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Abstract

The Hall-Vinen-Bekharevich-Khalatnikov (HVBK) model is widely used to numerically
study quantum turbulence in superfluid helium. Based on the two-fluid model of Tisza
and Landau, the HVBK model describes the normal (viscous) and superfluid (inviscid)
components of the flow using two Navier-Stokes type equations, coupled through a mutual
friction force term. This feature makes the HVBK model very appealing in applying
statistical tools used in classical turbulence to study properties of quantum turbulence.
A large body of literature used low-order statistics (spectra, or second-order structure
functions in real space) to unravel exchanges between the two fluids at several levels.
The novelty in this study is to use a theoretical approach based on first principles to
derive transport equations for the third-order moments for each component of velocity.
New equations involve the fourth-order moments, which are classical probes for internal
intermittency at any scale, revealing the probability of rare and strong fluctuations. Budget
equations are assessed through Direct Numerical Simulations (DNS) of the HVBK flow
based on accurate pseudo-spectral methods. We simulate a forced homogeneous isotropic
turbulent flow with Reynolds number of the normal fluid (based on Taylor’s microscale)
close to 100. Values from 0.1 to 10 are considered for the ratio between the normal and
superfluid densities. For these flows, an inertial range is not discernible and the Restricted
Scaling Range (RSR) approach is used to take into account the Finite Reynolds Number
(FRN) effect. We analyse the importance of each term in budget equations and emphasize
their role in energy exchange between normal and superfluid components. Some interesting
features are observed: i) transport and pressure-related terms are dominant, similarly to
single-fluid turbulence; ii) the mathematical signature of the FRN effect is weak in the
transport of the third-order moment, despite the low value of the Reynolds number; iii) for
the normal fluid at very low temperatures, the mutual friction annihilates the effects of
viscosity within the RSR. The flatness of the velocity derivatives is finally studied through
the transport equations and their limit for very small scales, and it is shown to gradually
increase for lower and lower temperatures, for both the normal fluid and the superfluid.
This similarity highlights the strong locking of the two fluids. The flatness factors are also
found in reasonable agreement with classical turbulence.
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1 Introduction

Liquid helium below the critical (lambda) temperature Tλ = 2.17K is a quantum fluid, also called
He II. Following the two-fluid concept suggested by Tisza (1938) and reformulated and enriched
by Landau (1941), He II is represented as a mixture of two fluids with independent velocity
fields: a normal viscous fluid and an inviscid superfluid. A detailed recount of the historical
events leading to the two-fluid model is offered by Balibar (2017). A striking feature of the
superfluid component is the nucleation of quantized vortices, with fixed (quantized) circulation
and fixed core diameter (of the atomic size). Stretching or viscous diffusion of vortices, which are
essential vortex phenomena in classical fluids, are absent in the superfluid component. Complex
interactions between quantized vortices lead to Quantum turbulence (QT), a relatively young
investigation field opened by Vinen’s 1957 experiments on thermally induced counterflow in
He II (see the review by Vinen & Niemela (2002)). Since then, considerable experimental and
theoretical efforts (see dedicated reviews or volumes by Halperin & Tsubota (2009); Skrbek &
Sreenivasan (2012b); Barenghi et al. (2014a,b)) were devoted to unravel properties of QT and
underline similarities or differences with Classical turbulence (CT).
Several investigation paths were explored for the study of QT. Since it is admitted that in He II
below 0.3K, the normal fluid fraction is negligible, important focus was given to characterize
QT in the superfluid flow. This state is also referred as superfluid turbulence, or vortex tangle
turbulence, since it is generated in an inviscid flow from the interaction of a large number of
quantized vortices tangled in space. Quantized vortices being topological line defects, with
infinite velocity and singular vorticity at the centreline, they can be modelled by ’Vortex filament’
methods. In such methods, the vorticity is represented by Dirac distributions localised at vortex
line locations, which are moved following the Biot-Savart-Laplace law for the velocity induced
by neighbouring lines. Phenomenological models for vortex reconnection are applied. Since
the pioneering work by Schwarz in 1980s, numerous numerical studies of superfluid turbulence
using the ’Vortex filament’ method were published (see the recent review by Tsubota et al.
(2017) and citations therein). Another model used for inviscid superfluid turbulence was the
Gross-Pitaevskii equation, which is a nonlinear Schrödinger equation describing at macroscopic
level a quantum system of weakly interacting bosons, as in Bose-Einstein condensates. Even
though the GP model offers only a partial description of the complexity of superfluid helium, it
was extensively used to explore properties of superfluid turbulence in an ideal setting containing
only the superfluid (Nore et al., 1997; Abid et al., 2003; Kobayashi et al., 2021).
Considering simultaneously the viscous and inviscid components of He II in a global model is a
difficult problem, since characteristic scales range from Angstrom (size of the quantized vortex)
to meter (size of the container). The Hall–Vinen–Bekharevich–Khalatnikov (HVBK) model
(Hall & Vinen, 1956; Khalatnikov, 1965; Donnelly, 2009) follows the original idea of the two-fluid
model. The Navier-Stokes (NS) model describes the normal fluid motion and the superfluid
motion is defined by an Euler-like equation (Roberts & Donnelly, 1974). The two fluids do not
slip one over other, as they are coupled through a friction force. The improvement over the
original two-fluid model is that the expression of the friction force takes into account the influence
of quantized vortices through a coarse-grained averaged superfluid vorticity. The average is
considered over an ensemble of parallel (polarized) vortex filaments and uses Feynman’s rule
to find an equivalent solid-body vorticity for a dense vortex bundle of line density L. Derived
initially for two-dimensional or rotating QT, the HVBK was widely used to study QT for general
settings.
Recent modelling efforts were focused on more realistic estimations of the vortex line density
using approaches considering L as an independent variable, described by an additional evolution
equation (based essentially on Vinen’s equation) (Donnelly, 1991; Lipniacki, 2006; Nemirovskii,
2013, 2020).
In Mongiovi et al. (2018), the averaged vortex line density per unit volume was introduced
and its evolution equations were considered, for homogeneous, inhomogeneous, isotropic and
anisotropic situations. Jou et al. (2011) studied the effects of anisotropy and polarization in the
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hydrodynamics of inhomogeneous vortex tangles, thus generalizing the HVBK equations. These
effects contribute to the mutual friction force between normal and superfluid components and
to the vortex tension force. An additional equation for the vortex line density was proposed.
Applications pertained to rotating counterflows, flow behind a cylinder, and other types of
superfluid turbulence.
Other recent contributions (Yui et al., 2018; Galantucci et al., 2020) use ideas from the HVBK
expression of the friction force to derive models for coupling NS equations with vortex filaments
dynamics for superfluid vortices. These NS-VF models, which also include phenomenological
approximations, are not discussed in this contribution.
These models are still flow dependent and a general theory of coupling Navier-Stokes equations
with quantized vortex effects is not yet available (Nemirovskii, 2020).
The focus of this paper is the detailed investigation of turbulent dynamics of the HVBK model,
considered in its original form. The HVBK model has the merit to provide a physically consistent
closed set of equations for the coarse-grained (two-fluid) dynamics of He II, and to yield results
in agreement with experimental studies of He II (Roche et al., 2009; Salort et al., 2010a, 2012;
Baggaley et al., 2012; Boué et al., 2015; Biferale et al., 2018). The analysis presented here is
based on Direct Numerical Simulations (DNS) of the model and thus could be easily adapted to
further evolutions of the HVBK or other equivalent QT models based on Navier-Stokes type
equations. We adapt statistic analysis tools originally developed for CT governed by classical
Navier-Stokes equations. Exploring similarities between CT and QT has been a permanent
guideline for studying QT, (Skrbek & Sreenivasan, 2012a,b).
The novelty of this study is to push the analysis to high-order moments of each component of
velocity, with the aim to probe internal intermittency, i.e. assess the 4th-order structure function,
and the corresponding flatness of the velocity derivative. Previous contributions used low-order
statistics (spectra, or second-order structure functions in real space) to describe exchanges
between the two fluids. We derive transport equations for the 3rd-order moments based on first
principles. New equations involve the 4th-order moments, which are classical probes for internal
intermittency at any scale. The general purpose of this contribution is therefore to build new
bridges between CT and QT, as explained in detail below.
Previous studies have noted that QT in He II has a lot in common with CT. Experimental
studies focused on the total velocity of the fluid, are unable, as yet, to distinguish between the
normal and the superfluid components. Several authors (Maurer & Tabeling, 1998; Roche et al.,
2007; Bradley et al., 2008; Salort et al., 2010b, 2012) have reported that, in the inertial range,
the isotropic and homogeneous quantum turbulence velocity spectrum has a (−5/3) scaling law.
The effective spectrum of superfluid vorticity (superfluid vortices averaged on a volume much
larger than the inter-vortex length scale) scales as 1/3. Scaling laws such as 5/3, or 1/3 for the
vorticity, are predicted by Kolmogorov theory and are well established for classical turbulence,
when the Reynolds number of the flow is large enough (Djenidi et al., 2017a). Numerical studies
of QT have proved the same large-scale behavior using the HVBK, ’Vortex filament’ or GP
models (see recent review by Tsubota et al. (2017)).
Turbulence statistics received a huge attention since 1941, when Kolmogorov (1941a) argued
that small scales have the best prospect to exhibit universal properties. This theory did not
account for the internal intermittency, defined as strong fluctuations in space and time of the
local, instantaneous kinetic energy dissipation rate ε (Batchelor & Townsend, 1949; Townsend,
1951). While the famous Kolmogorov turbulence theory in 1941 accounted for neither the
internal intermittency phenomenon nor the finite Reynolds number effect (FRN), e.g. Tang
et al. (2017, 2018), Kolmogorov theory 1962 (Kolmogorov, 1962) was underpinned by modified
similarity hypotheses, aimed at accounting for intermittency. One important merit of K41
and K62 is that they confer a phenomenological (Kolmogorov, 1941a, 1962) and a theoretical
(Kolmogorov, 1941b) framework allowing to link statistics at large scales (presumably, within
in an inertial range) and the smallest scales at which ε is properly defined. Numerous later
studies (She & Lévêque, 1994; Tang et al., 2018; Yakhot, 2003; Zhou, 2021; Shi, 2021) discussed
the inappropriateness of these hypotheses, and proposed adequate amendments. One of them
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is the accounting of the FRN effect, which implies to consider in theoretical developments all
specific physical phenomenon of the flow, such as decay, diffusion, production, etc. The approach
developed in this work follows this philosophy, and considers all terms in the transport equations,
none of them being a priori neglected.
Turbulence statistics which pertain to internal intermittency usually encompass two kinds of
methods: i) one-point statistics of small scales (reflected by gradients of the velocity field); and
ii) two-point statistics, particularly by the scaling exponents of higher-order structure functions.
Note that the small-scale limit of ii) fully recovers i). Scaling laws of longitudinal structure
functions of order p, defined as the difference of the velocity component u between two space
points separated by the scale r, are sought as:

〈(u(x+ r)− u(x))p〉 ∼ rζp , (1)

where u is the x-component velocity in the (x, y, z) reference system, r the separation distance
between the two points and 〈〉 denotes averaging. Assessing the scaling exponents demands
particular care. Strictly speaking, they can only be correctly assessed in a range of scales
called ’inertial sub-range’, which, in turn, requires a large Reynolds number. The exact value
of the threshold depends on the flow: for instance, Ishihara & Gotoh (2009) showed that Reλ
(based on Taylor’s microscale λ) must exceed 500, which implies a minimum resolution of
1024 in a periodic box simulating homogeneous and isotropic turbulence. This requirement
is very impelling for the computational resources of DNS. For lower Reynolds numbers, it is
common to designate as Restricted Scaling Range (RSR) those scales for which a scaling of
different statistics can be discerned. In the RSR, the value of the scaling exponent is smaller
than the asymptotic prediction of Kolmogorov. K41 predicts that, under the assumption of
sufficiently high Reynolds numbers, the structure function of order p should scale as ζKp = p/3
within the inertial range (the superscript K denotes ’Kolmogorov’). The prediction is exact
for p = 3 since the Kármán-Howarth-Kolmogorov equation is deduced from the Navier-Stokes
equations and grants the 4/5 law for longitudinal 3rd-order structure function, for sufficiently
high Reynolds numbers. However, for p > 3, the deviation of the scaling exponent ζp from p/3
is often attributed to the effect of internal intermittency, although the FRN effect is also mixed
up with intermittency (Tang et al., 2017). For classical turbulence, a solid theory for predicting
higher-order moments scaling laws is still missing. One of the intricacies stands in the correct
account of the FRN, and associated closures for the numerous terms highlighted in transport
equations (Tang et al., 2018; Shi, 2021; Zhou, 2021). Intermittency has also been addressed
through GP models (Krstulovic, 2016). It is outlined that the incompressible velocity are found
to be skewed for turbulent states. Comparisons with homogeneous and isotropic Taylor-Green
flow, revealed the universality of the statistics, including a Kolmogorov constant close to the
one of classical fluid.
The HVBK model of QT at finite temperature it is the perfect framework to develop such
statistical analysis, since the two components of the flow are governed by Navier-Stokes type
equations (over which the coupling, mutual friction term, is to be accounted for) and thus
can be easily separated. The two components are denoted by subscripts ’n’ and ’s’ standing
for the normal fluid and superfluid, respectively. The total density of the fluid is the sum
of each component densities, ρ = ρn + ρs. The density ratio is temperature-dependent. For
T ≈ Tλ, ρn/ρ = 1 and for T = 0, ρn/ρ = 0. Both experimental (Rusaouen et al., 2017) and
numerical (based on the HVBK shell model) (Biferale et al., 2018; Shukla & Pandit, 2016;
Lvov et al., 2006) studies were devoted to inspecting intermittency by analyzing the scaling
exponents for higher-order structure functions. A consensus emerged that the intermittency
of quantum turbulence is very similar to classical turbulence for temperatures close to Tλ, or
close to absolute zero (see Table I in Rusaouen et al. (2017)). There is no clear conclusion for
intermediate temperatures (between Tλ and 0). Experimental studies covered a wide range of
temperatures (0 < T < Tλ) and concluded that for quantum turbulence, the higher-order scaling
exponents are smaller than p/3 as in classical turbulence, and they are almost unaffected by
the temperature (Rusaouen et al., 2017). However, HVBK shell model studies lead to different
conclusions at intermediate temperatures, where ρn ≈ ρs. Shukla & Pandit (2016) claim that for
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the quantum turbulence in intermediate temperatures ρn ≈ ρs, the scaling exponents are more
significant than the Kolmogorov prediction, ζcp < ζKp < ζqp (superscripts ’c’ and ’q’ stand for
’classical’ and ’quantum’, respectively), while Boué et al. (2013) found that scaling exponents are
smaller than the Kolmogorov prediction and even smaller than the scaling exponents of classical
turbulence, ζqp < ζcp < ζKp . Biferale et al. (2018) performed DNS for a gradually damped HVBK
model and provided support for the latter conclusion. This discrepancy is due to the additional
effect of the mutual friction force in both normal fluid and superfluid, in the case of ρn ≈ ρs.
In the present work, we use DNS results based on the HVBK model for forced homogeneous
isotropic turbulent flow with Reynolds number of the normal fluid (based on Taylor’s microscale)
close to 100. We consider density ratios ρn/ρs between 0.1 and 10, corresponding to temperature
spanning [0,Tλ]. Because of the moderate Reynolds numbers of the normal fluid, the range of
scales over which statistics will be revealed are: the dissipative range, the RSR (intermediate
scales), and large scales (comparable with the size of the simulation box, at which forcing is
applied). The first question we address is the role of the mutual friction in the transport equation
of the 3rd-order structure function. We deduce this equation from the first principles (here,
two-fluids HVBK) by accounting for the FRN effect at each scale and different temperatures, as
a function of the density ratio ρn/ρ. Each term of the balance equation is assessed from DNS
data. We corroborate this analysis with one-point statistics of velocity derivatives, which is
another tool to probe turbulent intermittency. We quantitatively study the tails of Probability
distribution functions (PDFs) of velocity derivatives by computing the flatness, defined as the
4th-order moment normalised by the square of the 2nd-order moment. We then compare with
CT, for which DNS at very high Reynolds numbers (Ishihara et al., 2007) revealed that the
flatness of the velocity gradients is much larger than 3 (typical for a Gaussian distribution).
Despite the easy accessibility of small scales in numerical simulations of QT, we are not aware
of any report of similar analysis for probing internal intermittency.
The paper is organized as follows. Section 2 describes the two-fluids HVBK model and the main
parameters of direct numerical simulations. Section 3 is devoted to inspecting each term in the
transport equation of the 3rd-order structure-function, with particular attention paid to the
influence of the mutual friction term over the whole range of scales and for different density
ratios. Section 4 reports one-point statistics of the longitudinal velocity gradients of each fluid
component and the total velocity of the turbulent flow. Section 5 deals with the flatness of the
velocity derivative. Conclusions are drawn in Sect. 6.

2 The HVBK model and Direct Numerical Simulations

We use the so-called incompressible Hall–Vinen–Bekharevich–Khalatnikov (HVBK) model
(Lipniacki, 2006; Donnelly, 2009). Navier-Stokes equations describe the normal fluid (variables
with subscript ’n’) and the superfluid motion (variables with subscript ’s’) is governed by an
Euler-like equation:

∇ · vn = 0, ∇ · vs = 0, (2)
∂vn
∂t

+ (vn · ∇)vn = − 1
ρn
∇pn + 1

ρn
Fns + νn∇2vn, (3)

∂vs
∂t

+ (vs · ∇)vs = − 1
ρs
∇ps −

1
ρs
Fns + νs∇2vs, (4)

where ∇ stands for the nabla operator, v is the velocity vector, ρ the density and p the pressure.
Note that the superfluid viscosity νs is theoretically zero, and it is added for the purpose of
stability of numerical simulations at very low temperatures. It may also be viewed as a crude
surrogate for the superfluid dissipation processes at inter-vortex scales and below.
The two fluid components are coupled through a mutual friction force Fns. The form of the
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friction force is (Hall & Vinen, 1956), Lvov et al. (2006):

Fns = −B2
ρsρn
ρ

ωs × (ωs × (vs − vn))
|ωs|

− B′

2
ρsρn
ρ
ωs × (vs − vn), (5)

where ωs = ∇× vs is the coarse-grained superfluid vorticity (see below). We assume that for
the superfluid the predominant energy loss is due to macroscopic friction with the normal fluid.
We implicitly neglect dissipation process by vortex reconnection. This certainly excludes the
validity of such a model for temperatures very close to 0K, and does not allow to investigate
scales smaller than the intervortex distance. The perpendicular component of the force in Eq.
(5) is neglected, since it does not contribute to the energy exchange. A discussion on the impact
of these simplifications is provided in Appendix 10. The simplified form of the friction force is
then (Lvov et al., 2006):

Fns = −B2
ρsρn
ρ
|∇ × vs|(vn − vs), (6)

where B is a temperature related parameter, measured in various experiments (see for instance
Barenghi et al. (1983)). We set the value B = 1.5 corresponding to the averaged value extracted
from experimental data.
This calculation of the mutual friction was based on Feynman’s rule. Assuming that a large
number of superfluid vortices of quantized circulation κ are parallel (polarized) in a bucket, the
equivalent solid-body rotation vorticity is 2Ω = |∇ × vs| = |ωs| = κL, where L is the vortex
line density per unit volume and Ω the equivalent angular velocity. The equivalent averaged
coarse-grained velocity of the superfluid is then vs = Ω×r. The validity of the expression of the
mutual friction force (6) in general quantum turbulent flows, where vortex lines are randomly
oriented rather than highly polarized, is still matter of debate. The existence in QT of dense
vortex clusters (bundles) with quasi-parallel vortex lines (Sasa et al., 2011; Baggaley et al.,
2012; Galantucci et al., 2021) supports the idea of an averaged vorticity. Obtaining a model
equation for the evolution of L that accounts for non-polarized vortices is still an open question
(Lipniacki, 2006; Nemirovskii, 2020).
The kinematic viscosity νn = µ/ρn in Eq. (3) is a simulation parameter. Based on the concept
of the two-fluid model, ρn decreases with temperature, while the dynamic viscosity µ is also
temperature-dependent. Naturally, the parameter µ in the two-fluid model should be taken as
the dynamic viscosity µ∗, which was measured in superfluid helium for a range of temperatures
1K < T < Tλ (see Barenghi et al. (1983)). It is common practice in HVBK simulations to fix
µ as a constant, independent of temperature. We adopt this simplification, since the dynamic
viscosity of the normal fluid could be different from µ∗ at low temperatures because of other
dissipative effects in the superfluid. We choose here to fix νn as a constant, independent of the
temperature.
We solved numerically the system of equations (2)-(4) using Fourier pseudo-spectral methods
classically used for Navier-Stokes equations. Direct numerical simulations were performed
by adapting a Navier-Stokes code that proved efficient and accurate in computing high-order
statistics of turbulent flows (Gauding et al., 2017). Periodic boundary conditions were applied
to a computational box of length 2π. Grid resolution was 5123, which was sufficient to reach
a moderate Reλ ∼ 100, based on Taylor’s microscale. We have also performed numerical
simulations with a better resolution of 10243 (see Appendix 9). The results reported are not
affected by the resolution, except the value of the flatness of the velocity derivative of the
superfluid, as discussed later. To achieve a quasi-stationary homogeneous isotropic turbulence,
an additional forcing term was added in the momentum equations (3) and (4) at large scales.
The energy injection rate ε∗ is constant in time, for different temperatures, and for both fluid
components. We set ε∗ = 7e − 4 for all simulations. The energy injected in superfluid is
transferred by mutual friction and eventually dissipated by the normal fluid component. But,
the energy transfer becomes less efficient for low temperatures because of ρn/ρ tending to zero.
Accounting for an additional forcing term would result in unstable simulations. To maintain the
stability of the simulations for very low temperatures, a common technique in the HVBK model
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ρn/ρs ReH Reλ τL/τη
εH
K3/2 L/η η/∆ δ/∆

0.91 2.21e+3 90.75 12.54 2.17 60.70 1.120 -
0.74 2.23e+3 85.12 12.91 2.51 60.54 1.078 -
0.55 2.22e+3 80.47 13.25 2.82 60.41 1.0428 -
0.50 2.20e+3 74.11 14.99 3.27 65.55 1.019 -
0.43 2.18e+3 71.97 15.35 3.44 66.18 1.011 -
0.19 2.19e+3 58.01 18.33 5.32 70.95 0.903 -
0.09 2.23e+3 55.17 20.69 5.98 78.08 0.867 -
0.91 2.24e+4 786.54 14.348 0.296 204.47 0.326 2.30
0.74 2.26e+4 722.87 15.068 0.354 205.86 0.309 2.19
0.55 2.26e+4 737.24 14.477 0.339 199.73 0.313 2.06
0.50 2.23e+4 600.66 18.277 0.506 227.61 0.285 2.01
0.43 2.22e+4 577.96 18.890 0.543 230.76 0.281 1.95
0.19 2.24e+4 421.78 24.838 1.027 259.20 0.239 1.70
0.09 2.27e+4 376.28 29.858 1.310 294.31 0.220 1.57

Table 1: Simulation parameters of the turbulent flow field. H = 2π is the size of the numerical
domain and ∆ = H/512 the mesh size in each direction. ReH and Reλ are the Reynolds
numbers based on the large scale of the flow and Taylor’s microscale, respectively. K is the
mean turbulent kinetic energy and ε the mean energy dissipation rate. The eddy turnover
time was computed as τL = (2/3K)/ε and the scale of the large eddies as L = (2/3K)3/2/ε.
Kolmogorov length and time scales are η and τη, respectively. δ = L−1/2 =

√
κ/|ωs| is the

inter-vortex length scale, with κ = νn(κphys/νphys). In all computations κphys ≈ 1e− 7(m2/s)
and νphys ≈ 2.0e− 8(m2/s).

is to impose an artificial viscosity νs to the superfluid. To respect the two-fluid concept, one
should make sure that the artificial viscosity of the superfluid is much smaller than the viscosity
of the normal fluid, νs � νn.
To summarize, in the present work we fix νn as a constant independent of the temperature, and
νs = 0.1νn for all numerical simulations. Other techniques exist, like the gradually damped
HVBK model (Biferale et al., 2018) and the shell model (Boué et al., 2015), for which a
temperature-dependent normal fluid viscosity νn and temperature-dependent superfluid viscosity
νs are imposed. The statistics of the DNS HVBK model were computed over 30 integration
time scales. Table 1 contains simulation parameters for all 7 considered cases. The first part
refers to the normal fluid, while the second one pertains to the superfluid.

3 Scale-by-scale evolution of the third and fourth-order
structure functions of the normal and superfluid

We present in this section the scale-by-scale budget equation for the 4th-order structure functions
of velocity increments in a HVBK turbulent flow. We start from the transport equation of the
3rd-order structure function for a single-fluid Navier-Stokes turbulent flow. This equation was
derived by Hill (2001) and Yakhot (2003) and assessed through experimental and numerical data
by Hill & Boratav (2001), and Gotoh & Nakano (2003). Denoting by r the space increment,
δu = u(x+ r)−u(x) the longitudinal velocity increment and δv = v(x+ r)− v(x) the transverse
velocity increment, the following transport equation was established under the assumption of
homogeneity and isotropy:

∂tD111︸ ︷︷ ︸
Term1

+
(
∂r + 2

r

)
D1111︸ ︷︷ ︸

Term2

− 6
r
D1122︸ ︷︷ ︸
Term2′

= −T111︸ ︷︷ ︸
Term3

+ 2νC︸︷︷︸
Term4

− 2νZ111︸ ︷︷ ︸
Term5

, (7)
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where ∂r ≡ ∂/∂r, ν is the kinematic viscosity and

D111 = 〈(δu)3〉,
D1111 = 〈(δu)4〉,
D1122 = 〈(δu)2(δv)2〉,

C(r, t) = − 4
r2D111(r, t) + 4

r
∂rD111 + ∂r∂rD111,

Z111 = 3
〈
δu

[(
∂u

∂xl

)2
+
(
∂u′

∂x′l

)2
]〉

. (8)

In expressions (8) double indices indicate summation (over l = 1, 2, 3) and a prime refers to
variables at point x+ r. Term Z111, also called dissipation-source term, couples components of
the dissipation with δu, and thus acts at all scales (this will be discussed in detail later). Term
T111 is related to the pressure gradient and has the form:

T111 = 3
〈

(δu)2
δ

(
∂p

∂x

)〉
. (9)

We apply the same approach to obtain a similar transport equation for HVBK equations (3)-(4),
which have Navier-Stokes structure. We denote by Dn

111 and Ds
111 the 3rd-order longitudinal

structure functions for normal and superfluid components, respectively. The two transport
equations are:

∂tD
n
111︸ ︷︷ ︸

Term1

+
(
∂r + 2

r

)
Dn

1111︸ ︷︷ ︸
Term2

+
(
−6
r
Dn

1122

)
︸ ︷︷ ︸

Term2′

=−Tn111︸ ︷︷ ︸
Term3

+ 2νnCn︸ ︷︷ ︸
Term4

+ (−2νnZn111)︸ ︷︷ ︸
Term5

+ 〈(δun)2(3ρs
ρ
δFns‖ )〉︸ ︷︷ ︸

Term6

+ 3〈(δun)2δfn‖ 〉︸ ︷︷ ︸
Term7

, (10)

∂tD
s
111︸ ︷︷ ︸

Term1

+
(
∂r + 2

r

)
Ds

1111︸ ︷︷ ︸
Term2

+
(
−6
r
Ds

1122

)
︸ ︷︷ ︸

Term2′

=−T s111︸ ︷︷ ︸
Term3

+ 2νsCn︸ ︷︷ ︸
Term4

+ (−2νsZs111)︸ ︷︷ ︸
Term5

+ 〈(δus)2(−3ρn
ρ
δFns‖ )〉︸ ︷︷ ︸

Term6

+ 3〈(δus)2δfs‖ 〉︸ ︷︷ ︸
Term7

. (11)

For the sake of simplicity, we used the same notations for different terms as in Eq. (7), while
referring to either normal or superfluid components. New Term6 and Term7 appear. The
former comes from the mutual friction force Fns (appearing with opposite signs in the two
equations) and the latter from forcing terms fn and fs added in both equations to force
turbulence.
Equations (10) and (11) allow us to obtain exact expressions of the 4th-order structure function
(and, further on, of the flatness factor). Recalling that (∂r + 2/r) =

(
∂r(r2)

)
/r2, we obtain

after integration with respect to the scale r:

Dn
1111 = 1

r2

∫ r

0
s2 (−Term1− Term2′ + Term3 + Term4 + Term5 + Term6 + Term7)n ds,

(12)

Ds
1111 = 1

r2

∫ r

0
s2 (−Term1− Term2′ + Term3 + Term4 + Term5 + Term6 + Term7)s ds.

(13)
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Symbol Colour Terms
•− blue (∂r + 2/r)D1111 Term2
◦− red (∂r + 2/r)D1111 − 6

rD1122 Term1+Term2
−· black −T111 Term3
×− red −2νC -Term4
· · · red positive part of 2νC (Term4)+
− − black −2νZ111 Term5
4− magenta −3ρs

ρ 〈(δun)2δFns‖ 〉 -Term6
−· green 3〈(δun)2δfn‖ 〉 Term7

Figure 1: Case ρn/ρ = 0.91 (the normal fluid is dominant). Terms in the budget Eq. (10) for
the normal fluid. Scale r is normalized by the Kolmogorov scale ηn of the normal fluid. All
terms are normalized by ε

5/4
∗ ν

1/4
n , with ε∗ = 7e-4 the constant energy rate injected to force

turbulence.

To assess the importance of each term in transport equations (10)-(11) for the 3rd-order structure
functions, we naturally start with the simulation case ρn/ρ = 0.91 (see Tab. 1). For this case,
where the normal fluid is predominant, the results are expected to be similar to those known for a
classical single-fluid turbulent flow (Hill & Boratav, 2001). Figure 1 shows the scale-dependence
of each term in Eq. (10), after normalization by ε

5/4
∗ ν

1/4
n , with ε∗ the constant energy rate

injected to force turbulence. Note that for this case the smallest resolved scale is smaller than
the Kolmogorov scale ηn (see Tab. 1).
Term1 reflects the temporal decay of the 3rd-order structure function. This term is zero for
steady-state flows and thus negligible here. Term2 (blue •−) is the prevalent term over the
scales within the RSR. The sum of the two transport terms Term2+Term2’ (red ◦) balances
the pressure-related Term3 (black −· ) fairly well, over the whole range of scales.
Term4 (red ×−, plotted with changed sign) is negative at small scales and positive at large
scales. It represents the viscous destruction of the 3rd–order structure functions. As expected,
this contribution is negligible over the RSR, but becomes important in the viscous range. At
the smallest resolved scale, this is the most prevalent term and is balanced by Term5 (black

—), the dissipation source term. This term exhibits a plateau over the RSR, and it is 15% of the
other terms. Albeit smaller, this term cannot be ruled out.
Term6 (magenta 4−), representing the friction force coupling, is the less important term. This
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seems reasonable behaviour for a fluid essentially composed of normal fluid. Note also that
Term6 is negative for the normal fluid, so the figure illustrates (-Term6 ). Finally, the forcing
term (Term7 ) (green −·) affects the very large scales only and its effect gradually diminishes
towards small scales.
The analysis of this case suggests that, as in classical single-fluid turbulence (Hill & Boratav,
2001), the two transport terms (Term2+ Term2’) are only balanced by the pressure-related
term Term3 . This occurs over the whole range of scales, albeit the effect of the viscosity is
obviously felt within the viscous range. The same conclusion was reached by Hill & Boratav
(2001) on the basis of experimental and DNS data. However, these authors did not calculate
exactly the dissipation source term, neither the forcing term (which was neglected within the
derivation, on the basis of the assumption of very large Reynolds numbers). They also noted
departures from homogeneity and isotropy, which are clearly observed in our simulations.
Another important remark is that, despite the low Reynolds number of the flow (Rλ ≤ 100),
all terms that might have represented the FRN effect (friction force coupling through Term6 ,
forcing term Term7 and dissipation source term Term5 ) are negligible. Therefore, there is no
direct imprint of the FRN effect on the 4th-order moments of velocity increments. There is the
possibility that this effect might be indirect, through the pressure field. The conclusion that
FRN effect is negligible is further comforted by other simulations for different temperatures
(see below). The consequences are that 4th-order structure functions are only shaped by the
pressure field. This observation was revealed by e.g. Yakhot (2003); Gotoh & Nakano (2003).
The latter authors suggested a valuable model for the role of the pressure in turbulence.
We now extend our analysis to other cases (see Tab. 1). We consider the case ρn/ρ = 0.5
(temperature around 2K) with balanced normal and superfluid fractions and the case ρn/ρ = 0.09
(temperature close to 0.3K), with the superfluid dominating the flow. Terms in Eqs. (10)-(11)
are depicted in Fig. 2. For the coherence of the message, we replot in upper panels of Fig. 2 the
results obtained for ρn/ρ = 0.91.
Term1 reflects the temporal decay of the 3rd-order structure function. As stated above, this
term is absent in our simulations. We have kept it in the transport equations, as it provides
a way to assess the degree at which other terms influence its behaviour. For a direct cascade,
D111 is negative. An enhance of the cascade is consistent with positive values of the temporal
derivative of (−D111). For the normal fluid, this enhancement can be the result of the friction
force coupling, via Term6 , which is negative (so -Term6 is positive). Therefore, the cascade
of the normal fluid may be enhanced by Term6 . The opposite effect stands for the superfluid,
for which Term6 is positive. The origin of this different sign is at the level of the HVBK model,
for which the coupling term is accounted for with different signs, reflecting an enhancement of
the momentum for the normal fluid, and a reduction of the momentum for the superfluid.
Forcing terms (Term7 ) are not shown in Fig. 2, because they only affect very large scales.
Generally speaking, as already emphasized, they exhibit similar behaviour to classical turbulence,
if high temperatures are considered, corresponding to ρn/ρ = 1. However, the additional mutual
friction term Term6 plays a requisite role particularly for low temperatures, thus distinguishing
the HVBK flow from classical fluids. In the following section, we analyse the results for each
specific range of scales.
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Figure 2: Terms in budget Eq. (10) for the normal fluid (left column) and in Eq. (11) for the
superfluid (right column). Simulations for three density ratios ρn/ρ = 0.91 (a, b), 0.5 (c, d) and
0.09 (e, f). Scale r is normalized by Kolmogorov scales ηn (normal fluid) and ηs (superfluid),
respectively. All terms are normalized by ε

5/4
∗ ν

1/4
n , with ε∗ = 7e-4 the constant energy rate

injected to force turbulence in both fluid fractions. Same legend as in Fig. 1 for the graphical
representation of different terms.
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3.1 Dissipative scales

For the normal fluid, similar to classical turbulence at small scales, the pressure source Term3
and transport terms (Term2 + Term2’) scale as r3. In contrast, the viscous Term4 and
dissipation source Term5 vary proportionally to r. The viscous Term4 balances the dissipation
source Term5 for the very small scales. Although small differences between these two terms are
noticeable for the lowest density ratio (ρn/ρ = 0.09, see Figs. 2e and 2f), they are most likely
due to the limited grid resolution. If we decrease r to very small values, the two terms eventually
cancel each other. Moreover, transport terms (Term2 + Term2’) are nearly balanced by the
pressure source Term3 for the normal fluid (as already discussed and illustrated in the left
column of Fig. 2).
For the superfluid (right column of Fig. 2), unlike classical turbulence at smallest scales, transport
terms are slightly larger than the pressure source term. This difference is most likely attributable
to the equipartition of energy (Salort et al., 2010a), which finally results in the accumulation of
energy at highest wavenumbers due to the very small value of the supefluid viscosity. Moreover,
when the superfluid is dominant in the flow, the kinetic energy cannot be completely dissipated.
This energy accumulates at the scales of the same order as the inter-vortex scale, which leads to
an upward trend for the superfluid velocity spectrum. In quantum physics, this is associated
with a partial thermalisation of superfluid excitations (Barenghi et al., 2014b). Note that the
upward trend of the superfluid velocity spectrum depends on simulation parameters of the
HVBK model. The truncated HVBK model resolves two coupled viscous fluids with different,
albeit constant, viscosities. The ability to settle the smallest scales of both fluids requires,
nonetheless, a sufficiently high resolution.
For small scales, the mutual friction term Term6 scales as r3 in both normal and superfluid
components. Term6 decreases much faster than both dissipation source and viscous terms.
This underlines that at small scales, the viscous and the dissipation source terms (both directly
depending on the viscosity) are dominant.

3.2 Intermediate scales

Considering the moderate values of the Reynolds number in these simulations, a clear inertial
range is not established. We prefer to refer to a restricted scaling range (RSR), defined as the
range of scales over which different statistics exhibit a discernible scaling, albeit with exponents
smaller than those predicted by asymptotic (for infinitely large Reynolds numbers) theories.
An analytical form of the 4th-order longitudinal structure function can be obtained from Eq.
(7) by integrating the sum of terms 1 to 5:

D1111 = 1
r2

∫ r

0
s2 (−Term1− Term2′ + Term3 + Term4 + Term5) ds. (14)

In a statistically steady flow, Term1 is zero. In the RSR, Term4 is negligible. One condition
that D1111 follows a pure power law is consistent with the requirement that all terms on the
right-hand side of Eq. (14) also exhibit pure power laws, or cancel each other. Term2’ and
Term3 are shown to follow similar power laws, while the dissipation source Term5 exhibits a
different exponent (Boschung et al., 2017). It is important to shed some light on the difference
between classical turbulence and HVBK quantum turbulence entailed by the mutual friction
coupling effect quantified by Term6 .
Similar to classical turbulence, the RSR is not clearly discernible due to the low value of the
Reynolds number. Nonetheless, the pressure source Term3 perfectly balances transport terms
(Term2 + Term2’), while the viscous Term4 is negligible. Unlike the classical turbulence in
the RSR, the mutual friction Term6 acts as a source term. Since D111 is negative, ∂tD111 < 0
reflects vortex stretching enhancement, whilst ∂tD111 > 0 corroborates with reduced vortex
stretching. The sign of Term6 (negative in Eq. (10) and positive in Eq. (11)), directly reflects
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enhanced vortex stretching in the normal fluid (thus, an accelerated cascade) and reduced vortex
stretching and cascade in the superfluid.
For the normal fluid, Term6 and the dissipation source Term5 have opposed signs. For
decreasing values of the density ratio ρn/ρ, the mutual friction Term6 gradually increases,
which in turn leads to an enhancement of the dissipation source Term5 . The physical picture
behind this statistical equilibrium between terms is that the increase of the vortex stretching
rate reflected by Term5 requires damping through the dissipation source term. For the flow
to be statistically stationary at the highest normal fluid density ratio (ρn/ρ = 0.91), only a
small vortex stretching rate has to be introduced by the mutual friction. The normal fluid
remains indeed unaffected by the superfluid, thus behaving as in classical turbulence. When
the superfluid is dominant (ρn/ρ = 0.09), the mutual friction becomes important in the normal
fluid, thus resulting in a large dissipation source term. At the level of Eqs. (12) and (13), the
dissipation source term is non-negligible. This term can effectively modify the scaling exponent
of the 4th-order structure functions of velocity increment in the RSR. Interestingly, one can
expect that for 0.09 < ρn/ρ < 0.5, the mutual friction term cancels the dissipation source
term completely. This could trigger an exact 4/3 scaling exponent for the 4th-order structure
functions in the RSR, for the normal fluid. Therefore, one of our important conclusions is that
the normal fluid behaves at very low temperatures as a perfect fluid, since viscous effects are
annihilated by the mutual friction coupling.
For the superfluid, the mutual friction Term6 and the dissipation source Term5 are positive
and thus reduce the vortex stretching. When one of them grows, the other one diminishes.
In the inviscid limit νs = 0, only Term6 prevails. When the temperature goes to absolute
zero, Term6 diminishes and there is no source in the superfluid. In classical turbulence, the
scaling exponent of the 4th-order structure functions of the velocity increment in RSR (or in
the inertial range) should be ζ4 = 4/3 as predicated by the Kolmogorov theory K41. In the
HVBK model, the viscosity of the superfluid νs is not exactly zero. For large superfluid density
ratios (ρs/ρ = 0.91) the mutual friction term is small and the dissipation source term prevails,
being comparable to Term6 . For low superfluid density ratios (ρs/ρ = 0.09), the dissipation
source term is negligible compared to the mutual friction term in the RSR. Both Term6 and
Term5 are scale-dependent and they may impact the scaling exponent of the 4th-order structure
functions.
Finally, the mutual friction terms make the behavior of the 4th-order structure function in the
RSR to be more complicated than in classical turbulence. The normal fluid is associated with
an enhanced dissipation source term in the RSR for lower and lower temperatures (decreasing
ρn/ρ). In the superfluid, the mutual friction term acts as an addition to the dissipation source
term.
In the following, we complete our overview of the flow by focusing on the smallest scales,
represented by velocity gradients.

4 One-point statistics of velocity gradients

We focus on one-point statistics of the small-scale motion. Particular emphasis is put on the
flatness of the velocity gradient, which reflects the effect of turbulence intermittency on small
scales dynamics. The probability density function (PDF) of the longitudinal velocity gradient
ξ = ∂xu, for the same density ratios as previously (ρn/ρ = 0.91, 0.5, 0.09), are shown in Figs. 3a
and 3b for the normal and superfluid components, respectively. Similar to classical turbulence,
PDFs exhibit non-Gaussian skewed shapes, with stretched tails skewed towards negative values
of the velocity gradients. Note that negative values of velocity gradients are much larger than its
variance. For decreasing values of the normal fluid density ratios, PDFs tails become more and
more stretched. However, PDFs of the velocity gradients in the superfluid show non-monotonic
trends.
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The integration over the whole domain leads to the pth-order moment of ξ:

〈ξp〉 =
∫ ∞
−∞

ξpPDF (ξ)dξ. (15)

The normalized 4th-order moment is the flatness factor:

F = 〈ξ4〉
〈ξ2〉2

. (16)

Figure 3 shows PDFs of gradients of longitudinal velocity (panels a and b) and normalized
PDFs (panels c and d) as (ξ/σ)4PDF , where σ =

√
〈ξ2〉 − 〈ξ〉2 is the standard deviation of

the velocity gradient. PDFs are well converged for large events, with errors smaller than 1%.
This signifies that flatness factors computed from the PDFs are accurate. Flatness factors are
plotted in Fig. 4 for all considered cases. For the normal fluid, the flatness factor increases
monotonically when ρn/ρ diminishes, which indicates that the intermittency in normal fluid
is enhanced for lower and lower temperatures. The superfluid follows the same trend as the
normal fluid.
This observation can be explained by the energy exchange between the two fluid components.
On average, mutual friction acts as a source term that enhances energy at all scales in the
normal fluid. Since energy input is expected to occur mainly at locations with strong vorticity,
we suggest the following scenario. First, vorticity distributions in the two fluids are coherent
(aligned) and the mutual friction depends directly on the magnitude of the vorticity. As the
relative velocity seems to be uniformly distributed in space, with a Gaussian PDF, we infer that
the mutual friction enhances locally the vorticity and thus the intermittency. When the density
ratio ρn/ρ decreases, the mutual friction term in the normal fluid momentum equation is more
important. As a consequence, the intermittency grows when the temperature diminishes. The
superfluid is strongly locked with the normal fluid, thus following a similar trend.
We further compute the flatness of the total longitudinal velocity gradient ∂xu = ρn

ρ ∂xun +
ρs

ρ ∂xus, with un and us the longitudinal velocity components in the normal fluid and superfluid,
respectively. Flatness factors of the total longitudinal velocity gradient are plotted against
ρn/ρ in Fig. 4. The flatness factor is controlled by the normal fluid for high ρn/ρ, and by the
superfluid for low ρn/ρ. The intermittency of the total fluid continuously increases when the
temperature diminishes.
In Fig. 4, horizontal short lines indicate DNS results of classical turbulence flatness factor for
different values of Rλ (Ishihara et al., 2007). For Reynolds numbers close to that considered
in our simulations (Rλ ≈ 94), the flatness F in classical turbulence ranges between 5.42 and
5.55. These values are very close to the flatness we obtained for ρn/ρ = 0.91, corresponding to
Rλ ≈ 90 in the normal fluid. When ρn/ρ decreases, Rλ also decreases in normal fluid (due to
the mutual friction), and the flatness factor increases for the total fluid. We obtained the value
F = 5.786 for ρn/ρ = 0.5. While a resolution of N = 512 leads to a flatness that drops back to
F = 5.268 for ρn/ρ = 0.09, an enhanced resolution of N = 1024 leads to values comparable for
both normal and superfluid, thus emphasizing their locking.
HVBK quantum turbulence simulated here exhibits the same degree of intermittency as observed
in classical turbulence.

5 The flatness of the velocity derivative in superfluid tur-
bulence

At this stage, it is important to go back to the theoretical framework provided by first principles
(here the HVBK equations) and to consider the limiting behavior of Eqs. (10) and (11).
To obtain the expression of the flatness derivative, we consider that r → 0 and apply a Taylor
series expansion up to the fifth-order in r (Tang et al., 2017, 2018). Using the homogeneity
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Figure 3: PDFs of gradients of longitudinal velocity in the normal fluid (a) and superfluid (b).
Panels (c) and (d) show corresponding normalized PDFs as (ξ/σ)4PDF , with σ =

√
〈ξ2〉 − 〈ξ〉2

the standard deviation of the velocity gradient. Results for three density ratios: (- ·) ρn/ρ = 0.09,
(◦) ρn/ρ = 0.5, (–) ρn/ρ = 0.91.

hypothesis, we obtain:

∂

∂x

〈(
∂u

∂x

)2(
∂2u

∂x2

)〉
= 0 =⇒ 2

〈(
∂u

∂x

)(
∂2u

∂x2

)〉
= −

〈(
∂u

∂x

)2(
∂3u

∂x3

)〉
, (17)

and hence 〈
(δu)3〉 ' 〈(∂u

∂x

)3
〉
r3−1

4

〈(
∂u

∂x

)(
∂2u

∂x2

)2〉
r5 + .... (18)

The 4th-order structure function can be written as

D1111 =
〈
(δu)4〉 ' 〈(∂u

∂x

)4
〉
r4 + ... (19)

and similarly

D1122 = 〈(δu)2 (δv)2〉 '

〈(
∂u

∂x

)2(
∂v

∂x

)2
〉
r4 + .... (20)

An equation for F , the velocity derivative flatness factor (16), can be obtained (Tang et al.,
2018) by applying the following operator O to terms in Eqs. (10) and (11):

O(Term) ≡ lim
r→0

Term
r3

〈(δu)2〉2
r4

= lim
r→0

r · Term

〈(δu)2〉2
. (21)
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Figure 4: Flatness factors of the longitudinal velocity gradient ξ = ∂xu versus density ratio
ρn/ρ for the normal fluid (4), the superfluid (�) and total fluid (©). Error bars are the
root-mean-square value of the variance of the flatness factors computed with 20 to 50 snapshots,
and 108 data points for each snapshot. Horizontal lines mark the flatness factor computed from
DNS of classical turbulence (Ishihara et al. (2007)): (· ·) Reλ = 94.6, (- -) Rλ = 94.4, (- ·)
Rλ = 167. (–) Rλ = 173. All points are computed for N = 512, except the following ones, based
on N = 1024 resolution: big blue + (normal fluid), big red × (superfluid) and big black � (total
fluid).

We obtain that

O(Term2′) = −6
〈(

∂u

∂x

)2(
∂v

∂x

)2
〉
/

〈(
∂u

∂x

)2
〉2

= −6Suv,2, (22)

where the notation Suv,2 was introduced for the sake of simplicity. The pressure term becomes,
once O is applied:

O(Term3) = −
3
〈(

∂u

∂x

)2
∂2p

∂x2

〉
〈(

∂u

∂x

)2
〉2 . (23)

After applying the operator O to the coefficient r3, the dissipation term leads to

O(Term4)|r3 =
9ν
〈(

∂3u

∂x3

)(
∂u

∂x

)2
〉

〈(
∂u

∂x

)2
〉2 . (24)

Term5 leads to a linear combination

O(Term5)|r3 = −
2ν
〈(

∂3u

∂x3

)(
∂u

∂y

)2
〉

+ 4ν
〈(

∂3u

∂x3

)(
∂u

∂x

)2
〉

〈(
∂u

∂x

)2
〉2 . (25)
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Term6 , specific to HVBK equations, leads after Taylor series expansion and application of the
operator O, for the normal fluid:

O(Term6)n ∼
3ρs
ρ

〈(
∂u

∂x

)2(∂F‖
∂x

)ns〉
〈(

∂u

∂x

)2
〉2 , (26)

and for the superfluid

O(Term6)s ∼ −
3ρn
ρ

〈(
∂u

∂x

)2(∂F‖
∂x

)ns〉
〈(

∂u

∂x

)2
〉2 . (27)

Similarly, Term7 leads for the normal fluid

O(Term7)n ∼
3
〈(

∂u

∂x

)2(∂f‖
∂x

)n〉
〈(

∂u

∂x

)2
〉2 , (28)

and for the superfluid

O(Term7)s ∼
3
〈(

∂u

∂x

)2(∂f‖
∂x

)s〉
〈(

∂u

∂x

)2
〉2 . (29)

The limiting form of Eqs. (10) and (11) as r → 0 can be finally presented as

6(Fn − Snuv,2) = O(Term3)n +O(Term4)n|r3 +O(Term5)n|r3 +O(Term6)n +O(Term7)n,
(30)

6(1− Ssuv,2/S
s
4)F s = O(Term3)s +O(Term4)s|r3 +O(Term5)s|r3 +O(Term6)s +O(Term7)s,

(31)

Djenidi et al. (2017b) showed that Suv,2/F ≈ 0.85 if Reλ > 200 and this constant is independent
of the Reynolds number. For the present study, values of Suv,2/S4 are shown for different density
ratios in Tab. 2. These values remain almost unchanged for the ρn/ρ = 0.91, 0.5, but for
ρn/ρ = 0.09, Suv,2/S4 slightly diminishes and drops to 0.75 for the normal fluid, and 0.705 for
the superfluid.
Table 3 shows that all terms in Eq. (31) are very well balanced. This proves that all terms are
correctly accounted for. In the normal fluid, the balance between different terms is reached
within an error of 0.05% for the flatness F . O(Term3) increases as the temperature diminishes
(the normal fluid is less and less present). Viscous terms are not negligible in the case of present
Reλ. The combined contribution of O(Term4)+O(Term5) increases, but this enhancement is
counter-balanced by the mutual friction force contribution O(Term6). The external force was
neglected, as usually done for larger scales in classical turbulence.
For the superfluid, only the pressure-related term O(Term3) matters. This result corroborates
with a scenario valid for large Reynolds numbers in classical turbulence. O(Term3) increases
monotonically when the temperature decreases. For the lowest temperature, the ratio Suv,2/F
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ρn/ρ 〈(δu)2〉2 〈(δu)4〉 〈(δu)2(δv)2〉 〈(δu)2(δv)2〉/〈(δu)4〉
n 0.91 6.3314e-10 3.2965e-09 2.7139e-09 0.8233
n 0.50 1.3595e-09 7.5912e-09 6.2411e-09 0.8221
n 0.09 4.7415e-09 2.8769e-08 2.1679e-08 0.7536
s 0.91 1.2436e-09 6.6820e-09 5.4091e-09 0.8095
s 0.50 3.5142e-09 1.9483e-08 1.5659e-08 0.8037
s 0.09 2.3925e-08 1.2353e-07 8.7167e-08 0.7056

Table 2: Values used in expressing the flatness factor at the smallest scales in the limit r → 0.
Practically (r → ∆), with ∆ the smallest grid size in simulations (see Tab. 1 for the Kolmogorov
normalized mesh size).

ρn/ρ O(Term2) O(Term2′) O(Term3) O(Term4) O(Term5) O(Term6) O(Term7)
n 0.91 29.6833 -25.7186 4.2801 2.5938 -1.3144 -0.0092 -0.0074
n 0.5 32.8070 -27.5455 4.4541 3.7629 -1.8098 -0.8888 -0.0046
n 0.09 35.9923 -27.4329 6.5976 5.7996 -2.2460 -3.1359 -0.0020
s 0.91 31.8223 -26.0972 4.8648 0.4632 -0.1609 0.9296 -0.0047
s 0.5. 34.4168 -26.7352 4.8345 0.5350 -0.1764 0.6823 -0.0023
s 0.09 33.2927 -21.8602 6.3783 0.4023 -0.1070 0.1321 -0.0006

Table 3: DNS results for terms resulting after applying the operator to O in Eq. (31), for the
normal fluid (first three lines) and the superfluid (last three lines)).

is the smallest and both Suv,2 and F are smaller than for higher temperatures. This behaviour
is corroborated with the spectral cut-off inherently introduced in DNS at the inter-vortex scale,
which leads to an under estimation of high-order moments of small scales (here, represented by
velocity gradients). However, this behaviour can have a physical explanation in the superfluid
helium by the energy accumulation at scales close to the inter-vortex scale. We finally note that
for ρn/ρ = 0.09 the terms are not well balanced as in other cases and errors are up to 15%. This
is due to the limited resolution for the superfluid at low temperatures.

6 Conclusion

We used direct numerical simulations of the HVBK model to inspect, for different density ratios,
the behaviour of the 4th-order structure function, as resulting from the transport equation of
the 3rd–order structure function. Starting from the HVBK equations for two fluids, we derived
the 3rd-order structure function transport equations in both normal and superfluid. Within the
Restricted Scaling Range, we found that the mutual friction does not modify significantly the
dynamics of viscous scales. Similar to the classical turbulence, viscous terms and dissipative
source terms are less important than the other terms. The mutual friction term acts differently
for the two fluid components. For the normal fluid, the mutual friction term has an opposite
sign with respect to the dissipation source terms. Depending on the density ratios, it can
diminish, and even completely cancel the action of the dissipation source term. For the lowest
temperature, we show that the normal fluid behaves, in the RSR, as a fluid with zero viscosity.
In superfluid, the mutual friction term is mostly irrelevant. It can be neglected when compared
to the transport terms and the pressure source term. The dissipation source term, introduced
by the (artificial) superfluid viscosity, has the same sign as the mutual friction term, finally
resulting in a diminished cascade and reduced small-scales intermittency, as reflected by the
flatness of the velocity derivative. Note that RSR intermittency effects are not addressed here,
as the conventional assessment of the scaling exponents is limited by the relatively low values of
the Reynolds numbers.
We also used one-point statistics, PDFs of longitudinal velocity gradient to analyse the tem-
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perature dependency of small-scale intermittency of quantum turbulence. We conclude that
both the normal fluid and superfluid intermittency is enhanced when ρn/ρ is decreasing. This
is consistent with the strong locking of the two fluids. The flatness factors are also found in
reasonable agreement with classical turbulence. Further perspectives of this work include the
account of a more general expression of the friction force, based upon at least one additional
equation for e.g. the vortex line density (Nemirovskii, 2020). Another open question is the
coupling between Navier-Stokes like equations with Gross-Pitaevskii equation for very small
scales and very low temperatures.
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8 Appendix 1. Robustness of the results for a smaller
viscosity ratio

We have performed numerical simulations for a different viscosity ratio, i.e. 0.025, a quarter
of that initially studied and reported in the corpus of the paper. Figure 5 shows the energy
spectrum for different viscosity ratios, and for the density ratio of ρs/ρn = 1. For smaller
viscosity ratio νs/νn = 0.025, the energy content at the level of the cut-off scales is slightly larger
than for the viscosity ratio νs/νn = 0.1. While this result is obvious, as the superfluid dissipates
less, the difference is negligible. The dissipation scale ηs = (ν3

s/εs)1/4 (the Kolmogorov scale)
for the smaller viscosity ratio νs/νn = 0.025 is significantly reduced, and equal to ηs = 0.0017,
whereas it was of ηs = 0.0034 for νs/νn = 0.1. For νs/νn = 0.025, the viscosity of the superfluid
decreases, while the mean energy dissipation rate of the superfluid increases. The dissipation
rate for νs/νn = 0.1 was of εs = 1.8e− 4, while for νs/νn = 0.025 we compute εs = 5.5463e− 4.
The reason of this increase is the accumulation of the energy at small scales, resulting in an
increase of velocity gradients.
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Figure 5: Energy spectrum for ρs/ρn = 1 and different viscosity ratios; (- -) for νs/νn = 0.025
and (−) for νs/νn = 0.1. (− ·) marks the power law of −5/3.
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Figure 6 shows terms in the equations for different viscosity ratios. Noticeable is the fact that
variations of the density ratio affect only the dissipation source term of the superfluid, viz. (-
x) and (- -) on the right column. The inertial terms are the same. We can therefore conclude
that the choice of the viscosity ratio has limited influence on the results, as long as the ratio of
viscosities is small (< 0.1) and respects the concept of the HVBK two-fluid model. The same
result is supported by our simulations for other values of density ratios.
For lowest temperatures, the resolution currently used is not sufficient to capture the smallest
scales motion. We recall that the mesh size should be smaller than both the normal fluid
Kolmogorov scale ηn, and the inter-vortex length of the superfluid. The superfluid also has its
Kolmogorov scale ηs but it should be irrelevant in the framework of the HVBK two-fluid model.
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Figure 6: Terms in the budget equations for the normal fluid (left column) and for the superfluid
(right column). Simulations are performed for density ratios ρn/ρ = 0.5 and for viscosity ratios:
νs/νn = 0.1 for the top row and νs/νn = 0.025 for the bottom row. All terms are normalized
by ε

5/4
∗ ν

1/4
n , with ε∗ = 7e − 4 the constant energy rate injected to force turbulence for both

fluid fractions. We use the same legend as in corpus of the manuscript for different terms in the
equations.
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9 Appendix 2. The effect of the resolution on the results

We have performed additional numerical simulations, with a better resolution. Different statistics,
such as spectra for a number of grid points N = 512 and N = 1024 are depicted in figure 7 for
ρn/ρs = 1 and ρn/ρs = 0.1 respectively. For N = 1024, the spectrum is cut-off at higher wave
numbers. The additional kinetic energy is, however, negligible.
The normalised 4th-order structure function (Fig. 8) tends towards a slightly larger value at the
smallest scales, but still within the error bars. Figure 4 depicts values for the flatness of the
velocity derivative for two resolutions. While for the normal fluid the results are the same, we
notice a slight increase of the flatness of the superfluid at the lowest temperature, from a value
of 5.25 obtained for N = 512 to a value of 6 for N = 1024.
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Figure 7: The spectrum (left) for ρs/ρn = 1, (right) for ρs/ρn = 10. For different resolution
(–) N=512, kmaxηn = (N/3)ηn = 1.816, kmaxηs = (N/3)ηs = 0.4651. (- -) N=1024, kmaxηn =
(N/3)ηn = 3.8105, kmaxηs = (N/3)ηs = 0.9132.
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Figure 8: The normalised ”4th”-order structure function, as a function of r/ηn,s for normal
fluid in blue colour and superfluid in red colour. (left) for ρs/ρn = 1, (right) for ρs/ρn = 10.
Resolutions (–) N=512, kmaxηn = (N/3)ηn = 1.816, kmaxηs = (N/3)ηs = 0.4651. (- -) N=1024,
kmaxηn = (N/3)ηn = 3.8105, kmaxηs = (N/3)ηs = 0.9132.
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10 Appendix 3. Effect of considering the full expression
of the mutual friction force

We test our claims by considering a generalized expression of the mutual friction force (Henderson
& Barenghi, 2004), viz.

Fns = B

2
ρsρn
ρ
ω̂s ×

[
ωs × (vn − vs − L̇)

]
+ Bp

2
ρsρn
ρ
ωs × (vn − vs − L̇), (32)

where L̇ is the vortex line velocity due to the oscillation of the vortex wave and writes

L̇ = κ

4π log(l/a0)∇× ω̂s (33)

l =
√
κ/ωs is the inter-vortex length, a0 is the vortex core size, and κ is the unit circulation.

In this work, we have made two simplifications. First, we neglected the velocity due to the
vortex line oscillation L̇. Because in the limit of high Reynolds numbers, l → O(a0) implies
L̇→ O(κ). The latter is too small compared to the characteristic velocity of the superfluid to
be taken into account.
On the other hand, in the original idea of the mutual friction force proposed by Hall and Vinen,
the vortex lines are considered as filaments with no mass, which implies that the inertial effects
of the vortex lines are irrelevant. As a matter of fact, based on the concept of two-fluid model,
the superfluid velocity resolved by the NS equations is a space-smoothed value ṽs, which is the
velocity induced by the vortex line smoothed (or averaged) over a large volume of fluid. In
this context, ṽs is equivalent to vs + L̇. The velocity due to the vortex tangle oscillation is not
actually neglected, but merged into ṽs.
Although we have ignored L̇ into a simplified scenario, we do not suggest L̇ should always be
neglected. The contribution of L̇ is interesting to be considered in some situations. For instance,
when vn − vs = 0, due to the contribution of L̇ the mutual friction force is not zero. However,
for the present work, we neglect L̇. The mutual friction force then consists of two components:
one is parallel to the relative velocity vn − vs, noted Fns‖ = B

2
ρsρn

ρ ω̂s × [ωs × (vn − vs)]. The
other one is perpendicular to the relative velocity vn − vs, noted Fns⊥ = Bp

2
ρsρn

ρ ωs × (vn − vs).
The mutual friction force is

Fns = B

2
ρsρn
ρ
ω̂s × [ωs × (vn − vs)] + Bp

2
ρsρn
ρ
ωs × (vn − vs), (34)

and with the supposition that ωs ⊥ (vn − vs), it becomes

Fns‖ = B

2
ρsρn
ρ
ω̂s × [ωs × (vn − vs)] = −B2

ρsρn
ρ
|ωs|(vn − vs), (35)

and
Fns⊥ = Bp

2
ρsρn
ρ
ωs × (vn − vs). (36)

The second simplification of the present work is to consider only the component Fns‖, basically
because Fns⊥ is considered as being non-dissipative and represents a Magnus effect associated
with quantized vortices (Roche et al., 2009). It signifies that Fns‖ is responsible for the energy
exchange between the two components, while Fns⊥ does not contribute much to the energy
exchange between the two fluids.
A first validation of our considerations is backed by the statistics of the angle made by un
and Fns. Figure 9 depicts the PDF of the angle made by the velocity vector and different
components of the force Fns⊥ and Fns‖, for the normal fluid (left) and the superfluid (right).
The PDF ](un,Fns‖) is skewed towards values of the angle between (0,π/2). This signifies
that un is preferably aligned with Fns‖. Therefore, Fns‖ injects energy to the normal fluid. The
PDF of the angle ](un,Fns⊥) is almost symmetric about the value of π/2. This signifies that

22



the Fns⊥ does not inject energy to the normal fluid. The same qualitative observation holds for
the PDF of ](us,Fns). The parallel component Fns‖ extracts energy from the superfluid and
Fns⊥ does not affect, on average, the superfluid. These are arguments that serve as a basis in
neglecting Fns⊥.
Furthermore, the temperature-related coefficient B is generally larger than Bp. For example,
for T = 1.95K, B = 0.98 and Bp = 0.05. The spectrum of un,sFns⊥ is negligible compared to
that of un,sFns‖, see figure 10. This is an additional reason for considering the simplified form
of the mutual friction force, as provided by Eq. (35), and considered in the present work.
The scale-by-scale transport equation for the third–order structure function is not affected by
the consideration of the complete expression of the friction force, (34). Additional numerical
studies considering the full expression of vortex oscillations will be performed in the future.
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Figure 9: The PDF of angle between the velocity and different friction force components. Normal
fluid (left), and for the superfluid (right).
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Figure 10: The spectrum of (-o-) unFns‖, (–) usFns‖, (-.) unFns⊥, (- -) usFns⊥.
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