24
(center) and 112 (right) processes.

0 10 20 30 40
Time step (s)

0

100

200

300

400

500

Co
m

pu
ta

tio
n

tim
e

(s
)

Mesh adaptation
Matrix construction
Solving linear system

0 10 20 30 40
Time step (s)

0

20

40

60

80

100

Co
m

pu
ta

tio
n

tim
e

(s
)

Mesh adaptation
Matrix construction
Solving linear system

0 10 20 30 40
Time step (s)

0

10

20

30

40

50

60

70

80

Co
m

pu
ta

tio
n

tim
e

(s
)

Mesh adaptation
Matrix construction
Solving linear system

Figure 21: Strong scalability test: stacked timings of the main steps of the computation using 8 (left), 24
(center) and 112 (right) processes.

7. Summary and conclusions

The main advantage of the new toolbox distributed with this paper is to enable
parallel computing of liquid-solid phase-change systems in 2D or 3D complex geometries.
The physical model implemented in the software is one of the most accurate existing for
such systems: the enthalpy-porosity model, based on the incompressible Navier-Stokes
equations with Boussinesq approximation for thermal effects. This model captures all
the characteristics of the flow developing in the liquid phase, dominated by convection.
Using a Carman-Kozeny-type penalty term, added to the momentum equations to bring
progressively the velocity to zero into the solid, results in a single-domain formulation of
equations for both liquid and solid phases. We proved that this single-domain enthalpy-
porosity model is well adapted to the use of Schwarz domain decomposition methods
(DDM), and, consequently, to parallel computing.

The numerical method was implemented using FreeFem++, a free software offering
multiple advantages to easily implement a finite-element algorithm. The key ingredients
of the implemented method are: (i) a second order accuracy in space (P2 finite elements
for velocity and temperature, P1 for the pressure) and time (Gear scheme); (ii) the

40

use of an adaptive finite element method with regularized functions representing the
variation of thermodynamic properties at the solid-liquid interface, (iii) a fully implicit
discretization with a Newton algorithm for solving the non-linear system of equations,
and (iv) a parallel final algorithm using automatic partitioners (Scotch or Metis) and the
recent library ffddm that makes available in FreeFem++state-of-the-art scalable Schwarz
domain decomposition methods. Mesh adaptivity is an essential ingredient of the toolbox
and a new algorithm was implemented using external remeshing tools (mmg) for 3D
configurations.

We presented careful validations of the toolbox by considering parallel 2D and 3D
computations of well-known benchmark cases of increasing difficulty: natural convection
of air, natural convection of water, melting or solidification of a phase-change material,
and, finally, a water freezing case. For 2D configurations, parallel computations with the
present toolbox using modest resources (6 MPI processes) can bring a CPU gain factor
between 2 and 3, when compared to previous sequential algorithms (Rakotondrandisa
et al., 2020). But the most significant progress brought by the new toolbox is to make
affordable well-resolved 3D computations with mesh adaptivity, which are hardly accessible
with sequential algorithms. The efficiency of the toolbox in 3D was demonstrated by
simulating difficult cases (melting of a PCM, water freezing) in simple (cubic) or complex
geometries (cylindrical with inner tubes). To facilitate its use, the toolbox is provided
with separate folders containing all the necessary files (parameters, restart files) necessary
to run all the cases described in the paper. Ready-made scripts and layouts allow the user
to generate the figures presented in this paper with newly generated data after running
the programs. Validation data sets from experiments or previous publications are included
in these layouts.

The present parallel approach can be easily tested and adapted to address other
computational challenges related to different physical or mathematical models in this field.
For instance, other possible choices for the finite-element discretization could be tested for
the implementation of the algorithm presented in this paper. To prove the versatility of
the toolbox, we illustrate in Fig. 22 the results obtained using the mini-element introduced
by Arnold, Brezzi and Fortin (see Arnold et al., 1984; Brezzi and Fortin, 1991). This is
the simplest element for Stokes-type problems, offering inf-sup stability and global linear
convergence. Compared to the Taylor-Hood element, in the mini-element discretization
velocities are piecewise Pb1 (P1-bubble), while pressure is still piecewise P1. Since the
mini-element already exists in FreeFem++ the only necessary change in the distributed
scripts is to declare the unknowns of the problem accordingly to the syntax discussed in
Sect. 3.1: fespace Wh(Th,[P1b,P1b,P1b,P1,P1]).

Figure 22 shows that, for the test case of the melting of a PCM presented in Sects.
5.2.1 (2D case) and 6.2.1 (3D case), the results are remarkably accurate when compared
to those obtained using the Taylor-Hood discretization. The CPU time is reduced by 20%
for the 2D computation and 42% for the 3D simulation with the same number of MPI
processes (6 for 2D and 224 for 3D). However, knowing that the mini-element offers a
minimal accuracy for the velocity field, a careful assessment of this type of discretization
in computing more complicated cases (with several convection rolls and complex dynamics
in the fluid part) is necessary. Also, the efficiency of the mesh adaptivity in this case has
to be carefully investigated to obtain a robust algorithm (as in the present toolbox using
the Taylor-Hood finite element). This topic will be addressed in a future contribution,
together with the possibility to enrich the physical model for the solidification process.

41

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(a)

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

P
1

b
 P

1

t = 40.1

t = 79.1

P
2
 P

1

x

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(d)

3D: P
2
 P

1

3D: P
1

b
 P

1

Y

X

Z

T

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

(c)

Figure 22: Melting of a PCM. Results obtained using the mini-element (Pb
1 for the velocity and P1 for the

pressure). 2D simulation: (a) Temperature field and position of the interface at t = 80.1; the red dashed
line is the experimental result of Okada (1984). (b) Comparison with the Taylor-Hood discretization (red
dashed lines) for the position of the interface at t = 40.1 and t = 79.1. 3D simulation: (c) Temperature
field and adapted mesh at t = 80.1. (d) Comparison with the Taylor-Hood discretization (red dashed
line) for the position of the interface at t = 79.1 in the central plane (y = 0.5). To be compared with
Figs. 5 and 14.

Supplementary images and movies depicting the dynamics of some cases simulated in
this paper are provided as Supplemental Material at
http://lmrs-num.math.cnrs.fr/2020CPCP2.html.

Acknowledgements

This project was co-financed by the European Union with the European regional
development funds and by the Normandy Regional Council via the M2NUM (ERDF,
HN0002081) and M2SiNUM (ERDF, 18P03390/18E01750/18P02733) projects. Part of
this work was performed using computing resources of CRIANN (Centre Régional Infor-
matique et d’Applications Numériques de Normandie, France) and MATRICS plateform
(Amiens, France).

42

http://lmrs-num.math.cnrs.fr/2020CPCP2.html

Bibliography

Agyenim, F., Hewitt, N., Eames, P., Smyth, M., 2010. A review of materials, heat transfer and phase
change problem formulation for latent heat thermal energy storage systems (lhtess). Renewable and
sustainable energy reviews 14 (2), 615–628.

Aldbaissy, R., Hecht, F., Mansour, G., Sayah, T., 2018. A full discretisation of the time-dependent
Boussinesq (buoyancy) model with nonlinear viscosity. Calcolo 55 (4), 44.

Angot, P., Bruneau, C.-H., Fabrie, P., 1999. A penalization method to take into account obstacles in
incompressible viscous flows. Numer. Math. 81 (4), 497–520.

Arnold, D. N., Brezzi, F., Fortin, M., 1984. A stable finite element for the Stokes equations. Calcolo 21,
337–344.

Belhamadia, Y., Fortin, A., Briffard, T., 2019. A two-dimensional adaptive remeshing method for solving
melting and solidification problems with convection. Numerical Heat Transfer, Part A: Applications
76 (4), 179–197.

Belhamadia, Y., Fortin, A., Chamberland, E., 2004a. Anisotropic mesh adaptation for the solution of the
Stefan problem. Journal of Computational Physics 194 (1), 233–255.

Belhamadia, Y., Fortin, A., Chamberland, E., 2004b. Three-dimensional anisotropic mesh adaptation for
phase change problems. Journal of Computational Physics 201, 753–770.

Belhamadia, Y., Kane, A. S., Fortin, A., 2012. An enhanced mathematical model for phase change
problems with natural convection. International Journal of Numerical Analysis and Modeling 3 (2),
192–206.

Bertrand, O., Binet, B., Combeau, H., Couturier, S., Delannoy, Y., Gobin, D., Lacroix, M., Le Quéré, P.,
Médale, M., Mencinger, J., et al., 1999. Melting driven by natural convection a comparison exercise:
first results. International Journal of Thermal Sciences 38 (1), 5–26.

Boffi, D., Brezzi, F., Fortin, M., 2013. Mixed finite element methods and applications. Springer Verlag.
Borouchaki, H., Castro-Diaz, M. J., George, P. L., Hecht, F., Mohammadi, B., 1996. Anisotropic adaptive

mesh generation in two dimensions for cfd. In: 5th Inter. Conf. on Numerical Grid Generation in
Computational Field Simulations. Mississipi State Univ.

Brent, A. D., Voller, V. R., Reid, K. J., 1988. Enthalpy-porosity technique for modeling convection-
diffusion phase change: Application to the melting of a pure metal. Numerical Heat Transfer 13,
297–318.

Brezzi, F., Fortin, M., 1991. Mixed and hybrid finite element methods. Springer Verlag.
Cao, Y., Faghri, A., Chang, W. S., 1989. A numerical analysis of Stefan problems for generalized multi-

dimensional phase-change structures using the enthalpy transforming model. International Journal of
Heat and Mass Transfer 32 (7), 1289–1298.

Castro-Diaz, M., Hecht, F., Mohammadi, B., 2000. Anisotropic grid adaptation for inviscid and viscous
flows simulations. Int. J. Numer. Methods Fluids 25, 475–491.

Cerimele, M. M., Mansutti, D., Pistella, F., 2002. Numerical modelling of liquid/solid phase transitions:
Analysis of a gallium melting test. Computers & fluids 31 (4), 437–451.

Danaila, I., Hecht, F., 2010. A finite element method with mesh adaptivity for computing vortex states
in fast-rotating Bose-Einstein condensates. J. Comput. Physics 229, 6946–6960.

Danaila, I., Moglan, R., Hecht, F., Le Masson, S., 2014. A Newton method with adaptive finite elements
for solving phase-change problems with natural convection. J. Comput. Physics 274, 826–840.

Dantzig, J. A., 1989. Modelling liquid–solid phase changes with melt convection. International Journal
for Numerical Methods in Engineering 28 (8), 1769–1785.

Dapogny, C., Dobrzynski, C., Frey, P., 2014. Three-dimensional adaptive domain remeshing, implicit
domain meshing, and applications to free and moving boundary problems. Journal of Computational
Physics 262, 358 – 378.

Dolean, V., Jolivet, P., Nataf, F., 2015. An Introduction to Domain Decomposition Methods: algorithms,
theory and parallel implementation. SIAM.

Favier, B., Purseed, J., Duchemin, L., 2019. Rayleigh-Bénard convection with a melting boundary. Journal
of Fluid Mechanics 858, 437–473.

Frey, P. J., George, P. L., 1999. Maillages. Hermès, Paris.
Gebhart, B., Mollendorf, J., 1977. A new density relation for pure and saline water. Deep Sea Res. 24,

831–848.
George, P. L., Borouchaki, H., 1998. Delaunay triangulation and meshing. Hermès, Paris.
Giangi, F., Stella, M., 2000. Melting of a pure metal on a vertical wall: numerical simulation. Numerical

Heat Transfer: Part A: Applications 38 (2), 193–208.
Giangi, M., Kowalewski, T. A., Stella, F., Leonardi, E., 2000. Natural convection during ice formation:

43

numerical simulation vs. experimental results. Computer Assisted Mechanics and Engineering Sciences
7, 321–342.

Girault, V., Raviart, P.-A., 1986. Finite element methods for Navier-Stokes equations. Springer Verlag,
Berlin.

Gobin, D., Le Quéré, P., 2000. Melting from an isothermal vertical wall. synthesis of numerical comparison
exercise. Computer Assisted Mechanics and Engineering Sciences 7 (3), 289–306.

Gong, W., Johannes, K., Kuznik, F., 2015. Numerical simulation of melting with natural convection based
on lattice Boltzmann method and performed with cuda enabled gpu. Communications in Computational
Physics 17 (5), 1201–1224.

Hannoun, N., Alexiades, V., Mai, T. Z., 2003. Resolving the controversy over tin and gallium melting in
a rectangular cavity heated from the side. Numerical Heat Transfer: Part B: Fundamentals 44 (3),
253–276.

Hannoun, N., Alexiades, V., Mai, T. Z., 2005. A reference solution for phase change with convection.
International Journal for Numerical Methods in Fluids 48 (11), 1283–1308.

Hecht, F., 2012. New developments in Freefem++. Journal of Numerical Mathematics 20, 251–266.
Hecht, F., Mohammadi, B., 1997. Mesh adaptation by metric control for multi-scale phenomena and

turbulence. AIAA paper 97, 0859.
Hecht, F., Pironneau, O., Hyaric, A. L., Ohtsuke, K., 2007. FreeFem++ (manual). www.freefem.org.
Kalnæs, S., Jelle, B., 2015. Phase change materials and products for building applications: a state-of-the-

art review and future research opportunities. Energy and Buildings 94, 150–176.
Karypis, G., Kumar, V., 1998. A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM Journal on Scientific Computing 20 (1), 359–392.
Kheirabadi, A. C., Groulx, D., 2015. The effect of the mushy-zone constant on simulated phase change heat

transfer. In: Proceedings of CHT-15, ICHMT International Symposium on Advances in Computational
Heat Transfer, Ichmt Digital Library Online. Begel House Inc.

Kowalewski, A., Gobin, D., 2004. Phase change with convection: modelling and validation. Springer.
Kowalewski, T. A., Rebow, M., 1999. Freezing of water in differentially heated cubic cavity. International

Journal of Computational Fluid Dynamics 11, 193–210.
Le Quéré, P., 1991. Accurate solutions to the square thermally driven cavity at high Rayleigh number.

Computational Fluids 20, 24–41.
Le Quéré, P., Gobin, D., 1999. A note on possible flow instabilities in melting from the side. International

journal of thermal sciences 38 (7), 595–600.
Luo, K., Yao, F.-J., Yi, H.-L., Tan, H.-P., 2015. Lattice Boltzmann simulation of convection melting in

complex heat storage systems filled with phase change materials. Applied Thermal Engineering 86,
238–250.

Ma, Z., Zhang, Y., 2006. Solid velocity correction schemes for a temperature transforming model for
convection phase change. International Journal For Numerical Methods Heat Fluid Flow 16 (11),
204–225.

Michalek, T., Kowalewski, T. A., 2003. Simulations of the water freezing process - numerical benchmarks.
Task Quarterly 7 (3), 389–408.

Mohammadi, B., Pironneau, O., 2000. Applied Shape Design for Fluids. Oxford Univ. Press.
Nikrityuk, K. W. P. A., 2012. Three-dimensionality of fluid flow in the benchmark experiment for a

pure metal melting on a vertical wall. In: IOP Conference Series: Materials Science and Engineering.
Vol. 27. IOP Publishing, p. 012054.

Nourgaliev, R., Luo, H., Weston, B., Anderson, A., Schofield, S., Dunn, T., Delplanque, J.-P., 2016.
Fully-implicit orthogonal reconstructed discontinuous galerkin method for fluid dynamics with phase
change. Journal of Computational Physics 305, 964–996.

Okada, M., 1984. Analysis of heat transfer during melting from a vertical wall. International Journal of
Heat and Mass Transfer 27, 2057–2066.

Pellegrini, F., Roman, J., 1996. SCOTCH: A Software Package for Static Mapping by Dual Recursive
Bipartitioning of Process and Architecture Graphs. In: High-Performance Computing and Networking.
Springer, pp. 493–498.

Quarteroni, A., Valli, A., 1994. Numerical Approximation of Partial Differential Equations. Springer-
Verlag, Berlin and Heidelberg.

Rakotondrandisa, A., Sadaka, G., Danaila, I., 2020. A finite-element toolbox for the simulation of
solid-liquid phase-change systems with natural convection. Computer Physics Communications 253,
107188.

Scanlon, T. J., Stickland, M. T., 2004. A numerical analysis of buoyancy-driven melting and freezing.
International Journal of Heat and Mass Transfer 47, 429–436.

44

Stella, F., Giangi, M., 2004. Modelling methodologies for convection-diffusion phase-change problems. In:
Kowalewski, A., Gobin, D. (Eds.), Phase change with convection: modelling and validation. Springer,
pp. 219–272.

Taylor, C., Hood, P., 1973. A numerical solution of the Navier-Stokes equations using the finite element
technique. Computers & Fluids 1, 73–100.

Temam, R., 1983. Navier-Stokes equations and nonlinear functional analysis. SIAM, Philadelphia.
Tenchev, R. T., Mackenzie, J. A., Scanlon, T. J., Stickland, M. T., 2005. Finite element moving mesh

analysis of phase change problems with natural convection. International Journal of Heat and Fluid
Flow 26 (4), 597–612.

Tournier, P.-H., Nataf, F., Jolivet, P., 2019. ffddm online documentation. http://doc.freefem.org/
documentation/ffddm.

Vergez, G., Danaila, I., Auliac, S., Hecht, F., 2016. A finite-element toolbox for the stationary Gross-
Pitaevskii equation with rotation. Comput. Phys. Comm. 209, 144–162.

Voller, V. R., Cross, M., Markatos, N. C., 1987. An enthalpy method for convection/diffusion phase
change. Int. J. Numer. Meth. Eng. 24, 271–284.

Wakashima, S., Saitoh, T., 2004. Benchmark solutions for natural convection in a cubic cavity using the
high–order time–space method. International Journal of Heat and Mass Transfer 47 (4), 853 – 864.

Wang, S., Faghri, A., Bergman, T. L., 2010. A comprehensive numerical model for melting with natural
convection. International Journal of Heat and Mass Transfer 53, 1986–2000.

Woodfield, J., Alvarez, M., Gamez-Vargas, B., Ruiz-Baier, R., 2019. Stability and finite element approxi-
mation of phase change models for natural convection in porous media. Journal of Computational and
Applied Mathematics 360, 117 – 137.

Zhang, Y., Danaila, I., 2013. Existence and numerical modelling of vortex rings with elliptic boundaries.
Applied Mathematical Modelling 37, 4809–4824.

Zimmerman, A., Kowalski, J., 2018. Monolithic simulation of convection-coupled phase-change: Verifica-
tion and reproducibility. In: Schäfer, M., Behr, M., Mehl, M., Wohlmuth, B. (Eds.), Recent Advances
in Computational Engineering. ICCE 2017. Lecture Notes in Computational Science and Engineering,
vol 124. Springer, pp. 177–197.

45

http://doc.freefem.org/documentation/ffddm
http://doc.freefem.org/documentation/ffddm

	Introduction
	Navier-Stokes-Boussinesq equations and enthalpy-porosity model
	Numerical method
	Finite-element formulation
	Domain decomposition method
	Mesh adaptivity

	Description of the programs
	Program architecture
	Input parameters
	Outputs

	2D parallel simulations
	Natural convection of air
	Melting or solidification of a phase-change material (PCM)
	PCM-Case #1: Melting of an octadecane PCM in a square cavity
	PCM-Case #2: Melting of an octadecane PCM with high Rayleigh number
	PCM-Case #3: Melting of cylindrical PCM with inner heated tubes
	PCM-Case #4: Melting of Gallium in a rectangular cavity
	PCM-Case #5: Solid crust formation in a highly distorted domain

	Natural convection of water and water freezing
	Natural convection of water
	Water freezing

	3D parallel numerical results
	Natural convection of air in a cubic cavity
	Melting of 3D phase-change materials
	Melting of a cubic octadecane PCM
	Melting of a cylindrical PCM with inner heated tubes

	Natural convection of water and water freezing
	Scalability test for 3D parallel computations

	Summary and conclusions

