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UMR 6085, F-76000 Rouen, France
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Abstract

The time-dependent Ginzburg-Landau (TDGL) model requires the
choice of a gauge for the problem to be mathematically well-posed. In
the literature, three gauges are commonly used: the Coulomb gauge,
the Lorenz gauge and the temporal gauge. It has been noticed [J.
Fleckinger-Pellé et al., Technical report, Argonne National Lab. (1997)]
that these gauges can be continuously related by a single parameter
considering the more general ω-gauge, where ω is a non-negative real
parameter. In this article, we study the influence of the gauge parame-
ter ω on the convergence of numerical simulations of the TDGL model
using finite element schemes. A classical benchmark is first analysed
for different values of ω and artefacts are observed for lower values of
ω. Then, we relate these observations with a systematic study of con-
vergence orders in the unified ω-gauge framework. In particular, we
show the existence of a tipping point value for ω, separating optimal
convergence behaviour and a degenerate one. We find that numerical
artefacts are correlated to the degeneracy of the convergence order of
the method and we suggest strategies to avoid such undesirable ef-
fects. New 3D configurations are also investigated (the sphere with or
without geometrical defect).
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1 Introduction

The time-dependent Ginzburg-Landau model (TDGL) is used to de-
scribe the dynamics of vortices in superconductors. It has been math-
ematically studied since the 1990’s. In Du (1994) the definitions of
gauges are introduced to ensure a mathematically well-posed problem.
Three main gauges are commonly used to relate the main variables
of the model: the electric potential ϕ, the magnetic vector potential
A and the quantum complex order parameter ψ. The Lorenz gauge
states that ϕ = −divA, the Coulomb gauge that divA = 0 and the
temporal gauge that ϕ = 0.

For a given gauge, discretizations of the TDGL equations have been
investigated with different methods and a large volume of literature
exists in this field (for a review of these studies see Du (2005) and the
references therein). In particular, finite element (FE) methods have
been extensively studied for the three gauges:

• The Lorenz gauge was studied in Gao et al. (2014) using a Crank-
Nicolson scheme in time and Lagrange FE in space. For squared
geometries, the authors observed singularities for the magnetic
field at corners. To avoid such singularities (which are numerical
artefacts), a mixed scheme for the Lorenz gauge was suggested
in Gao and Sun (2015). By introducing curlA as a supplemen-
tary unknown, the authors showed that the magnetic field was
computed correctly and numerical artefacts were avoided. The
convergence of the mixed scheme was proved in Gao and Sun
(2018) in general domains, including two-dimensional non-convex
polygons.

• Existence and uniqueness for the TDGL under the Coulomb gauge
was studied in Tang and Wang (1995). A numerical analysis for
the Coulomb gauge can be found in Gao and Xie (2023). The
authors used a backward Euler scheme in time. The vector po-
tential A was approximated by lowest order Nedelec FE, ϕ and
ψ by linear Lagrange FE.

• For the temporal gauge, a backward Euler scheme in time and
piecewise quadratic finite elements in space were used to solve
the TDGL equations in the pioneering work of Du (1994). A
drawback of the temporal gauge when compared to the Lorenz
gauge is the degeneracy of the parabolic equation for the vector
potential A. As a result, the convergence for A is one order lower
than in the Lorenz gauge.

To assess on the best adequacy of a finite-element scheme with the
choice of the gauge, a comparison between three numerical methods
was presented in Gao (2017): two schemes written with Lagrange FE
(one in the Lorenz gauge, the other in the temporal gauge) and a
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third scheme with a mixed formulation (with also Lagrange FE) using
the temporal gauge. When the temporal gauge was used, their results
showed the degeneracy of the convergence order for the vector potential
and its divergence.

In this article, we address the question of the selection of the op-
timal gauge for a finite-element discretization by studying the more
general ω-gauge defined as ϕ = −ω divA. This gauge was theoreti-
cally introduced in Fleckinger-Pellé and Kaper (1996), but not anal-
ysed numerically. It allows one to link the temporal gauge (ω = 0)
and the Lorenz gauge (ω = 1) continuously. We first estimate the
dependence of convergence rates on the value of ω using specially de-
signed manufactured solutions in two (2D) or three (3D) dimensions of
space. Different types of finite-element discretizations are tested: La-
grange and Raviart-Thomas mixed FE schemes for 2D, Lagrange and
Raviart-Thomas-Nedelec mixed FE schemes for 3D. We then apply the
generalized ω-gauge to well known benchmarks for the TDGL problem
and point out that numerical artefacts observed in some simulations
are related to the degeneracy of convergence orders. This study thus
offers a unified framework that directly and continuously relate the
influence of the gauge to the convergence of the FE numerical scheme.

The outline of the paper is as follows. In Sec. 2, we introduce the
TDGL model and the ω-gauge framework. We present the fully lin-
earised mixed finite element scheme written in the ω-gauge. In Sec. 3,
we present our results in 2D. We first analyse a benchmark of the liter-
ature in a non convex domain and identify cases with numerical arte-
facts. Then, convergence orders are computing using the commonly
used graphical method and the Richardson extrapolation technique.
The analysis is continued with higher order finite elements. In Sec. 4,
we extend our analysis to the 3D case and study three configurations:
the unit cube, a sphere and a sphere with a geometrical defect.

2 The time-dependent Ginzburg-Landau model
and the ω-gauge framework

2.1 The time-dependent Ginzburg-Landau system

The TDGL model describes the dynamics of a superconductor for tem-
peratures close to the critical temperature (Gorkov and Eliashburg,
1968; Kato et al., 1993) and is usually presented (in SI units) as
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ℏ2

2mD

(
∂

∂t
+ i

q

ℏ
ϕ

)
ψ =

ℏ2

2m

(
∇− i

q

ℏ
A
)2
ψ − αψ − β|ψ|2ψ,

σ

(
∂A

∂t
+∇ϕ

)
=

qℏ
2mi

(ψ∗∇ψ − ψ∇ψ∗)− q2

m
|ψ|2A− 1

µ0
curl (curlA− µ0H) ,

(1)
with boundary conditions(

∇ψ − i
q

ℏ
Aψ
)
· n = 0 on ∂Ω,(

1

µ0
curlA

)
× n = H× n on ∂Ω,

E · n = 0 on ∂Ω,

(2)

and initial conditions

ψ(x, 0) = ψ0(x) in Ω,

A(x, 0) = A0(x) in Ω.
(3)

In previous equations, ψ is the (complex valued) order parameter
(with ψ∗ the complex conjugate) and H the applied magnetic field; α
(negative) and β (positive) are parameters depending on the tempera-
ture and the superconductor material; q and m denote the charge and
the mass of the superconducting charge carrier, respectively. D is a
phenomenological diffusion coefficient and σ has the dimension of an
electrical conductivity. Finally, ℏ is the reduced Planck constant and
µ0 the magnetic permeability of the vacuum.

Numerical simulations are based on a non-dimensional form of (1)
which reads (Du, 1994):

(
∂

∂t
+ iκϕ

)
ψ =

(
1

κ
∇− iA

)2

ψ + ψ − |ψ|2ψ in Ω,(
∂A

∂t
+∇ϕ

)
= − curl (curlA−H) +

1

2iκ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A in Ω,

(4)
with boundary conditions(

1

κ
∇− iA

)
ψ · n = 0 on ∂Ω,

curlA× n = H× n on ∂Ω,

E · n = 0 on ∂Ω,

(5)

and initial conditions

ψ(x, 0) = ψ0(x) in Ω,

A(x, 0) = A0(x) in Ω.
(6)
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Lengths are scaled in units of the London penetration depth λ =(
mβ

µ0q2(−α)

) 1
2

. The ratio κ =
λ

ξ
, where ξ =

ℏ√
2m(−α)

is the coher-

ence length, becomes the only physical parameter of the dimensionless
formulation.

The non-dimensionalized Gibbs free energy G of the superconductor
is (Du et al., 1992):

G(Ψ,A) =

∫
Ω

1

2

(
|ψ|2 − 1

)2
+

∣∣∣∣( 1

κ
∇− iA

)
ψ

∣∣∣∣2 + |curlA−H|2 . (7)

The time-dependent Ginzburg Landau equations (4) are related to
the Gibbs energy through the following identities (Du, 2005):

∂ψ

∂t
+ iκϕψ = −1

2

∂G
∂ψ

(ψ,A) ,

∂A

∂t
+∇ϕ = −1

2

∂G
∂A

(ψ,A) .

(8)

2.2 Gauge description

Energy (7) is invariant under certain mathematical transformations
called gauge transformations. Therefore, the physical properties of the
system do not depend on these transformations. In Du (1994) we find
the general definition of a gauge for the TDGL model.

Given a function χ, a gauge transformation is a linear transforma-
tion Gχ given by

Gχ(ψ,A, ϕ) = (ζ,Q,Θ),

where ζ = ψeiκχ, Q = A+∇χ, Θ = ϕ− ∂χ

∂t
.

(9)

Then (ζ,Q,Θ) and (ψ,A, ϕ) solutions are said to be gauge equiva-
lent. It is easily seen from (9) that curlQ = curlA and |ζ|2 = |ψ|2.
Hence the magnetic field or the density of the charge carriers, two
physically relevant quantities, do not depend on the gauge.

For the definition of the ω-gauge (Fleckinger-Pellé et al., 1997), we
define χ such that it satisfies the following boundary-value problem:(

∂

∂t
− ω∆

)
χ = ϕ+ ω divA in Ω× (0,+∞),

ω (n · ∇χ) = −ω (n ·A) in ∂Ω× (0,+∞), (10)

with initial condition χ(·, 0) = χ0. In this gauge, we have for t > 0:

ϕ = −ωdiv(A), in Ω,

ωA · n = 0, in ∂Ω. (11)
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Each choice of ω corresponds to a different gauge: ω = 0 gives the
temporal gauge, ω = 1 the Lorenz gauge and ω = +∞ the Coulomb
gauge.

2.3 The fully linearised MFE scheme

In this section, we write the mixed variational formulation of the TDGL
model under the ω-gauge and the corresponding fully discretized scheme
(Gao and Sun, 2015, 2018).

2.3.1 Two-dimensional formulation

In 2D, A has two components A1 and A2, depending on x and y. As

a result, the magnetic induction γ = curlA =
∂A2

∂x
− ∂A1

∂y
is a scalar.

Introducing γ as a supplementary unknown, the system (4) with the
ϕ = −ωdiv(A) gauge can be rewritten as:

∂ψ

∂t
− iκωdiv(A)ψ =

(
1

κ
∇− iA

)2

ψ + ψ − |ψ|2ψ,

γ = curlA,

∂A

∂t
− ω∇div(A) + curl γ =

1

2iκ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A+ curlH,

(12)

where curl =

(
∂

∂x
,− ∂

∂y

)
. Boundary and initial conditions are:

∂ψ

∂n
= 0, γ = H, ωA · n = 0 on ∂Ω× (0,+∞),

ψ(x, 0) = 1, γ(x, 0) = 0, A(x, 0) = (0, 0) on Ω. (13)

To write the weak formulation, we introduce the following functional
spaces

H1 = {u ∈ L2(Ω),∇u ∈ L2(Ω)},
H(div) =

{
A | A ∈ L2(Ω),divA ∈ L2(Ω)

}
,

◦
H (div) = {A | A ∈ H(div), A · n|∂Ω = 0} .

(14)

We denote by H (resp. H), the Sobolev spaces corresponding to vector
valued (resp. complex valued) functions. The dual space of a Sobolev
space H is denoted by H′. The L2 inner product is denoted by (., .). The
weak form corresponding to Eq. (12) is: find ψ ∈ L2(0, T ;H1(Ω)) with
∂ψ

∂t
∈ L2(0, T ;H−1(Ω)) and (γ,A) ∈ L2(0, T ; H1) × L2(0, T ;

◦
H(div))
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with
∂A

∂t
∈ L2(0, T ;

◦
H(div)′), where γ = H on ∂Ω, such that(

∂ψ

∂t
, w

)
− iκω ((div(A)ψ,w) = −

((
1

κ
∇− iA

)
ψ,

(
1

κ
∇− iA

)
w

)
+
((
1− |ψ|2

)
ψ,w

)
∀w ∈ H1(Ω),

(γ, χ)− (curlχ,A) = 0 ∀χ ∈ H1
0,(

∂A

∂t
,v

)
+ (curl γ,v) + (ω divA,divv)− 1

2iκ
(ψ∗∇ψ − ψ∇ψ∗,v) + (|ψ|2A,v) = (curlH,v) ∀v ∈

◦
H(div),

(15)
for t ∈ (0, T ) with ψ(x, 0) = ψ0(x), A(x, 0) = A0(x) and γ(x, 0) =
curlA0(x).
In numerical examples, we take A0(x) = (0, 0) and ψ0(x) = 1 i.e. a
pure superconducting state.

Following Gao and Sun (2015), we introduce the approximated
fields Ah, γh and ψh such that

Ah ∈ Ur
h, γh ∈ V r+1

h , ψh ∈ V r
h , (16)

where r ≥ 0. Ur
h is the space of the Raviart-Thomas finite elements

of order r and V r
h the space of Lagrange finite elements of order r. In

what follows, we omit the index h for the fields.
The discrete formulation of (12) and (13) is: find ψn+1 in V r

h ,
γn+1 in V r+1

h and An+1 in Ur
h , r ≥ 1 such that for all (w,χ,v) in

V r
h×

◦
V

r+1

h ×
◦
U

r

h

1

δt
(ψn+1, w) +

1

κ2
(∇ψn+1,∇w) = 1

δt
(ψn, w) +

(
i

(
κω +

1

κ

)
div(An)ψn, w

)
+

(
2
i

κ
ψnAn,∇w

)
+ (N (An, ψn), w),

(γn+1, χ)− (curlχ,An+1) = 0,

1

δt
(An+1,v) + (ωdiv(An+1),div(v)) + (curl γn+1,v) =

1

δt
(An,v) +

1

2iκ
(ψ∗

n∇ψn − ψn∇ψ∗
n,v)− (|ψn|2An,v) + (curlH,v),

(17)
where N (ψ,A) =

(
1−A2 − |ψ|2

)
ψ.

2.3.2 Three dimensional formulation

In 3D, the TDGL model becomes:

∂ψ

∂t
− iκωdiv(A)ψ =

(
1

κ
∇− iA

)2

ψ + ψ − |ψ|2ψ,

γ = curlA,

∂A

∂t
− ω∇div(A) + curlγ =

1

2iκ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A+ curlH,

(18)
with boundary and initial conditions
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∂ψ

∂n
= 0, γ × n = H× n, ωA · n = 0 on ∂Ω× (0,+∞),

ψ(x, 0) = 1, γ(x, 0) = 0, A(x, 0) = (0, 0) on Ω. (19)

To write the weak formulation, we introduce the following func-
tional spaces:

H(curl) =
{
A | A ∈ L2(Ω), curlA ∈ L2(Ω)

}
,

◦
H (curl) = {A | A ∈ H(curl), A× n|∂Ω = 0} .

(20)

The weak form corresponding to Eq. (12) is: find ψ ∈ L2(0, T ;H1(Ω))

with
∂ψ

∂t
∈ L2(0, T ;H−1(Ω)) and (γ,A) ∈ L2(0, T ;H(curl))×L2(0, T ;

◦
H(div))

with
∂A

∂t
∈ L2(0, T ;

◦
H(div)′), where γ × n = H× n on ∂Ω, such that(

∂ψ

∂t
, w

)
− iκω ((divAψ,w) = −

((
1

κ
∇− iA

)
ψ,

(
1

κ
∇− iA

)
w

)
+
((
1− |ψ|2

)
ψ,w

)
∀w ∈ H1(Ω),

(γ,χ)− (curl χ,A) = 0 ∀χ ∈
◦
H (curl),(

∂A

∂t
,v

)
+ (curl γ,v) + (ω divA,divv)− 1

2iκ
(ψ∗∇ψ − ψ∇ψ∗,v) + (|ψ|2A,v) = (curl H,v) ∀v ∈

◦
H(div),

(21)
a.e. for t ∈ (0, T ) with ψ(x, 0) = ψ0(x),A(x, 0) = A0(x) and γ(x, 0) =
curl (A0(x)). In numerical examples, we take A0(x) = (0, 0) and
ψ0(x) = 1 i.e. a pure superconducting state.

To approximate the magnetic field γ, we introduce the Nedelec FE
space of order r denoted by Qr

h. The fully linearised scheme at the
lowest order is: find ψn+1 in V 1

h , γ
n+1 in Q0

h and An+1 in U0
h , such

that for all (w,χ,v) in V 1
h×

◦
Q

0

h ×
◦
U

0

h

1

δt
(ψn+1, w) +

1

κ2
(∇ψn+1,∇w) = 1

δt
(ψn, w) +

(
i

(
κω +

1

κ

)
div(An)ψn, w

)
+

(
2
i

κ
ψnAn,∇w

)
+ (N (An, ψn), w) ,

(γn+1,χ)− (curl χ,An+1) = 0,

1

δt
(An+1,v) + (ωdiv(An+1),div(v)) + (curl γn+1,v) =

1

δt
(An,v) +

1

2iκ
(ψ∗

n∇ψn − ψn∇ψ∗
n,v)− (|ψn|2An,v) + (curlH,v).

(22)
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3 Convergence of the method in 2D

3.1 Benchmark in non convex geometry

In this section we study the TDGL model using the geometry of the
disk with an entrant corner (see Fig. 1). This example was originally
suggested in Alstrom et al. (2011). We set κ = 4, H = 0.9. The radius
of the domain is R = 5 in units of λ. The mesh is uniform and the
number of nodes per unit of the coherence length ξ is 3. Using the
mixed scheme (17), Figs. 1 and 2 show the vortex pattern at t = 5000
for FE of order r = 1 and r = 2, respectively.

Figure 1: 2D benchmark of a disk with an entrant corner. Finite elements
of order r = 1 (see definition (16)). Contours of |ψ| at t = 5000 for different
values of the ω parameter.
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Figure 2: Same caption as Fig. 1 with r = 2.

For r = 1 and ω ≤ 10−3, we notice a growing normal zone (i.e.
a non-superconducting region where the order parameter takes very
low values) near the indent. This zone might appear as an extended
vortex (Alstrom et al., 2011), but in reality, it is just a numerical
artefact. We can indeed resolve this zone by resorting to a finer mesh
with 5 nodes per ξ. Normal zones are a common numerical issue with
TDGL simulations (Richardson et al., 2004).

For r = 2, there is no such normal region, but vortex arrangements
at the final time are different. We observe 3 distinct vortex patterns.
Table 1 summarizes the characteristics of the final state for each ω
when r = 2. Gn is the free energy computed at time t = nδt.

ω Number of vortices |Gn − Gn−1| Gnmax nmax
at n = nmax

1 21 < 10−10 16.4711 5000

10−1 21 < 10−10 16.4711 5000

10−2 22 1.6 · 10−7 16.0959 5000

10−3 21 7.4 · 10−8 16.4362 5000

10−4 21 4.3 · 10−7 16.4310 5000

0 21 1.3 · 10−6 16.4338 5000

Table 1: 2D benchmark of a disk with an entrant corner. Finite elements
of order r = 2. Characteristics of vortex patterns for each ω at t = nmaxδt
with nmax = 5000.
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Figure 3 shows the relative energy differences
|Gn+1 − Gn|

Gn
for n =

0 . . . 5000 for w = 1, 10−1, 10−2, 10−3, 10−4, 0 for the case r = 2. We
observe that cases ω = 1, 10−1 are the fastest cases for reaching the
equilibrium. We also notice that the case ω = 10−2 converges faster
than cases with lower values of ω.

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0 1000 2000 3000 4000 5000

|G
n+

1 
- G

n|
/G

n

n

ω = 1
ω = 0.1

ω = 0.01
ω = 0.001

ω = 0.0001
ω = 0

Plot of relative energy differences

Figure 3: 2D benchmark of a disk with an entrant corner. Finite elements of
order r = 2. Relative energy difference |Gn+1 − Gn|/Gn in logarithmic scale
for ω = 1, 10−1, 10−2, 10−3, 10−4, 0;

Note that vortex arrangements could be different, depending on the
value of ω. Each state corresponds to a numerically found local mini-
mizer of the energy (7). Among these minimizers, the ground state is
defined as the global minimum. Table 1 shows that the final state cor-
responding to ω = 10−2 has the lowest energy. In Fig. 4 (left panel),
we show another configuration with 24 vortices and energy equal to
15.5547. It has been obtained by starting with the final state cor-
responding to ω = 10−4 and then progressively increasing the gauge
parameter up to ω = 1. The vortex pattern does not have a symmetry
with respect to the x-axis unlike the ones found hitherto. This con-
figuration corresponds well to that numerically found in Gueron and
Shafrir (1999) (see the right panel in Fig. 4) as a minimizer with also
n = 24 vortices, but for the renormalized energy of a system of n point
vortices Sandier and Serfaty (2008):

wn(x1, . . . , xn) = −π
∑
i ̸=j

log|xi − xj |+ Cπn

n∑
i=1

|xi|2. (23)

To conclude this part, we note that the convergence towards the
equilibrium is faster when ω ≥ 10−2. In the following sections, we
compute convergence orders for different choices of the gauge.
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Figure 4: 2D benchmark of a disk with an entrant corner. Finite elements of
order r = 2. Configuration of lowest energy with 24 vortices (left). Minimizer
of (23) corresponding to a system of 24 point vortices, taken from Gueron
and Shafrir (1999)(right).

3.2 A manufactured TDGL system

A manufactured system is a system for which the exact solution is
known analytically. The general idea of the technique of manufactured
solutions (e. g. Roache (1998)) is to modify the original system of
equations by introducing an extra source term, such that the new sys-
tem admits an exact solution given by a convenient analytic expression.
Even though in most cases exact solutions constructed in this way are
not physically realistic, this approach allows one to rigorously verify
computations.

In the case of the TDGL system, the manufactured system on the
unit square (0, 1)× (0, 1) is

∂ψ

∂t
− iκωdiv(A)−

(
1

κ
∇− iA

)2

ψ − ψ + |ψ|2ψ = g,

∂A

∂t
− ω∇div(A) + curl curlA− 1

2iκ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = curlH + f ,

(24)
with boundary and initial conditions

∇ψ · n = 0, curlA = H, ωA · n = 0, on ∂Ω, (25)

where f and g are defined such that the exact solution of (24) reads:

ψ = exp(−t) (cos(πx) + i cos(πy)) ,

A =

(
exp(y − t) sin(πx)
exp(x− t) sin(πy)

)
,

H = exp(x− t) sin(πy)− exp(y − t) sin(πx).

(26)
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It is shown in Gao and Sun (2018) that, if the exact solution of (21)
is regular enough, then for a final time tN of the scheme, the following
error estimates hold:

||ψN
h − ψN ||L2

= O(∆t+∆xr+1),

||AN
h −AN ||L2

= O(∆t+∆xr+1),

∆t

N∑
n=1

||γnh − curlAn||2L2
= O(∆t2 +∆x2r+2).

(27)

3.3 Convergence analysis of the scheme (17) for the
case r = 1

We now describe two methods to compute the convergence orders.
The graphical method is the usual technique. However it becomes
computationally costly for higher order finite elements. Therefore, we
use the Richardson extrapolation method that was proved to be fast
and reliable.

3.3.1 The graphical method

We choose ∆x =
1

M
and ∆t =

1

M3
with M = 8, 16, 32, 64, 128 and

iterate the scheme
M3

8
times. We compute the solution at t =

1

8
=

0.125 and then compare it with the exact solution (26). Results are
shown in Figs. 5 - 6 with M = 8, 16, 32, 64, 128.

We observe that the vector potential loses one order between ω =
10−2 and ω = 10−5. Between ω = 10−3 and ω = 5× 10−5 we observe
an increase of the order for A at smaller sizes of the mesh; this suggests
the existence of an inflection point where the order is maximum; this
point depends on the size of the mesh. As regards the divergence of
A, it loses two orders between ω = 10−2 and ω = 10−5; between
ω = 10−3 and ω = 10−5, the convergence rate decreases monotonously
as the mesh size increases; the beginning of the decrease depends on
the size of the mesh. The orders for |ψ|, γ and curl γ are not affected.

The graphical method used to determine the orders can be mis-
leading, since the relation between ∆t and ∆x is fixed and imposed by
the expected convergence rate. Indeed, we are not able to see orders

greater than q if ∆t =
1

Mq
. Besides the method is time consuming,

since we need to compute a number of iterations of order N = O(Mq).
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Figure 5: 2D manufactured solutions benchmark. Finite elements of order
r = 1. Orders for the vector potential A (left) and its divergence div(A)
(right).

Figure 6: 2D manufactured solutions benchmark. Finite elements of order
r = 1. Orders for ψ, γ = curlA and curl γ.

3.3.2 The Richardson extrapolation method

In this section, we describe another method to estimate convergence
rates, known as the Richardson extrapolation technique. The advan-
tage of this method is that the number of iterations Niter is fixed. It is
very efficient, once the parameters ∆t and Niter are chosen carefully.

Let us first describe the method. Consider a quantity u to be
evaluated numerically. We denote by uex its exact value and uh its
approximation, where h is the discretization step to be refined. If p is

14



the order of the numerical scheme, then we assume that:

uex = uh + Chp,

uex = uh
2
+ C

(
h

2

)p

,

uex = uh
4
+ C

(
h

4

)p

.

(28)

By substitution we deduce that the convergence order can be computed
as:

p =
1

log 2
log

(
uh

2
− uh

uh
4
− uh

2

)
. (29)

Since u is a field in our case, we consider p =
1

log 2
log

(
||uh

2
− uh||L2

||uh
4
− uh

2
||L2

)
.

As a benchmark, we first recover the results in the case of the Lorenz
gauge. Table 2 shows the orders obtained in this case for M = 16, so

that ∆x =
1

16
= 0.0625. The time step is ∆t = 10−3 and we take

Niter = 125 iterations. We recover the correct orders.

Errψ ErrA Errγ Errcurl γ Errdiv(A)

||u∆x
2

− u∆x||L2 0.0029113 0.00145666 0.00129579 0.00987884 0.00686983

||u∆x
4

− u∆x
2
||L2 0.000729874 0.000364629 0.00032392 0.00245809 0.001727

order 1.99594 1.9982 2.00008 2.00681 1.99169

Table 2: 2D manufactured solutions benchmark. Finite elements of order r
= 1. Computed L2 norm errors of ψ, A, γ, curl γ and div(A) for the Lorenz
gauge.

Table 3 shows the orders computed for 10 values of ω between 0 and
1 with M = 16, ∆t = 10−3 and Niter = 125. The orders for quantities
|ψ|, γ and curl γ are in agreement with the graphical results of Fig.
6. In Tabs. 4 - 5, we compare the two methods for A and divA. The
reported graphical values are the average slopes obtained with the 3
points used in the Richardson method; in this case they correspond
to M = 16, 32, 64. We observe a good agreement between the two
techniques.

In conclusion, the convergence orders are optimal when ω ≥ 10−2.
In the next section, we compute convergence orders for the case r = 2.
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ω = 1 ω = 10−1 ω = 10−2 ω = 10−3 ω = 10−4 ω = 10−5 ω = 10−6 ω = 0

Errψ 1.99594 1.99294 1.99083 1.98507 1.9919 1.99305 1.99307 1.99307

ErrA 1.9982 1.999 2.07292 2.55124 1.36199 1.05806 1.01602 1.0111
Errγ 2.00008 1.99683 1.99408 1.98795 1.99617 1.99733 1.99735 1.99735

Errcurl γ 2.00681 2.00412 2.00279 2.00014 2.00375 2.00425 2.00425 2.00425

Errdiv(A) 1.99169 2.00495 2.00072 1.67622 0.941629 0.116245 -0.00869583 -0.0230222

Table 3: 2D manufactured solutions benchmark. Finite elements of order r
= 1. Computed orders of ψ, A, γ, curl γ and div(A) for different gauges.

ω = 1 ω = 10−1 ω = 10−2 ω = 10−3 ω = 10−4 ω = 10−5 ω = 10−6 ω = 0

Richardson method 1.9982 1.999 2.0729 2.5512 1.3619 1.0581 1.0160 1.0111

Graphic method 1.9893 1.9897 2.1514 2.7523 1.6501 1.0781 1.0063 0.9982

Table 4: 2D manufactured solutions benchmark. Finite elements of order r
= 1. Comparison between the Richardson method and the graphical method
for the estimation of convergence orders.

ω = 1 ω = 10−1 ω = 10−2 ω = 10−3 ω = 10−4 ω = 10−5 ω = 10−6 ω = 0

Richardson method 1.9917 2.0049 2.0007 1.6762 0.9416 0.1162 -0.0087 -0.0230

Graphic method 1.9790 1.9903 1.9523 1.7748 0.5894 0.01583 -0.0635 -0.0643

Table 5: 2D manufactured solutions benchmark. Same caption as Tab. 4
for divA.

3.4 Convergence analysis of the scheme (17) for the
case r = 2

Table 6 shows the orders obtained with the Richardson extrapolation

technique for the case ω = 1. The space step is ∆x =
1

16
= 0.0625, the

time step is ∆t = 10−3 and we compute Niter = 125 iterations. The
results agree with Gao and Sun (2015) except for the magnetic field
γ; we observe an order equal to 4. We report on Tab. 7 the results
for different values of ω. Like the case r = 1, the quantities ψ, γ and
curl γ are not affected by the gauge choice. A (resp. divA) is losing
one order (respectively two orders) when we decrease ω from 1 to 0.

In conclusion, as for the case r = 1, the convergence orders are
optimal when ω ≥ 10−2. This is consistent with the faster energy
decrease displayed in Fig. 3 for ω ≥ 10−2.
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Errψ ErrA Errγ Errcurl γ Errdiv(A)

||u∆x
2

− u∆x||L2 3.77341 · 10−5 2.61501 · 10−5 1.80296 · 10−6 0.000212573 0.000127969

||u∆x
4

− u∆x
2
||L2 4.73961 · 10−6 3.26017 · 10−6 1.12463 · 10−7 2.65818 · 10−5 1.60875 · 10−5

order 2.99303 3.0038 4.00284 2.99945 2.99178

Table 6: 2D manufactured solutions benchmark. Finite elements of order r
= 2. Computed L2 norm errors of ψ, A, γ, curl γ and div(A) for the Lorenz
gauge.

ω = 1 ω = 10−1 ω = 10−2 ω = 10−3 ω = 10−4 ω = 10−5 ω = 10−6 ω = 0

Errψ 2.99303 2.99293 2.99294 2.99311 2.993 2.99299 2.99295 2.99295

ErrA 3.0038 3.00705 3.22632 3.65457 2.32248 2.0462 2.07952 1.98825
Errγ 4.00284 4.002 3.99905 3.98761 3.99725 4.0023 4.00289 4.00296

Errcurl γ 2.99945 3 2.99963 2.99651 2.99804 2.99994 2.99993 2.99995

Errdiv(A) 2.99178 2.97989 2.98608 2.68217 1.31567 1.05971 1.22292 0.984674

Table 7: 2D manufactured solutions benchmark. Finite elements of order r
= 2. Computed orders of ψ, A, γ, curl γ and div(A) for different gauges.

4 Results in three dimensions of space

In this section, we consider the mixed FE scheme (22) in three dimen-
sions. We compute orders for different values of ω using manufactured
solutions on the unit cube. Then, we study three domain configura-
tions: the unit cube, a sphere and a sphere with a geometrical defect.

4.1 Computation of convergence orders for the scheme
(22)

We consider the following manufactured system for the TDGL model
on the unit cube (0, 1)3:

∂ψ

∂t
− iκωdiv(A)−

(
1

κ
∇− iA

)2

ψ − ψ + |ψ|2ψ = g,

∂A

∂t
− ω∇div(A) + curl curlA− 1

2iκ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = curlH+ f ,

(30)
with boundary and initial conditions

∇ψ · n = 0, curlA× n = H× n, ωA · n = 0, on ∂Ω, (31)
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where f and g are defined such that the exact solution of (24) is

ψ = exp(t) cos(πy) cos(πz) + i exp(t) cos(πx) cos(πz),

A =

 exp(t) sin(πx) sin(πy)
exp(t) sin(πy) sin(πz)
exp(t) sin(πz)

 ,

H =

 −π exp(t) sin(πy) cos(πz)
0
−π exp(t) sin(πx) cos(πy)

 .

(32)

Table 8 shows the orders obtained with the Richardson extrapola-

tion technique for ∆x =
1

10
= 0.1. The time step is ∆t = 10−3 and

we make Niter = 100 iterations. The results for the Lorenz gauge are
in agreement with Gao and Sun (2015) except for ψ. We observe an
order 2 for the order parameter. Only divA is affected by the gauge.
The convergence rate of divA increases for ω = 10−2 then decreases
towards 0.

ω = 1 ω = 10−1 ω = 10−2 ω = 10−3 ω = 10−4 ω = 10−5 ω = 10−6 ω = 0

Errψ 1.95673 1.95367 1.95264 1.95284 1.9536 1.95362 1.95362 1.95362

ErrA 1.00174 1.00173 0.999845 1.01192 1.00799 1.00236 1.00153 1.00143
Errγ 0.995947 0.995988 0.997945 0.995992 0.995994 0.995994 0.995994 0.995994

Errcurl γ 0.998499 0.998555 0.998559 0.995992 0.998569 0.99856 0.998569 0.998569

Errdiv(A) 0.998665 1.00779 1.35479 0.901413 0.198305 -0.00942684 -0.0358771 -0.0388907

Table 8: 3D manufactured solutions benchmark. Computed orders of ψ, A,
γ, curl γ and div(A) for different gauges.

In conclusion, as in the 2D case, the convergence orders are optimal
when ω ≥ 10−2.

4.2 Numerical examples for 3D configurations

We use the scheme (22) to analyse the convergence with respect to the
choice of the gauge in 3 cases: the unit cube, a sphere and a sphere
with a geometrical defect.

• The unit cube: we set κ = 10, H = (0, 0, 5) and ∆t = 0.1. The
mesh is uniform and the number of nodes per ξ is 3. Figure 7
shows the vortex pattern at t = 100 for ω = 1. For other values of
ω, the final state is identical. To highlight the difference between

the different gauges, the ratios
|Gn+1 − Gn|

Gn
, n = 0 · · · 100, are

plotted on Fig. 7. We observe that the convergence is similar
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for ω = 1, 10−1, 10−2. For lower values of ω, a change of regime
appears and the convergence is much slower.
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Figure 7: 3D benchmark with unit cube domain. Density |ψ| for κ = 10,
H = 5, at t = 100 with ω = 1 (left). Relative energy differences |Gn+1 −
Gn|/Gn for different gauges.
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Figure 8: 3D benchmark with spherical domain. Contours of the density |ψ|
for κ = 10, H = 5, at t = 500 with ω = 1 (left). Relative energy differences
|Gn+1 − Gn|/Gn for different gauges (right).

• A sphere with or without a geometrical defect: the domain is the

sphere of radius

√
2

2
with or without a defect. We set κ = 10,

H = (0, 0, 5) and ∆t = 0.1. The mesh is uniform and the number
of nodes per ξ is 3. Figure 9 shows the mesh for the sphere
with a defect. Vortex patterns at equilibrium for ω = 1 are
shown on Figs. 8 and 10. The patterns are identical for other

choices of ω. The ratios
|Gn+1 − Gn|

Gn
, n = 0 · · · 500, are plotted
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in Figs. 8 and 10. We observe a better convergence for the
cases ω = 1, 10−1, 10−2. These results are consistent with the
convergence rates obtained from Tab. 8.

Figure 9: 3D mesh of the sphere of radius
√
2
2 with a geometrical defect.
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Figure 10: 3D benchmark with spherical domain and a geometrical defect.
Density |ψ| for κ = 10, H = 5, at t = 500 with ω = 1 (left). Relative energy
differences |Gn+1 − Gn|/Gn for different gauges (right).

5 Summary and conclusions

We presented a comparative study of different gauges for the TDGL
model in the unified framework of the ω-gauge theoretically introduced
in Fleckinger-Pellé et al. (1997). Classical gauges were recovered from
this model: ω = 1 corresponds to the Lorenz gauge and ω = 0 to the
temporal gauge. We used the mixed finite element scheme introduced
by Gao and Sun (2015), rewritten in the ω-gauge. The present contri-
bution is a first attempt, to the best of our knowledge, to numerically
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analyse the ω-gauge formulation in FE settings.
First we studied a classical benchmark, the disk with a geometrical

defect. For FE of order r = 1 and low values of the gauge parameter
ω, we observed a growing normal zone near the defect. This numerical
artefact recalls the extended vortices found in Alstrom et al. (2011).
However, in our case, a finer resolution of the mesh or an increase
of the FE order r can solve the issue. As an alternative strategy to
avoid such undesirable effects, we showed that using a higher value for
ω, typically above 10−2 is also efficient. This suggestion is confirmed
by plotting the energy decrease during computations, which is faster
when ω ≥ 10−2. Incidentally, by varying ω, we also found a state of
new lowest energy state (non-symmetrical with respect to the x-axis),
which is similar to a minimizer of the renormalized energy introduced
in Sandier and Serfaty (2008) for a system of point vortices.

In the second part of our study, our goal was to assess the influ-
ence of ω on the convergence orders for ψ, A, γ, curl γ, and divA.
In 2D, only A and divA were affected by a change of gauge. The
degeneracy of the convergence orders, already observed in Gao (2017),
were recovered. In addition, we saw that the tipping point between
optimal convergence and degeneracy occurred for ω between 10−2 and
10−3. Moreover, a careful study of the convergence curves on Fig. (5)
showed that this tipping point also depends on the size of the mesh.
These results are in agreement with the analysis of the previous 2D
benchmark: increasing the gauge parameter ω or refining the mesh are
the two ways to ensure the best convergence.

In 3D, the analysis was conducted for r = 0. It appeared that only
divA was affected by a gauge choice. Quantities ψ, A, γ and curlγ
were unaffected. The convergence rate was 1, which is the theoretical
value, except for ψ for which we observed superconvegence with a
rate equal to 2. As in the 2D case, the degeneracy of convergence
orders appeared for ω ≤ 10−3. Two new benchmarks, the sphere
with and without a defect were analysed. Each benchmark showed a
clear threshold value for ω between 10−3 and 10−2 consistent with our
convergence analysis.

In conclusion, we analysed in detail the link between the choice of
the gauge and the behaviour (convergence order) of mixed FE schemes
used to solve the TDGL system of equations. A potential user of
FE methods must be aware that numerical artefacts could appear in
numerical simulations. We suggested several strategies to avoid such
undesirable effects and tested them on 2D and 3D benchmarks. This
suggests that configurations with geometries relevant for actual super-
conductors can be successfully simulated with the ω-gauge formulation.
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