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Abstract
The well posedness of the two-phase Stefan problem with convection is established
in L1. First we consider the case with a singular enthalpy and we fix the convection
velocity. In the second part of the paper we study the case of a smoothed enthalpy, but
the convection velocity is the solution to a Navier-Stokes equation. In the last section
we give some numerical illustrations of a physical case simulated using the models
studied in the paper.
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1 Introduction

Melting and solidification are fundamental processes for many practical applications
ranging from metal casting to food freezing and cryosurgery. Most of the existing
physical and mathematical models consider the conduction as the only mechanism
describing the heat transfer during the liquid-solid transition (Stefan problem). How-
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ever, in many physical systems, encompassing devices for thermal energy storage
(phase-change materials) and geophysical problems (Earth’s mantle formation, lava
lakes or magma chambers), the classical Stefan model is not accurate, since tem-
perature gradients induce buoyancy forces in the liquid (melted) phase generating a
significant convective flow.

In this work we are interested in the study of a solid-liquid phase transition problem
with convection. More precisely, we prove existence and uniqueness of the solution
for this problem in two different settings: the case with degenerated enthalpy function
and a fixed vectorial velocity function in the convection term and the case with a non-
degenerated enthalpy function and a convection term modelled by a Navier-Stokes
equation.

Our approach is based on the interpretation of the Stefan problem as a porous media
equation with non-linear transport (drift) term.

We start by considering the following free boundary problem with convection on
an open bounded subset O of Rd with smooth boundary ∂O

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
∂θ

∂t
− div

(
k1∇ξ θ

)+ div (Yη (θ)) = F, if θ < 0,

C2
∂θ

∂t
− div

(
k2∇ξ θ

)+ div (Yη (θ)) = F, if θ > 0,
(
k2∇θ+ − k1∇θ−) · N−

ξ = lNt , on the interface θ = 0,

θ+ = θ− = 0, on the interface θ = 0,

θ (t, ξ) = 0, on ∂O × (0, T ) ,

θ (0, ξ) = θ0 (ξ) , on O,

(1.1)

which models the melting process of a solid (for example ice) in the presence of a
heating source F . Here θ+ and θ− are the right and left limits of the free boundary
situated between the solid and the liquid phase, respectively, and N = N (t, ξ) is the
unit normal to the interface.

We denote by k1 and k2 the thermal conductivity of the solid and liquid phases.
Similarly, C1 and C2 are the specific heat for the two phases.

The function η : R → R is assumed to be a Lipschitz continuous, non-decreasing
function which vanishes in the solid phase and such that η (0) = 0. The physical
interpretation of this term is that only the liquid phase is allowed to move.

The vectorial function Y describes the velocity field and is assumed to be Y ∈
(L∞ (O))d and fixed in the degenerated case, and derived as a solution to a Navier-
Stokes equation in the non-degenerated case. Finally l is assumed to be the latent
heat.

In the literature there exists a large number of references concerning the Stefan
problem. Let us mention [13,14,21] and [23] for the physical motivation and the
mathematical treatment of the problem. The case of a heterogeneous media without
convection was studied in [20].
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Concerning the Stefan problem with convection we refer to [8] for the stationary
case, [7] for the study of renormalized solutions and [1,15] for a numerical point of
view.

A classical approach (see e.g. [2,14]) to study this problem is to write it as a non-
linear multi-valued problem of monotone type. Namely, we can rewrite (1.1) as

⎧
⎪⎨

⎪⎩

∂

∂t
γ (θ) − div

(
k (θ)∇ξ θ

)+ div (Yη (θ)) � F, in (0, T ) × O,

θ (0, ξ) = θ0 (ξ) , in O,

θ (t, ξ) = 0, on ∂O,

(1.2)

where γ is the enthalpy function given by

γ (r) = C (r) + lH (r) , (1.3)

where

C (r) =
{
C1r , r ≤ 0,
C2r , r > 0,

and H is the Heaviside function

H (r) =
⎧
⎨

⎩

0, r < 0,
[0, 1] , r = 0,
1, r > 0,

whilst

k (r) =
{
k1, r ≤ 0,
k2, r > 0.

Let us denote by K the primitive of k and rewrite (1.2) as

⎧
⎪⎨

⎪⎩

∂

∂t
γ (θ) − ΔK (θ) + div (Yη (θ)) � F, in (0, T ) × O,

θ (0, ξ) = θ0 (ξ) , in O,

θ (t, ξ) = 0, on ∂O.

Using the change of variable γ (θ) = X we can write the latter as

⎧
⎪⎨

⎪⎩

∂X

∂t
− ΔΨ (X) + div

(
Yη

(
γ −1 (X)

)) = F, in (0, T ) × O,

X (0, ξ) = X0 (ξ) , in O,

X (t, ξ) = 0, on ∂O,

(1.4)

where

Ψ (r) =
⎧
⎨

⎩

k1C
−1
1 r , r < 0,

0, r ∈ [0, l] ,
k2C

−1
2 (r − l) , r > l,

(1.5)
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and

γ −1 (r) =
⎧
⎨

⎩

C−1
1 r , r < 0,

0, r ∈ [0, l] ,
C−1
2 (r − l) , r > l.

(1.6)

Here we study a more general equation of the form

⎧
⎪⎨

⎪⎩

∂X

∂t
− Δβ (X) + div (Yα (X)) = F, in (0, T ) × O

X (0) = X0, in O
β (X) = 0, on (0, T ) × ∂O

(1.7)

where Y ∈ (L∞ (O))d and α, β : R → R are assumed to satisfy the following
hypotheses

i) β and α are continuous, monotonically nondecreasing functions satisfying

β (0) = α (0) = 0, |α (r)| + |β (r)| ≤ C3 |r | , ∀r ∈ R (1.8)

rβ (r) ≥ C4r
2 + C5, ∀r ∈ R (1.9)

|α (r) − α (s)| ≤ C6 |β (r) − β (s)| , ∀r , s ∈ R (1.10)

for some positive constants Ci , i = 3, 4, 6 and C5 ∈ R.

Equation (1.7) reduces to (1.4) for β = Ψ , α = η ◦γ −1 and the assumptions above
hold if η is Lipschitz and monotonically nondecreasing such that η (0) = 0 .

In the following we denote by C several positive constants, that may change in the
chains of estimates.

The structure of the paper is the following. In Sect. 2 we prove the existence and
uniqueness of the solution to the equation (1.7) and in particular to equation (1.4) with
a singular enthalpy and fixed convection velocity in the space L1 (O). In Sect. 3 we
study the case of a smoothed enthalpy, but with the convection velocity as solution to
a Navier-Stokes equation, by using a fixed point argument. In Sect. 4 we give some
numerical illustrations.

To the best of our knowledge the problem from Sect. 2 was never studied in this
framework and the one fromSect. 3was never treated at all. Numerical results illustrate
the interest in this theoretical formulation of the problem.

Notations
Denote by L p (O) , 1 ≤ p ≤ ∞, the space of Lebesgue p−integrable func-

tions on O with the norm |.|p . The scalar product in L2 (O) is denoted by (., .)2

and let W 1,p (O) = {
u ∈ L p (O) ; Dju ∈ L p (O) , j = 1, 2, ..., d

}
and W 1,p

0 (O) =
{
u ∈ W 1,p (O) , u = 0 on ∂O in the sense of trace

}
be the standard Sobolev spaces

on O. H−1 (O) is the dual of Sobolev space H1
0 (O) with the norm |u|−1 =

((−Δ) u, u)
1/2
2 where−Δ is the Laplace operator with homogeneous Dirichlet condi-

tions. Denote by Lip (R) the space of Lipschitz functions on R with the norm ‖.‖Lip.
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Let X be a Banach space. The operator A : X → X (eventually multivalued) is
said to be accretive if

|u1 − u2|X ≤ |u1 − u2 + λ (v1 − v2)|X , ∀λ > 0, (1.11)

where vi ∈ Aui , i = 1, 2, ui ∈ D (A) .

The operator A is said to be m−accretive if it is accretive and R (I + λA) = X ,
∀λ > 0 (equivalently for someλ > 0). (See e.g. [2]). Here D (A) = {u ∈ X; Au �= ∅}
is the domain of A, R (I + λA) is the range of I + λA and I is the identity operator.
In particular it follows that if A is m−accretive then

∣
∣
∣(I + λA)−1 u1 − (I + λA)−1 u2

∣
∣
∣
X

≤ |u1 − u2|X , ∀u1, u2 ∈ X , λ > 0. (1.12)

As a matter of fact, A is m−accretive, if and only if R (I + λA) = X , ∀λ > 0 and
(1.12) holds.

2 Phase Transition with Degenerated Enthalpy and Fixed Convection
Velocity

We study here the existence and uniqueness of the solution to the equation

⎧
⎪⎨

⎪⎩

∂X

∂t
− Δβ (X) + div (Yα (X)) = F, in (0, T ) × O,

X (0, ξ) = X0 (ξ) , in O,

β (X (t, ξ)) = 0, on (0, T ) × ∂O.

(2.1)

We assume that hypotheses i) holds and also that Y is time independent and

Y ∈ (L∞ (O)
)d

, divY ∈ L∞ (O) . (2.2)

We are going to represent (2.1) as an infinite dimensional Cauchy problem of the
form { dX

dt
+ AX = F, t ∈ [0, T ] ,

X (0) = X0,
(2.3)

where A is an m−accretive operator in L1 (O) .

To this purpose we define the operator A0 : L1 (O) → L1 (O)

A0 (u) = −Δβ (u) + div ( Yα (u)) , ∀u ∈ D̂,

where
D̂ =

{
u ∈ L1 (O) ; − Δβ (u) + div ( Yα (u)) ∈ L1 (O)

}

Here the operatorΔ and div are taken in the sense of Schwartz distributionsD′ (O).
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Theorem 1 For each f ∈ L1 (O) and λ > 0 there is a solution u (λ, f ) ∈ D̂ to
equation

u + λA0u = f . (2.4)

Moreover, we have

u (λ2, f ) = u

(

λ1,
λ1

λ2
f +

(

1 − λ1

λ2

)

u (λ2, f )

)

, ∀0 < λ1 ≤ λ2,, f ∈ L1 (O) ,

(2.5)
and

|u (λ, f1) − u (λ, f2)|1 ≤ | f1 − f2|1 , ∀λ > 0, f1, f2 ∈ L1 (O) . (2.6)

Furthermore if f ≥ 0 a.e. in O then

u (λ, f ) ≥ 0 a.e. in O. (2.7)

Assume further that α ∈ L∞ (R). Then

u (λ, f ) ∈ W 1,q
0 (O) for q ∈

(

1,
d

d − 1

)

(2.8)

|u (λ, f )|
W 1,q

0 (O)
≤ C | f |1 , ∀ f ∈ L1 (O) , λ > 0. (2.9)

It should be noted that Theorem 1 does not imply them−accretivity of operator A0
with the domain D̂ because, in general, A0 is not accretive on D̂ ⊂ L1 (O). The exact
meaning of Theorem 1 is that, for each λ > 0 and f ∈ L1 (O), there is one solution to
equation ( 2.4) (perhaps not unique) which satisfies the contraction (2.6). As a matter
of fact u (λ, f ) is a single valued section of the multivalued operator

f → (I + λA0)
−1 f , ∀ f ∈ L1 (O) ,

that is
u (λ, f ) ∈ (I + λA0)

−1 f , ∀ f ∈ L1 (O) , λ > 0.

Note also that in the case of equation (1.4) condition α ∈ L∞ (R) reduces to
η ∈ Lip (R) ∩ L∞ (R) .

Proof (Proof of Theorem 1) We prove Theorem 1 in several steps indicated by the lem-
mas which follow. We define, for each ε > 0 fixed, the operator

Aε (u) = −Δ(β (u) + εu) + div ( Yα (u))

with

D (Aε) =
{
u ∈ H1

0 (O) ;−Δ(β (u) + εu) + div ( Yα (u)) ∈ L1 (O)
}

.

��
Lemma 1 For each ε > 0 and all λ ∈ (0, λε) the range of I + λAε is all of L2 (O).
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Proof (Proof of Lemma 1) We fix f ∈ L2 (O) and consider the equation

u + λAε (u) = f ,

that is {
u − λΔ (β (u) + εu) + λdiv ( Yα (u)) = f , in D′ (O) ,

u = 0, on ∂O.
(2.10)

Equivalently,

(−Δ)−1 u + λβ (u) + λεu + λ (−Δ)−1 div ( Yα (u)) = (−Δ)−1 f . (2.11)

Here −Δ is the Laplace operator with homogeneous boundary conditions.
We consider the operator K : L2 (O) → L2 (O) defined by

K (u) = λβ (u)

and Hε : L2 (O) → L2 (O) defined by

Hε (u) = (−Δ)−1 u + λεu + λ (−Δ)−1 div ( Yα (u)) .

We see that K is m−accretive in L2 (O) and, since |β (r)| ≤ C |r | for ∀r ∈ R, K
is also continuous in L2 (O).

Concerning Hε, taking into account that

|div ( Y (α (u) − α (v)))|−1 ≤ | Y (α (u) − α (v))|2 ,

we obtain

〈Hε (u) − Hε (v) , u − v〉2
= |u − v|2−1 + λε |u − v|22 + λ 〈div ( Y (α (u) − α (v))) , u − v〉−1

≥ |u − v|2−1 + λε |u − v|22 − λ2

2
| Y |2∞ L2 |u − v|22 − 1

2
|u − v|2−1

≥ λ

(

ε − λ

2
| Y |2∞ L2

)

|u − v|22

where L = ‖α‖Lip.
For λ sufficiently small, i.e.,

λ

2
| Y |2∞ L2 <

ε

2
⇔ λ < λε = ε

2 | Y |2∞ L2

we obtain that

〈Hε (u) − Hε (v) , u − v〉2 ≥ λε

2
|u − v|22 .
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Then, for λ < λε, where λε is sufficiently small, Hε is accretive, continuous and
coercive on L2 (O) .

This implies that (see e.g. [2], page 37) the operator K + Hε is m−accretive,
continuous and coercive and therefore surjective in L2 (O) .

Hence, for each f ∈ L2 (O) and λ < λε, equation (2.11) has a unique solution
uε = uε (λ, f ) ∈ L2 (O) , and therefore we have βε (uε) = β (uε) + εuε ∈ H1

0 (O)

and, by the form of β, we have also that uε ∈ H1
0 (O) and β (uε) ∈ H1

0 (O) . ��

Lemma 2 Denote by uiε the solution to uiε + λAε

(
uiε
) = fi . Then we have that

∣
∣
∣u1ε − u2ε

∣
∣
∣
1

≤ | f1 − f2|1 , ∀ f1, f2 ∈ L2 (O) .

Proof (Proof of Lemma 2) We take the following Lipschitz approximation of the sign
multivalued function, χδ : R → R,

χδ (r) =
⎧
⎨

⎩

1, r ≥ δ,
r
δ
, |r | < δ,

−1, r < −δ,

and we use a similar approach to the one presented in [6].
Namely, we multiply the equation

u1ε − u2ε − λΔ
(
βε

(
u1ε
)

− βε

(
u2ε
))

+λdiv
(
Y
(
α
(
u1ε
)

− α
(
u2ε
)))

= f1 − f2,

where βε (r) = β (r) + εr , by χδ

(
βε

(
u1ε
)− βε

(
u2ε
))

and integrate over O.
We get

∫

O

(
u1ε − u2ε

)
χδ

(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ

+
∫

O
∇
(
βε

(
u1ε
)

− βε

(
u2ε
))

· ∇χδ

(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ

+λ

∫

O
div

(
Y
(
α
(
u1ε
)

− α
(
u2ε
)))

χδ

(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ

≤
∫

O
( f1 − f2) χδ

(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ. (2.12)
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We calculate the term

Iδ =
∫

O
div

(
Y (ξ)

(
α
(
u1ε
)

− α
(
u2ε
)))

χδ

(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ

= −
∫

O

(
Y (ξ)

(
α
(
u1ε
)

− α
(
u2ε
)))

χ ′
δ

(
βε

(
u1ε
)

− βε

(
u2ε
))

·∇
(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ

= −1

δ

∫

[|βε(u1ε)−βε(u2ε)|≤δ]

(
Y (ξ)

(
α
(
u1ε
)

− α
(
u2ε
)))

·∇
(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ.

We note that

Iδ ≤ |Iδ|
≤ | Y |∞ L

δ

∫

[|βε(u1ε)−βε(u2ε)|≤δ]

∣
∣
∣u1ε − u2ε

∣
∣
∣

∣
∣
∣∇
(
βε

(
u1ε
)

− βε

(
u2ε
))∣
∣
∣
Rd

dξ.

Keeping in mind that

(βε (u) − βε (v)) (u − v) ≥ ε |u − v|2 , ∀u, v ∈ R,

we get that

|u − v| ≤ 1

ε
|βε (u) − βε (v)|

and using this relation in the previous inequality we obtain that

|Iδ| ≤ | Y |∞ L

δε

∫

[|βε(u1ε)−βε(u2ε)|≤δ]
|βε (u) − βε (v)|

∣
∣
∣∇
(
βε

(
u1ε
)

− βε

(
u2ε
))∣
∣
∣
Rd

dξ

≤ | Y |∞ L

ε

∫

[|βε(u1ε)−βε(u2ε)|≤δ]

∣
∣
∣∇
(
βε

(
u1ε
)

− βε

(
u2ε
))∣
∣
∣
Rd

dξ, ∀ε > 0.

Since ∇ (βε

(
u1ε
)− βε

(
u2ε
)) = 0 a.e. on

[∣
∣βε

(
u1ε
)− βε

(
u2ε
)∣
∣ = 0

]
we get that

lim
δ→0

∫

[|βε(u1ε)−βε(u2ε)|≤δ]

∣
∣
∣∇
(
βε

(
u1ε
)

− βε

(
u2ε
))∣
∣
∣
Rd

dξ = 0, ∀ε > 0

and therefore lim
δ→0

|Iδ| = 0. Here we have used the fact that

lim
δ→0

∫

[|u|≤δ]

|∇u|2 dx = 0, ∀u ∈ H1 (O) .
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We obtain that
lim
δ→0

Iδ = 0.

Going back to (2.12) and keeping in mind that

∣
∣
∣χδ

(
βε

(
u1ε
)

− βε

(
u2ε
))∣
∣
∣ ≤ 1, a.e. in Ω.

we obtain that

∫

O

(
u1ε − u2ε

)
χδ

(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ + λIδ

≤
∫

O
| f1 − f2| dξ.

Since we have (
u1ε − u2ε

)
χδ

(
βε

(
u1ε
)

− βε

(
u2ε
))

≥ 0

and χδ → sign as δ → 0, we get by Fatou’s lemma that

∫

O

(
u1ε − u2ε

)
sign

(
βε

(
u1ε
)

− βε

(
u2ε
))

dξ ≤
∫

O
| f1 − f2| dξ

which leads to ∫

O

∣
∣
∣u1ε − u2ε

∣
∣
∣ dξ ≤

∫

O
| f1 − f2| dξ, (2.13)

because, by the monotonicity of βε, we have

sign
(
βε

(
u1ε
)

− βε

(
u2ε
))

= sign
(
u1ε − u2ε

)
.

��

Proof of Theorem 1 (continued)
We have shown that L2 (O) ⊂ R (I + λAε) ∀λ > 0 and that

∣
∣
∣(I + λAε)

−1 f1 − (I + λAε)
−1 f2

∣
∣
∣
1

≤ | f1 − f2|1 , ∀ f1, f2 ∈ L2 (O) . (2.14)
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It follows also that Aε is accretive in L1 (O). Indeed, we have

∫

O
(Aε (u) − Aε (v)) χδ (βε (u) − βε (v)) dξ

= −
∫

O
Δ(βε (u) − βε (v)) χδ (βε (u) − βε (v)) dξ

+
∫

O
div ( Y (ξ) (α (u) − α (v))) χδ (βε (u) − βε (v)) dξ

≥
∫

O
|∇ (βε (u) − βε (v))|2

Rd χ ′
δ (βε (u) − βε (v)) dξ

− | Y |∞ L
∫

O
|u − v| χ ′

δ (βε (u) − βε (v)) |∇ (βε (u) − βε (v))|Rd dξ.

By arguing as for Iδ above, we can see that the last integral converges to zero for
δ → 0 and then

∫

O
(Aε (u) − Aε (v)) sign (βε (u) − βε (v)) dξ ≥ 0,

which implies directly that Aε is accretive in L1 (O) due to the monotonicity of βε

(i.e., sign (βε (u) − βε (v)) = sign (u − v) a.e. in O).
In order to conclude the proof of Theorem 1 we should pass to the limit uε =

(I + λAε)
−1 f , for ε → 0.

To this end we go back to the equation

uε − λΔ (β (uε) + εuε) + λdiv ( Y (ξ) α (uε)) = f (2.15)

for f ∈ L2 (O) .

If uε = uε (λ, f ) it is easily seen by (2.10)-(2.11) that the following resolvent
identity holds (see e.g. [2] p.100).

uε (λ2, f ) = uε

(

λ1,
λ1

λ2
f +

(

1 − λ1

λ2

)

uε (λ2, f )

)

, ∀0 < λ1 ≤ λ2. (2.16)

We note also that

uε (λ, f ) ≥ 0 a.e. in O, ∀ε > 0, ∀λ > 0 (2.17)

if f ≥ 0 a.e. in O.
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Here is the argument. If we multiply (2.15) by u−
ε and integrate onO by taking into

account that sign β (u) = sign u, we get

− ∣∣u−
ε

∣
∣2
2 − λ

∫

O
∇β

(
u−

ε

) · ∇u−
ε dξ = λ

∫

O
Yα

(
u−

ε

) · ∇u−
ε dξ +

∫

O
f u−

ε dξ

≥ λ

∫

O
Y · ∇h

(
u−

ε

)
dξ

= −λ

∫

O
h
(
u−

ε

)
divYdξ

where h (r) = ∫ r
0 α (s) ds. This implies u−

ε = 0 for 0 < λ < λ0. Hence uε ≥ 0 a.e.
in O for λ ∈ (0, λ0) . By (2.16) this extend to all λ > 0.

If we multiply equation (2.15) by β (uε) and integrate on O we get via Green’s
formula that

(uε, β (uε))2 + λ |∇β (uε)|22 + λε (∇uε,∇β (uε))2

+λ (div ( Yα (uε)) , β (uε))2 = ( f , β (uε)) ,

and by (1.9) this yields

C4 |uε|22 + λ |∇β (uε)|22 ≤ C

λ
| f |22 + Cλ |β (uε)|22 + λ

4
|∇β (uε)|22

where C is independent of λ.
We obtain that

|uε|22 + λ

2
|∇β (uε)|22 ≤ C

λ
| f |22 , ∀ε > 0, (2.18)

for λ ∈ (0, λ0) , with λ0 independent of ε.

Now, if we multiply the equation by uε and integrate on O we get by (2.18) that{
ε |∇uε|22

}
is bounded in L2 (O).

By the compactness of H1
0 (O) in L2 (O) (see e.g. [9], p. 285) for ε → 0, we have

therefore on a subsequence again denoted {uε} that

β (uε) → ζ strongly in L2 (O) and weakly in H1
0 (O) . (2.19)

Combined with the fact that

uε⇀u weakly in L2 (O) (2.20)

and keeping in mind that the operator u → β (u) ism−accretive in L2 (O), we obtain
that β (u) = ζ a.e. on O.

We have also that

α (uε) → α (u) strongly in L2 (O) . (2.21)
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Indeed, by (1.9), it follows that

C6

∫

O
|β (uε) − β (uλ)|2 dξ ≥

∫

O
|α (uε) − α (uλ)|2 dξ, ∀ε, λ > 0.

and since {β (uε)} is strongly convergent in L2 (O) we have that

{α (uε)} is strongly convergent in L2 (O) . (2.22)

Taking into account that the operator u → α (u) is maximal monotone in L2 (O)×
L2 (O), by (2.20) and (2.22) it follows (2.21).

Using the above estimates, we can pass to the limit in

uε − λΔ (β (uε) + εuε) + λdiv ( Y (ξ) α (uε)) = f , in D′ (O) (2.23)

and get therefore

u − λΔβ (u) + λdiv ( Y (ξ) α (u)) = f , in D′ (O)

for f ∈ L2 (O) with u ∈ L2 (O) and β (u) ∈ H1
0 (O) . Hence u = u (λ, f ).

Now letting ε → 0 in (2.13) we get by (2.20) that

∣
∣
∣u1 − u2

∣
∣
∣
1

≤ | f1 − f2|1 , ∀ f1, f2 ∈ L2 (O) , (2.24)

because the functional v → ∫

O |v (ξ)| dξ is convex and lower semicontinuous in
L2 (O).

Finally, by approximating f ∈ L2 (O) by a sequence { fn} ⊂ L1 (O) we get (2.24)
for all f1, f2 ∈ L1 (O).

Taking into account (2.24) we have

|un − um |1 ≤ | fn − fm |1 .

Hence un → u in L1 (O) . Then by letting n → ∞ in equation

un − λΔβ (un) + λdiv (Yα (un)) = fn (2.25)

it follows by (2.19) and (2.21) that u = u (λ, f ) , that is,

u + λA0u = f

and (2.24) extends to all f ∈ L1 (O) . Moreover letting ε → 0 in (2.16) we get (2.5).
Assume now that α ∈ L∞ (R) and prove that (2.8) and (2.9) hold. Here is the

argument. According to a classical result due to Stampacchia, for each g = {gi }di=0 ∈
(L p (O))d+1 , p > d, the boundary valued problem
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⎧
⎨

⎩

−Δv = g0 +
d∑

i=1

∂gi
∂ξi

, in O,

v = 0, on ∂O,

(2.26)

has a unique solution v ∈ L∞ (O) ∩ H1
0 (O) which satisfies

|v|H1
0 (O) + |v|∞ ≤ C

d∑

i=0

|gi |p (2.27)

By (2.25) we have via Green’s formula that

λ

∫

O
(∇β (un) − Yα (un)) · ∇vdξ =

∫

O
( fn − un) vdξ, (2.28)

and this yields

λ

∣
∣
∣
∣

∫

O
∇β (un) · ∇vdξ

∣
∣
∣
∣

≤ (| fn|1 + |un|1
) |v|∞ + Cλ |∇v|2

≤ 2 | fn|1 |v|∞ + Cλ |v|H1
0 (O)

≤ C | fn|1
d∑

i=0

|gi |p , ∀gi ∈ L p (O) , i = 0, 1, ..., d,

and by (2.26) and (2.28) we get

λ

∣
∣
∣
∣

∫

O
(g0β (un) − g · ∇β (un)) dξ

∣
∣
∣
∣ ≤ C | fn|1

d∑

i=0

|gi |p ,

∀g = {gi }di=0 ∈ (L p (O)
)d+1

.

This implies that

|{β (un) ,∇β (un)}|(Lq (O))d+1 ≤ C

λ
| fn|1 , ∀n, λ > 0.

Hence

|β (un)|W 1,q
0 (O)

≤ C

λ
| fn|1 , ∀n, λ > 0, (2.29)

where 1
q = 1 − 1

p and p > d, that is 1 < q < d
d−1 . Since β (un) → β (u) in L1 (O)

and fn → f in L1 (O) we infer by (2.29) that β (u) ∈ W 1,q
0 (O) and

|β (u)|
W 1,q

0 (O)
≤ C

λ
| f |1 , ∀λ > 0. (2.30)
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Of course we have also α (u) ∈ W 1,1
0 (O) . This completes the proof of Theorem

1.
Define the operator A : D (A) ⊂ L1 (O) → L1 (O) by

Au = A0u,∀u ∈ D (A) , (2.31)

where D (A) = {
u = u (λ, v) , v ∈ L1 (O)

}
.

By (2.5) we see that D (A) is independent of λ.
As a consequence of Theorem 1, we obtain:

Theorem 2 Under hypotheses i) the operator Awith the domain D (A) ism−accretive
in L1 (O). Moreover,

(I + λA)−1 f = u (λ, f ) ∈ (I + λA0)
−1 f , ∀λ > 0, (2.32)

and D (A) = L1 (O) . Furthermore, if α ∈ L∞ (R) then

D (A) =
{

u ∈ L1 (O) ; β (u) ∈ W 1,q
0 (O) , 1 ≤ q <

d

d − 1
,

−Δβ (u) + div (Yα (u)) ∈ L1 (O)
}

.

Proof By (2.31) it follows (2.32) while by (2.4) and (2.6) it is easily seen that
R (I + λA) = L1 (O) , λ > 0 and that (1.12) holds, that is A is m− accretive.
To prove that D (A) is dense in L1 (O) we proceed as follows.

Let f ∈ C∞
0 (O) be arbitrary but fixed and let fε be the solution to equation

fε − εΔβ ( fε) = f in O; β ( fε) ∈ H1
0 (O) . (2.33)

By elliptic regularity we have also β ( fε) ∈ H2 (O) and so multiplying (2.33) by
β ( fε) and Δβ ( fε) respectively, and integrating on O we get

|∇β ( fε)|22 + | fε|22 + ε |∇β ( fε)|22 + ε |Δβ ( fε)|22 ≤ C | f |22 . (2.34)

Hence, for a subsequence ε → 0 we have

fε → f strongly in H−1 (O)

weakly in L2 (O)

β ( fε) → β ( f ) weakly in H1
0 (O)

εΔβ ( fε) → 0 strongly in H−1 (O) . (2.35)

On the other hand, we have by (2.33)

∫

O
| fε (x + h) − fε (x)| dx ≤

∫

O
| f (x + h) − f (x)| dx, ∀h ∈ R

d .
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Then, by Kolmogorov’s compactness theorem (see e.g. [9] p. 113) it follows that
{ fε}ε>0 is compact in L1 (O) and therefore by (2.35) we have

fε → f strongly in L1 (O) as ε → 0. (2.36)

Now we rewrite (2.33) as

fε + εA0 fε = f − εdiv (Yα ( fε)) = gε. (2.37)

By (2.35) it follows that

|div (Yα ( fε))|2
≤ |div (Y )|∞ |α ( fε)|2 + |Y |∞ |∇α ( fε)|2 ≤ C,

because by hypotheses i), ‖α‖Lip ≤ C ‖β‖Lip and so {∇α ( fε)} is bounded in L2 (O).
Hence gε ∈ L1 (O) and therefore by (2.37) fε ∈ D (A), while by ( 2.36) it follows
that f ∈ D (A). Hence C∞

0 (O) ⊂ D (A) and so D (A) = L1 (O) as claimed. ��
Definition 1 The function X : [0, T ]×O → R is said to be aweak solution to equation
(2.1) if X ∈ C

(
[0, T ] ; L1 (O)

)
and X (t) = lim

h→0
Xh (t) in L1 (O) , uniformly in

t ∈ [0, T ] , where

Xh (t) = Xi
h, t ∈ [ih, (i + 1) h) , i = 0, 1, ..., N − 1, Nh = T (2.38)

{
Xi+1
h − hΔβ

(
Xi+1
h

)
+ hdiv

(
Yα

(
Xi+1
h

))
= Xi

h + Fi
h, in O

X0
h = X0,

(2.39)

and Xi
h ∈ D̂ for i = 1, 2, ..., N . Here Fi

h (ξ) = ∫ (i+1)h
ih F (t, ξ) dt, ξ ∈ O.

We give now the main result of this section.

Theorem 3 Assume that hypotheses i) hold. Then for any X0 ∈ L1 (O) , T > 0
and F ∈ L1 ((0, T ) × O) there is a unique weak solution X = X(t, X0) ∈
C
(
[0, T ] ; L1 (O)

)
to equation (2.1).

Moreover, we have

∣
∣X (t, X0) − X

(
t, X0

)∣
∣
1 ≤ ∣

∣X0 − X0
∣
∣
1 , ∀t ∈ [0, T ) , ∀X0, X0 ∈ L1 (O) . (2.40)

Further on, if X0 ≥ 0 a.e. in O and F ≥ 0 a.e. on (0, T ) × O then X ≥ 0 a.e. on
(0, T ) × O.

Furthermore for F ≡ 0, the flow t −→ X (t, X0) is aC0 semi-group of contractions
in L1 (O) .

Proof As mentioned earlier, we rewrite the equation as (2.3) where A is defined by
(2.31). Since A ism−accretive in L1 (O), we have by theCrandall andLiggett theorem
(see e.g. [2,10]) that for each X0 ∈ D (A) = L1 (O) a unique mild solution X ∈
C
(
[0, T ] ; L1 (O)

)
.
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This means that X (t) = lim
h→0

Xh (t) in L1 (O) where

Xh (t) = Zi
h, t ∈ [ih, (i + 1) h) , i = 0, 1, ..., N − 1

and
Zi+1
h + hAZi+1

h = Zi
h + Fi

h, i = 0, 1, ..., N − 1.

Taking into account (2.31) and the definition of A0 we see that Zi
h = Xi

h in (2.38).
If X0 ≥ 0, a.e. inO and F ≥ 0, a.e. on (0, T )×O then Fi

h ≥ 0 ∀i and so by (2.39)
and (2.7) it follows that Xi+1

h ≥ 0, ∀i and so X ≥ 0 as claimed. ��

Theorem 4 If X0 ∈ L2 (O) and F ∈ L2 ((0, T ) × O) then X is a strong solution to
(2.1) in the space H−1 (O). More precisely, we have

X ∈ L∞ (
0, T ; L2 (O)

)
∩ W 1,2

(
[0, T ] ; H−1 (O)

)
, β (X) ∈ L2

(
0, T ; H1

0 (O)
)

and X : (0, T ) → L2 (O) is weakly continuous.

Proof Formally, if we multiply (2.1) by β (X) and integrate on (0, t) × O we get

|X (t)|22 +
∫ t

0
|∇β (X (s))|22 ds ≤ C

(

|X0|22 +
∫ t

0
|F (s)|22 ds

)

, ∀t ∈ [0, T ) .

(2.41)
This formal calculation can be made rigorous by using the finite difference schema

(2.38)-(2.39). Indeed if we multiply (2.39) by β
(
Xi+1
h

)
and integrate overO we get

∫

O
g
(
Xi+1
h

)
dξ + h

i+1∑

j=0

∣
∣
∣∇β

(
X j
h

)∣
∣
∣
2

2

≤ Ch
i+1∑

j=0

∣
∣
∣Xi+1

h

∣
∣
∣
2

2
+ C

i+1∑

j=0

∣
∣
∣Fi

h

∣
∣
∣
2

2

where g (r) = ∫ r
0 β (s) ds. Then letting h → 0 we get (2.41) as claimed. ��

Theorem 4 suggests an alternative approach to the existence theory for equation
(2.1) in the Sobolev space H−1 (O) which is another convenient space for nonlinear
parabolic equations of porousmedia type (see e.g. [2,3]). It should be said however that
L1 (O) is the natural space for this equation, not only for its physical significance for
the problem, butmainly because only in this space the semigroup S (t) X0 = X (t, X0)

is a semigroup of contractions and so the dynamics of the flow is dissipative on (0,∞).
This fact is illustrated below.
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Long time behaviour of semigroup S (t)
For each X0 ∈ L1 (O) denote by Γ (X0) = {S (t) X0; t ≥ 0} the orbit through X0

of S (t) and by ω (X0) the corresponding ω−limit set,

ω (X0) =
{

Z ∈ L1 (O) ; Z = lim
tn→∞S (tn) X0 in L1 (O)

}

.

We know by (2.40) that the set Γ (X0) is bounded in L1 (O).
Moreover, if α ∈ L∞ (O) , then for each λ > 0 the operator (I + λA)−1 :

L1 (O) → L1 (O) is compact. Indeed, if u = (I + λA)−1 f , where f ∈ L1 (O) we
have

u − λΔβ (u) + div (Yα (u)) = f , in D′ (O) .

If α ∈ L∞ (O) , then by estimate (2.30) we know that

|u|
W 1,q

0 (O)
≤ C | f |1 , ∀ f ∈ L1 (O) , 1 < q <

d

d − 1
,

and sinceW 1,q
0 (O) is compact in L1 (O) (see e.g. [9], p. 285)we infer that (I + λA)−1

maps bounded subsets of L1 (O) in precompact sets, as claimed. It is also clear that
0 = A (0).

Then by Theorem 3 from [11] it follows that the orbit Γ (X0) of S (t) is precompact
in L1 (O) and soω (X0) �= ∅, ∀X0 ∈ L1 (O). It is also known that, S (t) is an isometry
on ω (X0) and

ω (X0) ⊂
{
y ∈ L1 (O) ; |y − y0|1 = r

}
,

if S (t) y0 = y0, t ≥ 0.
Theorem 6, which follows, makes precise the structure of ω (X0). For simplicity

we assume that X0 ≥ 0, which implies that X (t, X0) ≥ 0, ∀t ≥ 0, ξ ∈ O.

Theorem 5 Assume that hypotheses i) hold and

Y = −∇g, g ∈ W 1,∞ (O) , g ≥ 0 a.e. in O, α ∈ L∞ (R) (2.42)

lim inf
r→0+

α (r)

r
= r0 > 0 (2.43)

β ∈ Lip (R) . (2.44)

Let X0 ∈ L2 (O) be such that X0 ≥ 0 a.e. in O. Then

ω (X0) ⊂
{
Z ∈ L1 (O) ; ∇β (Z) − α (Z) Y = 0, a.e. in O

}
. (2.45)

In particular, it follows by (2.45) that if the equation ∇β (Z) − α (Z) Y = 0, a.e.
in O has a unique solution then there is lim

t→∞S (t) X0 = X∞ in L1 (O).
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Proof We shall use an argument from [6]. We consider the function V : L1 (O) →
R = ]−∞,+∞] and G : L1 (O) → R defined by

V (u) =
∫

O
(ζ (u (ξ)) + g (ξ) u (ξ)) dξ

G (u) =
∫

O

∣
∣
∣
∣
∇β (u (ξ))√

α (u (ξ))
+√

α (u (ξ))∇g (ξ)

∣
∣
∣
∣

2

dξ

where

ζ (r) = −
∫ r

0
ds
∫ 1

s

β ′ (s)
α (s)

ds, ∀r ∈ R.

We note that by (2.44), β ′ ∈ L1
loc (R).

It is easily seen that V with the domain D (V ) = {
u ∈ L1 (O) ; V (u) < ∞}

is
lower-semicontinuous. As regards G, we can rewrite it as

G (u) =
∫

O

∣
∣
∣
∣
β ′ (u (ξ))∇ (u (ξ))√

α (u (ξ))
+√

α (u (ξ))∇g (ξ)

∣
∣
∣
∣

2

dξ

=
∫

O

∣
∣
∣∇ j (u (ξ)) +√

α (u (ξ))∇g (ξ)

∣
∣
∣
2
dξ

where j (r) = ∫ r
0

β ′(s)√
α(s)

ds ≤ C
√
r , ∀r ≥ 0.

This implies thatG is lower-semicontinuous too on L1 (O). Moreover, we note that
V is convex in L2 (O) and its differential ∇V is given by

∇V (u) = −
∫ 1

u

β ′ (s)
α (s)

ds + g, ∀u ∈ L2 (O) .

We note also that

(Au,∇V (u))2 ≥ G (u) , ∀u ∈ D (A) ∩ L2 (O) , (2.46)

which means that V is a Lyapunov function for semigroup S (t) .
The latter follows first via equation (1.10) for Aε and let afterwards ε go to zero in

the corresponding equation. If we multiply equation

u + λAu = f

(equivalently u + λA0u = f ) by ∇V (u) scalarly in L2 (O), it follows by (2.46) that

V
(
(I + λA)−1 f

)
+ λG

(
(I + λA)−1 f

)
≤ V ( f ) , ∀λ > 0, f ∈ L2 (O) .

This implies in particular that V is a Lyapunov function for the semigroup S (t) and
so by Theorem 4.1 in [17] we it follows that ω (X0) = {

Z ∈ L1 (O) ; G (Z) = 0
}

and so (2.45) follows. ��
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3 Phase Transition with Non-degenerated Enthalpy and Convection
from the Navier–Stokes Equation

In this section, we study the same physical problem by using a different mathematical
model. More precisely, we consider a phase transition problem, in a bounded domain
O ∈ R

3 where the convection in the liquid phase is modelled by the Navier-Stokes
equation. In this context, we need, for technical reasons, to take a regularized form of
the enthalpy function and therefore the result from this section is not a generalization
of the previous case.

In the construction of the model, we replace the Heaviside function by a C1 mono-
tone function like, for example

H̃ (r) =
⎧
⎨

⎩

0, r < 0,
ϕ (r) , r ∈ [0, μ] ,
1, r > μ,

(3.1)

where ϕ ∈ C2 [0, μ] , ϕ′ > 0 on (0, μ), ϕ (0) = 0, ϕ (μ) = 1 and ϕ′ (0) = 0 and
ϕ′ (μ) = 0.

Consequently, the enthalpy function (1.3) becomes in this case

γ (r) = C (r) + l H̃ (r) .

Note that γ is Lipschitz and therefore γ −1 is strongly monotone (i.e. it’s derivative
is bounded from below by a positive constant).

By arguing as in the introduction we obtain the equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂X

∂t
− ΔΨ (X) + div

(
Yη

(
γ −1 (X)

)) = F, in (0, T ) × O,

X (0, ξ) = X0 (ξ) , in O,

X (t, ξ) = 0, on ∂O,

(3.2)

with smooth enthalpy. Here Y = Y (t, ξ) on (0, T ) × O.
Keeping in mind the form of Ψ , that is,

Ψ (r) ≡ K
(
γ −1 (r)

)
,

where

K (r) =
{
k1r , r ≤ 0,
k2r , r > 0,

and the fact that k1 and k2 are positive constants, we get by elementary calculus thatΨ
is also strongly increasing, which means that there exists a positive constant ψ0 such
that

(Ψ (x) − Ψ ( y)) (x − y) ≥ ψ0 |x − y|2 , ∀x, y ∈ R.
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We have also that Ψ is Lipschitz, Ψ (0) = 0 and in particular Ψ (x) x ≥ ψ0 |x |2 ,
∀x ∈ R.

As in the first part of the paper, the function η is assumed to be a Lipschitz mono-
tonically non decreasing function such that η (r) = 0, ∀r ≤ 0. The heating source F
is now assumed to be L2 ((0, T ∗) × O) .

The main difference with respect to the previous case comes from the fact that the
velocity Y from the convection term is the solution to a Navier-Stokes equation.

More precisely we are interested in the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂X

∂t
− ΔΨ (X) + div

(
Yη

(
γ −1 (X)

)) = F, in (0, T ) × O,

X (0, ξ) = X0 (ξ) , in O,

X (t, ξ) = 0, on (0, T ) × ∂O,

∂Y

∂t
− νΔY + (Y · ∇) Y − fB

(
γ −1 (X)

) = −∇ p

+g
(
γ −1 (X)

)
Y ,

in (0, T ) × O,

∇ · Y = 0, in (0, T ) × O
Y (0) = Y0, in O,

Y = 0, on (0, T ) × ∂O.

(3.3)

The vectorial function Y = (Y1,Y2,Y3) which now is time dependent and satisfies
the second equation of the system is interpreted as the velocity field of a viscous,
incompressible Newtonian fluid. As usually, we denote by p the pressure and by
ν > 0 the viscosity of the fluid. The buoyancy force fB is a function of Boussinesq
type which is assumed to be Lipschitz. The function g is a penalty form of Carman-
Kozeny type that is added to bring the velocity to zero in the solid phase:

g (r) = −CCK (1 − τ (r))2

(τ (r))3 + C
, (3.4)

where τ (r) =
{
1, r ≥ 0,
0, r < 0,

is the liquid fraction, CCK the Carman-Kozeny constant

(usually set to a large value). The constant C is introduced to avoid divisions by zero.
By an elementary calculus we get that

g (r) =
{

0, r ≥ 0,
−CCK

C , r < 0,

which means that the corresponding term disappears in the liquid phase and becomes
a large constant compensating all the other terms in the solid phase.

This function, combined with η from the previous equation, which disappears in
the solid phase, ensures that the convection term appears only in the liquid phase. Note
that g is a Lipschitz, bounded function.
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In the second equation of the system, we have used the following standard notation

(Y · ∇) Y =
3∑

i=1

Yi DiY j , ∀ j = 1, 3.

We aim to prove existence and uniqueness of the solution for the previous system
by using a fixed point approach.

To this purpose, we first fix X ∈ L2 ((0, T ) × O) and prove, by adapting a classical
approach for theNavier-Stokes equation, thewell-posedness for the following problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Y

∂t
− νΔY + (Y · ∇) Y − fB

(
γ −1 (X)

) = −∇ p

+g
(
γ −1 (X)

)
Y ,

in (0, T ) × O,

∇ · Y = 0, in (0, T ) × O,

Y (0) = Y0, in O,

Y = 0, on (0, T ) × ∂O.

(3.5)

We start by recalling some notations.
Let

H =
{

Y ∈
(
L2 (O)

)3 ; ∇ · Y = 0,Y · n = 0 on ∂O
}

,

where n is the outward normal to ∂O and

V =
{

Y ∈
(
H1
0 (O)

)3 ; ∇ · Y = 0

}

= H ∩
(
H1
0 (O)

)3
.

Note that H is a closed subspace of
(
L2 (O)

)3
and is a Hilbert space with the scalar

product of
(
L2 (O)

)3
.

We denote by

P :
(
L2 (O)

)3 −→ H

the Leray projector that is the orthogonal projection of
(
L2 (O)

)3
onto H . We use it

to construct the Stokes operator

Ã : V −→ V ′ defined by Ã (Y ) = −P (ΔY ) .

The domain of Ã in H is D
(
Ã
) = (

H2 (O)
)3 ∩ V . Define also the nonlinear

operator
B : V → V ′ defined by B (Y ) = P ((Y · ∇Y ) Y ) ,

where V ′ is the dual of V .
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By applying the Leray projector to (3.5) we get the 3D Navier-Stokes equation
operatorial form

{ dY

dt
+ ν Ã (Y ) + B (Y ) − P

(
fB
(
γ −1 (X)

)) = P
(
g
(
γ −1 (X)

)
Y
)
, (0, T ) ,

Y (0) = Y0.
(3.6)

We have the following existence result for the equation above.

Theorem 6 For each Y0 ∈ D
(
Ã
)
and X ∈ L2 ((0, T ) × O) there is a unique function

Y ∈ W 1,2
([
0, T ∗] ; H) ∩ L2

(
0, T ∗; D ( Ã)) ∩ C

([
0, T ∗] ; V ) which satisfies (3.6)

on (0, T ∗) for some T ∗ = T ∗ (|Y0|V ) < T . In 2D we have T = T ∗. Moreover, the
map X → Y is continuous from L2 ((0, T ∗) × O) to L2 (0, T ; H) .

Proof We set
G (X) = P

(
fB
(
γ −1 (X)

))

and define PX(t) : (L2 (O)
) 3 → H

PX(t) (Y ) = P
(
g
(
γ −1 (X (t)) Y

))
.

Note that for each X ∈ L2 ((0, T ) × O) fixed, by using the fact that g is bounded,
we have that the operator

PX(t) : L2 (0, T ; H) → L2 (0, T ; H)

is well defined and Lipschitz.
Since fB ◦ γ −1 is Lipschitz, G is also Lipschitz.
We consider now the equation

{ dY

dt
+ ν Ã (Y ) + B (Y ) − PX(t) (Y ) = G (X) , (0, T ) ,

Y (0) = Y0,

and for the proof of existence, we approximate the operator B which is continuous
and locally Lipschitz by the following Lipschitz operator. For each M > 0 we define

BM : V → V ′

BM (Y ) =
{

B (Y ) , |Y |V ≤ M,

B
(

MY
‖Y‖V

)
, |Y |V > M .

We define ΓM : D (ΓM ) ⊂ H → H by

ΓM = ν Ã + BM , for D (ΓM ) = D
(
Ã
)
.
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Using the classical properties of Ã and B, and considering that
∣
∣PX(t) (Y )

∣
∣
H ≤

C |Y |H we see that ΓM is well defined.
We have also (see [2], page 254): ��

Lemma 3 The operator ΓM is quasi−m−accretive in H × H .

We continue now the proof of the theorem.
Since by the previous lemma the operator ΓM generates a semi-group of quasi-

contractions on H and PX(t) is Lipschitz, follows that the equation

{ dYM

dt
+ ν Ã (YM ) + BM (YM ) − PX(t) (YM ) = G (X) , (0, T ) ,

Y (0) = Y0
(3.7)

has a unique solution

YM ∈ C ([0, T ] ; V ) ∩ L2 (0, T ; D ( Ã)) .

To complete the proof, it is enough to show that for M sufficiently large, the flow
YM is independent of M on a certain interval [0, T (Y0)] .

First, we multiply (3.7) by YM and integrate on (0, t). We have

|YM |2H + ν

∫ t

0
|YM |2V ds

≤ C

(

|Y0|2H + 1

2ν

∫ t

0
|G (X)|2H ds

)

+
∫ t

0

〈
PX(t) (YM ) ,YM

〉

H ds

≤ C

(

|Y0|2H + 1

2ν

∫ t

0
|G (X)|2H ds

)

+ C
∫ t

0
|YM |2H ds,

and by Gronwall’s lemma we obtain that

|YM |2H + ν

∫ t

0
|YM |2V ds ≤ C

(

|Y0|2H + 1

2ν

∫ t

0
|G (X)|2H ds

)

. (3.8)

Next, we multiply (3.7) by Ã (YM ) and we get that

1

2

d

dt
|YM |2V + ν

∣
∣ Ã (YM )

∣
∣2
H

≤ ∣
∣
〈
PX(t) (YM ) , Ã (YM )

〉

H

∣
∣+ ∣

∣
〈
BM (YM ) , Ã (YM )

〉

H

∣
∣+ |G (X)|H

∣
∣ Ã (YM )

∣
∣
H .
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This yields to

|YM |2V + ν

∫ t

0

∣
∣ Ã (YM )

∣
∣2
H ds

≤
∫ t

0

∣
∣
〈
PX(t) (YM ) , Ã (YM )

〉

H

∣
∣ ds +

∫ t

0

∣
∣
〈
BM (YM ) , Ã (YM )

〉

H

∣
∣ ds

+C

(

|Y0|2V + 1

2ν

∫ t

0
|G (X)|2H ds

)

≤
∫ t

0

(
1

ν

∣
∣PX(t) (YM )

∣
∣2
H + ν

4

∣
∣ Ã (YM )

∣
∣2
H

)

ds

+
∫ t

0

(
1

ν
|BM (YM )|2H + ν

4

∣
∣ Ã (YM )

∣
∣2
H

)

ds

+C

(

|Y0|2V + 1

2ν

∫ t

0
|G (X)|2H ds

)

.

We obtain that

|YM |2V + ν

2

∫ t

0

∣
∣ Ã (YM )

∣
∣2
H ds

≤
∫ t

0

1

ν

∣
∣PX(t) (YM )

∣
∣2
H ds +

∫ t

0

1

ν
|BM (YM )|2H ds

+C

(

|Y0|2V + 1

2ν

∫ t

0
|G (X)|2H ds

)

≤ C

(

|Y0|2V + 1

2ν

∫ t

0
|G (X)|2H ds + 1

ν

∫ t

0
|YM |2H ds +

∫ t

0
|YM |6V ds

)

.

By using (3.8) we get

|YM |2V + ν

2

∫ t

0

∣
∣ Ã (YM )

∣
∣2
H ds

≤ C

(

|Y0|2V +
∫ t

0
|G (X)|2H ds +

∫ t

0
|YM |6V ds

)

.

Momentarily dropping the term ν
2

∫ t
0

∣
∣ Ã (YM )

∣
∣2
H ds we obtain a differential inequal-

ity of the type

ϕ′ ≤ C

ν
ϕ3, ∀t ∈ (0, T ) , ϕ (0) = C

(

|Y0|2V +
∫ T

0
|X (s)|22 ds

)

This yields

|YM (t)|2V ≤ νϕ2 (0)

ν − 2 (Cϕ (0))2 t
,∀t ∈

[

0,
ν

2 (Cϕ (0))2

)

.
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Hence

|YM (t)|2V ≤
( ν

2δC

) 1
2
, ∀t ∈ [0, T ∗ − δ

)

where
T ∗ = ν

2
(
C
(
|Y0|2V + ∫ T

0 |X (s)|22 ds
)) , ∀δ ∈ (0, T ∗) .

This leads to

|YM |2V + ν

2

∫ t

0

∣
∣ Ã (YM )

∣
∣2
H ds

≤ C (ε)

(

|Y0|2V +
∫ t

0
|G (X)|2H ds

)

, ∀t ∈ (0, T ∗ − ε
)
, ∀ε > 0.

Hence BMYM = BYM on (0, T ∗) and therefore YM = Y and this completes the
proof of the existence. In 2D we have T ∗ = T .

The uniqueness is obtained directly from the argument used in [2] and the Lipschitz
property of PX(t).

In particular, it follows that

|YM (t)|V ≤ C

(

|Y0|2V +
∫ T

0
|X (s)|22 ds

) 1
2

, ∀t ∈ [0, T ∗] (3.9)

for T ∗ ≤ C

|Y0|2V + ∫ T
0 |X (s)|22 ds

where C is independent of Y0 and T .

By the above estimates it follows also that if Xn → X in L2 ((0, T ) × O) then
Yn = Y (Xn) → Y (X) in L2 (0, T ; H).

We continue now with the study of the first equation of the system. To this purpose
we denote by Ỹ = ỸX (t) the solution to the second equation for the function X ∈
L2 ((0, T ) × O) fixed before, and we replace it in the first equation.

Note that, by the Sobolev embedding theorem (see e.g. Corollary 9.13 from [9])
we have that W 2,2 (O) ⊂ L∞ (O) for O ⊂ R

3. From the properties of the solution
Ỹ we have therefore that Ỹ ∈ L2

(
0, T ∗; (L∞ (O))3

)
.

Consider the space
(
L2 (O)

)∗ = Z which is the dual of the space L2 (O) ⊂
H−1 (O) in the pairing 〈., .〉−1 defined by H−1 (O).

In other words, the spaces L2 (O) and Z are in duality with pivot space H−1 (O).
We have Z = {

z = −Δy; y ∈ L2 (O)
}
and L2 (O) ⊂ H−1 (O) ⊂ Z with con-

tinuous and dense embeddings where

L2(O) 〈u, z〉Z =
∫

O
(−Δ)−1 zudξ, ∀u ∈ L2 (O) , z ∈ Z.

Define the operator A (t) : L2 (O) → Z , ∀t ∈ (0, T ∗) by

A (t) u = −ΔΨ (u) + div
(
Ỹ (t) η

(
γ −1 (u)

))
, ∀u ∈ L2 (O) .
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We note that

Z (A (t) (u) − A (t) (v) , u − v)L2(O)

= (Ψ (u) − Ψ (v) , u − v)2

+
(
div

(
Ỹ (t)η

(
γ −1 (u)

)
− Ỹ (t)η

(
γ −1 (v)

))
, u − v

)

−1

≥ ψ0 |u − v|22 − ψ0

2
|u − v|22 −

∣
∣Ỹ (t)

∣
∣∞ L

2ψ0
|u − v|2−1

≥ ψ0

2
|u − v|22 − α (t) |u − v|2−1 , (3.10)

where α (t) = L
2Ψ0

∣
∣Ỹ (t)

∣
∣∞ , t ∈ (0, T ∗) .

By the previous development we have also

Z (A (t) (u) , u)L2(O) ≥ ψ0

2
|u|22−α (t) |u|2−1 , ∀u ∈ L2 (O) , t ∈ [0, T ∗] . (3.11)

Note also that

|A (t) (u)|Z = sup
ϕ∈L2(O), |ϕ|2≤1

Z (A (t) (u) , ϕ)L2(O) ≤ Cα (t) |u|22 , (3.12)

for ∀u ∈ L2 (O) , t ∈ [0, T ∗] .
We note also that for each t , A (t) : L2 (O) → Z is demicontinuous, i.e. strongly-

weakly continuous.

Lemma 4 For each X0 ∈ H−1 (O) and F ∈ L2
(
0, T ∗; L2 (O)

)
that is a unique

solution

X ∈ C
([
0, T ∗] ; H−1 (O)

)
∩ L2

(
0, T ∗; L2 (O)

)
∩ W 1,1 ([0, T ∗] ;Z)

to the Cauchy problem

{ dX

dt
+ A (t) X = F, t ∈ (0, T ∗) ,

X (0) = X0.
(3.13)

Proof We approximate (3.13) by

{ dXε

dt
+ Aε (t) Xε = F, t ∈ (0, T ∗) ,

Xε (0) = X0,
(3.14)

where
Aε (t) u = −ΔΨ (u) + div

(
Ỹε (t) η

(
γ −1 (u)

))
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and
Ỹε (t) = (εα (t) + 1)−1 Ỹ (t) , ε > 0.

By (3.10)-(3.12), for each ε > 0, the operator

Aε (t) : L2 (O) → Z

is quasi-monotone, that is

Z (Aε (t) u − Aε (t) v, u − v)2 ≥ ψ0

2
|u − v|22 − Cε |u − v|2−1 , ∀u, v ∈ L2 (O)

and also coercive. Moreover, we have

|Aε (t) u|Z ≤ C |u|L2(O) , ∀u ∈ L2 (O) , t ∈ [0, T ∗) .

Hence by Theorem 4.17 in [2], (3.14) has a unique solution

Xε ∈ C
([
0, T ∗] ; H−1 (O)

)
∩ L2

(
0, T ∗; L2 (O)

)
∩ W 1,2 ([0, T ∗] ;Z) .

We have the estimate

|Xε (t)|2−1 +
∫ t

0
|Xε (s)|22 ds

≤ |X0|2−1 + C
∫ t

0
|Xε (s)|2−1 α (s) ds.

Hence by Gronwall inequality we get

|Xε (t)|2−1 +
∫ t

0
|Xε (s)|22 ds ≤ C1 |X0|2−1 exp(

∫ t

0
α (s) ds).

Similarly we get for Xε − Xλ, ∀ε, λ > 0, the estimate

|Xε (t) − Xλ (t)|2−1 +
∫ t

0
|Xε (t) − Xλ (t)|22 ds

≤ C
∫ t

0

∣
∣Ỹε (s) − Ỹλ (s)

∣
∣∞ |Xε (s)|−1 |Xε (s)|2 α (s) ds

and this yields to

|Xε (t) − Xλ (t)|2−1 +
∫ t

0
|Xε (t) − Xλ (t)|22 ds ≤ δ (ε, λ) , ε, λ > 0.

Hence Xε (t) → X in C
([
0, T ∗] ; H−1 (O)

) ∩ L2
(
0, T ; L2 (O)

)
for ε → 0.
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Moreover by (3.14) we see that

∣
∣
∣
∣
dXt

dt

∣
∣
∣
∣
L1(0,T ;Z)

≤ C, ∀ε > 0,

and
Aε (t) Xε (t) → A (t) X (t) , weakly in Z, ∀t ∈ [0, T ∗] .

Then letting ε → 0 in (3.14) we get (3.13 ). ��
We now use the previous lemma to study existence and uniqueness of a solution to

the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ X̃

∂t
− ΔΨ

(
X̃
)+ div

(
ỸX (t) η

(
γ −1

(
X̃
))) = F, in (0, T ∗) × O,

X̃ (0, ξ) = X0 (ξ) , in O,

X̃ (t, ξ) = 0, on (0, T ∗) × ∂O.

(3.15)

By Lemma 4 we have the following result.

Theorem 7 For X0 ∈ L2 (O) , Ỹ ∈ L2
(
0, T ∗; (L∞ (O))3

)
and F ∈ L2 ((0, T ∗) × O)

equation (3.15) has a unique solution

X̃ ∈ W 1,1 ([0, T ∗] ,Z) ∩ L2
([
0, T ∗] ; L2 (O)

)
∩ C

([
0, T ∗] ; H−1 (O)

)
.

Moreover the map Ỹ → X̃ is continuous from L2 ((0, T ∗) ; H) to L2 ((0, T ∗) × O).

We can prove now the main result of this section.

Theorem 8 Let X0 ∈ L2 (O) and Y0 ∈ V . Then, for T ∗ sufficiently small, the system
(3.3) has a solution

Y ∈ W 1,2 ([0, T ∗] ; H) ∩ L2
(

0, T ∗;
(
H2 (O) ∩ H1

0 (O)
)3
)

∩ C
([
0, T ∗] ; V )

and

X ∈ C
([
0, T ∗] , H1

0 (O)
)

∩ L2
((
0, T ∗)× H1

0 (O)
)

∩ W 1,1
([
0, T ∗] ; H−1 (O)

)
.

Proof We define the set

M =
{
X ∈ L2 ((0, T ∗)× O) ; |X |L2((0,T ∗)×O) ≤ M

}

and consider the operator
Γ : M → M
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which associates to each function X ∈ L2 ((0, T ∗) × O) the solution X̃ to the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ X̃

∂t
− ΔΨ

(
X̃
)+ div

(
ỸX (t) η

(
γ −1

(
X̃
))) = F, in (0, T ∗) × O,

X̃ (0, ξ) = X0 (ξ) , in O,

X̃ (t, ξ) = 0, on (0, T ∗) × ∂O,

where ỸX (t) is the solution of the Navier-Stokes equation

⎧
⎨

⎩

dỸ

dt
+ ν Ã

(
Ỹ
)+ B

(
Ỹ
)− PX(t)

(
Ỹ
) = G (X) , (0, T ∗) ,

Y (0) = Y0.

We can write then
Γ (X) = X̃ .

To apply the Schauder fixed point theorem, we need to show that Γ (M) ⊂ M, Γ
is continuous on L2 ((0, T ∗) × O), and that Γ (M) is relatively compact inM.

We show first that Γ (M) ⊂ M. Let X ∈ M. We multiply the equation

∂ X̃

∂t
− ΔΨ

(
X̃
)+ div

(
ỸX (t) η

(
γ −1 (X̃

))) = F, (3.16)

scalarly in L2 (O) by Ψ
(
X̃
)
and get

∫

O
j
(
X̃ (t, ξ)

)
dξ + 1

2

∫ t

0

∣
∣∇Ψ

(
X̃
)∣
∣2
2 ds

≤
∫

O
j (X0) dξ + C

∫ t

0

∫

O

∣
∣ỸX

∣
∣2
R3

∣
∣X̃
∣
∣2 dξds +

∫ t

0

∫

O
FΨ

(
X̃
)
dξds

≤
∫

O
j (X0) dξ + C

∫ t

0

∣
∣ỸX

∣
∣2
(L4(O))3

∣
∣X̃
∣
∣2
L4(O)

ds + C |F |2L2((0,T ∗)×O)

≤
∫

O
j (X0) dξ + C

∣
∣ỸX

∣
∣2
L∞(0,T ∗;V )

∫ t

0

∫

O

∣
∣∇Ψ

(
X̃
)∣
∣2 dξds + C |F |2L2((0,T ∗)×O)

where j (r) = ∫ r
0 Ψ (s) ds. Here we have used the Sobolev embedding theorem

(
H1
0 (O) ⊂ L4 (O)

)
and the fact that Ψ ′ (v) > ψ0, ∀v.

This leads to

∣
∣X̃ (t)

∣
∣2
2 +

∫ t

0

∣
∣X̃
∣
∣2
H1
0 (O)

ds

≤ C
(
|X0|22 + ∣

∣ỸX
∣
∣2
L∞(0,T ∗;V )

+ |F |2L2((0,T ∗)×O)

)
. (3.17)
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Taking into account that

∣
∣ỸX

∣
∣
L∞(0,T ∗;V )

≤ CL

(

|Y0|2V +
∫ T ∗

0

∣
∣X̃ (t)

∣
∣2
2 dt

)

.

We see from the above inequality that

∣
∣X̃ (t)

∣
∣2
L∞(0,T ∗;L2(O))

≤ C
(
|X0|22 + |F |2L2((0,T ∗)×O)

+ L |Y0|2V + LT ∗M2
)

≤ M2

if LT ∗ ≤ 1
2 and M is sufficiently large.

Hence X ∈ M if M is chosen as above and |Y0|V + 1

Ψ0
is small enough, which

means that Γ (M) ⊂ M.
The continuity of Γ follows by the continuity of the maps X → Y in Theorem 6

and of Y → X̃ from Theorem 7.
We note that by (3.17) it follows also that

∣
∣X̃
∣
∣
L2
(
0,T ∗;H1

0 (O)
) +

∣
∣
∣
∣
∂

∂t
X̃

∣
∣
∣
∣
L1(0,T ∗;H−1(O))

≤ C1.

We have also by (3.16) that

∫ t

0

∣
∣ΔΨ

(
X̃
)∣
∣2−1 ds =

∫ t

0

∣
∣∇Ψ

(
X̃
)∣
∣2
2 ds ≤ C2,

by the previous estimate, and

∫ t

0

∣
∣
∣div

(
ỸX (X) η

(
γ −1 (X̃

)))∣∣
∣
2

−1
ds ≤ C3.

We obtain that ∣
∣
∣
∣
∂

∂t
X̃

∣
∣
∣
∣
L1(0,T ∗;H−1(O))

≤ C4. (3.18)

Finally, by using the Aubin-Lions-Simon theorem (see [14], [22]) it follows that
Γ (M) is compact in L2 ((0, T ∗) × O) as claimed.

We can now complete the proof of this result by applying the Schauder theorem
and getting that the operator Γ has a fixed point. ��
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4 Numerical Illustration

We used an adaptive finite-element method to solve the enthalpy equation (1.2), cou-
pled with two different models for the liquid velocity Y :

a) the complete Navier-Stokes system of equations (3.3) with Boussinesq approxi-
mation fB(θ) = Cθ for thermal (buoyancy) effects and a Carman-Kozeny-type
penalty term g (3.4) to bring the velocity to zero in the solid phase;

b) a simplifiedflowmodel using a steadyDarcy-Brinkman-type equation (as in porous
media), i.e. we ignored in (3.3) the convective term (Y · ∇)Y and replaced dY/dt
by Y .

The numerical method is based on Lagrange finite-elements with dynamic mesh
adaptivity. It was adapted from recent numerical studies of complex phase-change
systems [12,19]. Model equations were discretized using Galerkin triangular finite
elements, with Taylor-Hood elements for the flow (quadratic P2 for the velocity and
piecewise linear P1 for the pressure) and P2 for enthalpy and temperature. The coupled
system of equations was integrated in time using a fully-implicit backward Euler
scheme. The resulting discrete non-linear equations was efficiently solved using a
Newton algorithm. Consequently, we used a regularized Heaviside function H̃ (3.1)
in the definition of the enthalpy (see Sect. 3).

An illustration of the numerical results is offered in Figure 1. We simulated
a well-established numerical benchmark for phase-change problems, based on the
experiments of [16]. It consists of a differentially heated square cavity, filled with
octadecane paraffin. The material is initially solid and melts progressively starting
from the left boundary, maintained at a hot temperature. The right boundary is also
isothermal, with cold temperature. Horizontal boundaries are adiabatic. The physical
(non-dimensional) parameters of the problem are the Rayleigh (Ra), Reynolds (Re),
Prandtl (Pr ) and Stefan (Ste) numbers Ra = 3.27 · 105, Re = 1, Pr = 56.2 and
Ste = 0.045. The Boussinesq force then takes the form fB(θ) = Ra

Pr Re2
θ and the

latent heat is l = 1/Ste.
We plot in Figure 1 contours of the temperature field (left column) and streamlines

in the liquid fraction (right column) for a given time instant (t = 78.7) corresponding
to the experimental measurement. The position of the liquid-solid interface (solid blue
line) is compared to that reported in experiments (red dashed line). Good agreement
with experimental results is obtained when the enthalpy equation is coupled with
the Navier-Stokes equation for the liquid (Figure 1a). The same good agreement is
obtained when the Darcy-Brinkman model is used for the liquid (Figure 1b). For
reference, we also simulated the classical Stefan problem, by decoupling the enthalpy
equation from theNavier-Stokesmodel for the velocity (i.e. the div termwas cancelled
in Eq. (3.2)). As expected, ignoring the convection in the enthalpy equation results in
a very poor approximation of the position of the liquid-solid interface (Figure 1c).

The model studied in Sect. 3, coupling the enthalpy equation to the Navier-Stokes
equation for the velocity, is themost complete existingmodel for phase-change systems
with convection. It thus applies with good results to a wide range of applications [18].
The good results obtained using the Darcy-Brinkman-type equation for the velocity
are new and not reported elsewhere. This model was inspired by the present theoretical
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Fig. 1 Numerical simulation of the melting of a phase change material (octadecane paraffin). The material
is initially solid and melts progressively starting from the left boundary. Snapshots at the same time instant
corresponding to experiments by [16]. Contours of the temperature field (left column) and streamlines
(right column) in the liquid fraction. Liquid-solid interface extracted from simulations (solid blue line) and
experiments (dashed red line). Models used for simulations: enthalpy equation coupled with the Navier-
Stokes equation (a) or Darcy-Brinkmann-type equation (b) for the velocity. The classical Stefan model (c)
is simulated for reference (the velocity and enthalpy equations are decoupled) (Color figure online)
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developments in Sect. 2. Its physical and numerical analysis opens new research paths
in this area.
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